Enhanced photocatalytic dye degradation and hydrogen production ability of Bi₂₅FeO₄₀-rGO nanocomposite and mechanism insight

M. A. Basith^{1,*}, Ragib Ahsan¹, Ishrat Zarin¹, and M. A. Jalil¹

¹Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh ^{*}mahasith@nbv.bust.as.bd

*mabasith@phy.buet.ac.bd

ABSTRACT

A comprehensive comparison between $Bi_{25}FeO_{40}$ -reduced graphene oxide(rGO) nanocomposite and $BiFeO_3$ -rGO nanocomposite has been performed to investigate their photocatalytic abilities in degradation of Rhodamine B dye and generation of hydrogen by water-splitting. The hydrothermal technique adapted for synthesis of the nanocomposites provides a versatile temperature-controlled phase selection between sillenite $Bi_{25}FeO_{40}$ and perovskite $BiFeO_3$. Both sillenite and perovskite structured nanocomposites are stable and exhibit considerably higher photocatalytic degradation over pure $BiFeO_3$ nanoparticles and commercially available Degussa P25 titania. Notably, $Bi_{25}FeO_{40}$ -rGO nanocomposite has demonstrated superior photocatalytic ability as well as stability under visible light irradiation than that of $BiFeO_3$ -rGO nanocomposite. The possible mechanism behind the superior photocatalytic performance of $Bi_{25}FeO_{40}$ -rGO nanocomposite has been critically discussed.

Electronic Supplementary Information

Fig. S1 FESEM images of (a) sheet like structure of GO, (b) perovskite BiFeO₃ nanoparticles (c) corresponding histogram of particle size for (b), (d) sillenite $Bi_{25}FeO_{40}$ -rGO nanocomposite, (e) corresponding histogram of particle size for (d), and (f) perovskite BiFeO₃-rGO nanocomposite; corresponding histogram of particle size for (f) is given in (g)¹

Fig. S2 UV-vis absorbance spectra of BiFeO₃ nanoparticles, perovskite BiFeO₃-rGO, and sillenite Bi₂₅FeO₄₀-rGO nanocomposites

Fig. S3 Steady state PL spectra of BiFeO3 nanoparticles, BiFeO3-rGO nanocomposite and Bi25FeO40-rGO nanocomposite

Reference

1. Jalil, M. A. et al. Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites. Journal of Applied Physics 122, 084902, doi:10.1063/1.4985840 (2017).