Supporting Information for

Surface plasmon resonance study of the binding of PEO-PPO-PEO triblock copolymer and PEO homopolymer to supported lipid bilayers

Mihee Kim¹, Milan Vala^{2†}, Christopher T. Ertsgaard², Sang-Hyun Oh², Timothy P. Lodge^{1,3}, Frank S. Bates^{1*}, Benjamin J. Hackel^{1*}

¹Department of Chemical Engineering and Materials Science, ²Department of Electrical and Computer Engineering, and ³Department of Chemistry, University of Minnesota, Minneapolis, MN 55455

[†]Present address: Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, 18251, Czech Republic

* Correspondence to: hackel@umn.edu, 612-624-7102, bates001@umn.edu, 612-624-0839

Pages: 8

Figures: 6

Tables: 0

Supplementary Materials and Methods

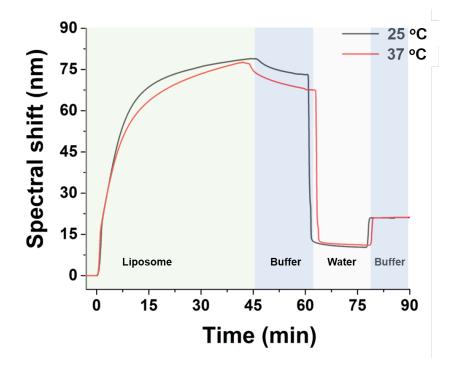
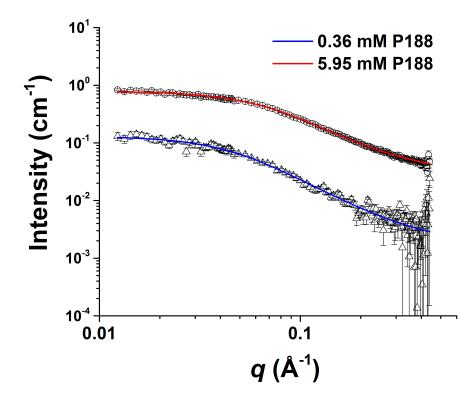
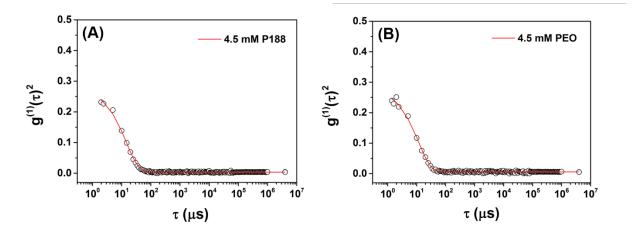
Small-angle neutron scattering

The small angle neutron scattering (SANS) experiments were performed on the NG-7 30 m SANS beamline at the National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD. Data were acquired using an instrument configuration with a wavelength of 8.09 Å, a wavelength spread $(\Delta\lambda/\lambda)$ of 0.22, and a sample-to-detector distance of 15 m, 4 m and 1 m (q is the scattering wave vector, defined as $q = 4\pi \sin(\theta/2)/\lambda$). The 1 mm quartz cells containing the samples were placed and heated to 37 °C on a 7-position temperature-controlled heating block provided by NIST, which was capable of maintaining the temperature within ±1 °C.

Dynamic light scattering

Dynamic light scattering measurements were performed on a Brookhaven BI-200SM DLS (Brookhaven Instruments Corporation, Holtsvile, NY) at 90° scattering angle using a 633 nm HeNe laser operating at 20 mW. Block copolymers in physiological buffer (140 mM NaCl, 5 mM KCl, 2.5 mM CaCl₂, 2 mM MgCl₂, and 10 mM HEPES) were incubated for 20 minutes at 37 °C before the measurements. Scattering data were collected for 5 minutes from 1 µs to 4 s delay times at 37 °C. Hydrodynamic radii were obtained by fitting autocorrelation function by the method of cumulant.

Supplementary Figures

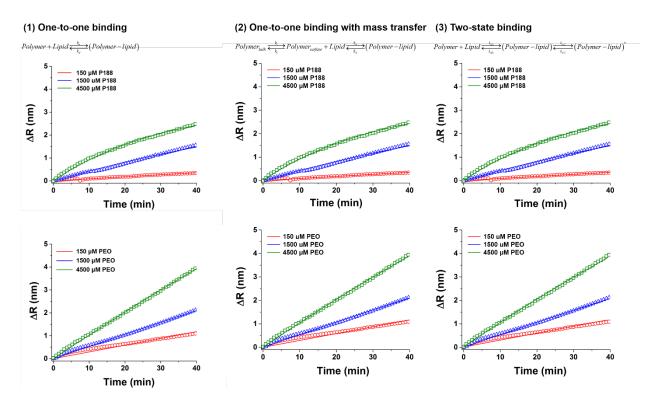

Figure S1. Supported lipid bilayer formation at 25 and 37 °C.


Figure S2. Small angle neutron scattering profiles of P188 at 37 °C in D₂O. Symbols are experimental data and solid lines are fit by the Debye formula. Obtained radius of gyration (R_g) of P188 at 0.36 mM and 5.95 mM is 33.3 ± 0.8 Å and 23.1 ± 0.1 Å, respectively. The R_g values are close to estimated R_g of random coil conformation of P188 assuming equal statistical segment lengths of PEO and PPO, b = 6.0 Å.

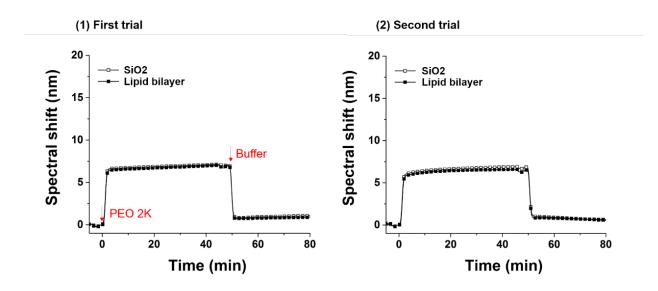

Figure S3. Autocorrelation function of (A) P188 and (B) PEO obtained by dynamic light scattering at 37 °C. Symbols are experimental data and solid lines are fits by the method of cumulants. Hydrodynamic radii for P188 and PEO were 2.5 nm and 2.0 nm, respectively.

Figure S4. Comparison of fitting results using various binding models: (1) simple one-to-one binding model (identical to Figure 8), (2) one-to-one binding model considering mass transfer, and (3) two-state binding model.

Figure S5. Surface coverage comparison between P188 and PEO at 150, 1500, and 4500 μ M. The difference between the surface coverage of P188 and PEO at the same concentration are not statistically significant (i.e., p > 0.05).

Figure S6. Spectral shift upon PEO 2100 g/mol injection on lipid bilayer at 4500 μ M. Filled symbols indicate polymers on lipid bilayers and open symbols indicate polymers on the bare SiO₂ surface. The measurements were done at 37 °C. PEO 2100 g/mol (BioUltra grade) was purchased from Sigma, and molecular weight and dispersity (1.03) was characterized by MALDI-TOF.