1 Reproduction predicts shorter telomeres and epigenetic age acceleration

2 among young adult women

- 3 Calen P. Ryan^{a,1*}, M. Geoffrey Hayes^{b,c,d}, Nanette R. Lee^{e,f}, Thomas W. McDade^{a,g,h}, Meaghan J.
- 4 Jonesⁱ, Michael S. Kobor^{h,i}, Christopher W. Kuzawa^{a,g}, Dan T.A. Eisenberg^{j,k,1*},
- ⁵ ^aDepartment of Anthropology, Northwestern University, Evanston, IL 60208; ^bDivision of
- 6 Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University,
- 7 Feinberg School of Medicine, Chicago, IL 60611; ^cDivision of Endocrinology, Metabolism and
- 8 Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine,
- 9 Chicago, IL 60611; ^dCenter for Genetic Medicine, Northwestern University Feinberg School of Medicine,
- 10 Chicago, IL 60611; Office of Population Studies Foundation Inc., Cebu City, Philippines; Department of
- 11 Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines; ^gInstitute for
- 12 Policy Research, Northwestern University, Evanston, IL 60208; ^hChild and Brain Development Program,
- 13 Canadian Institute for Advanced Research, Toronto, ON, Canada, M5G 1Z8; ⁱBC Children's Hospital
- 14 Research Institute, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4; ^jDepartment of
- 15 Anthropology, University of Washington, Seattle, WA 98195; ^kCenter for Studies in Demography and
- 16 Ecology, University of Washington, Seattle, WA 98195;
- 17

18 Supplementary Notes:

19 Comparison of TL across ethnicities. qPCR measured TL does not permit comparisons across

- 20 populations, but 190 samples from the population for which the samples from this paper come
- from have had southern blot TL measured¹. The average age of this sample is $35.96 (\pm 15.83,$
- range 21.02-68.33), with an average TL of 7.86 kb (± 0.76), and an estimated age related decline
- in TL of 21.98 bp/year (95% CI 15.81-28.15). This age related decline is non-significantly less
- than that found in other populations (African=27.7 bp/year; African Americans = 25.6 bp/year;
- Europeans = 27.3 bp/year². These three populations from Hansen et al. (2016) have an average
- age of 43.25. Adjusting the Cebu population TL for the 7.29 years younger they are by assuming
- the observed 21.98 bp/year attrition rates yields an interpolated TL of 7.70 kb if the mean age
- 28 was 43.25, the same age as the samples in Hansen et al. (2016). This suggests that the TL in
- 29 Cebu is longer than that of European and African Americans, but slightly shorter than that of
- 30 Africans.

Ethnicity (N)	% Female	Age (years)	LTL (kb)	
Europeans (90)*	63.3	43.9 (18-78)	7.21 (5.39-9.42)	
African Americans (97)*	67.1	42.9 (21-79)	7.45 (5.55-9.16)	
Africans (100)*	68.0	43.0 (18-79)	7.85 (5.64-10.13)	
Cebu, Philippines (190)	50.3	43.3~	7.70 (6.10-9.21)	

31 * from Hansen MEB, et al. (2016) Shorter telomere length in Europeans than in Africans due to polygenetic

32 adaptation. *Human Molecular Genetics*.

33 †from Eisenberg DT, Kuzawa CW, Hayes MG (2015) Improving qPCR telomere length assays: Controlling for well

34 position effects increases statistical power. *Am J Hum Biol* 27(4):570–5.

35 ~ interpolated to match mean age of other populations - see above text

1 Calculations for the effect of parity on telomere aging (in years):

- 2 Each additional pregnancy was associated with a reduction in TL of 0.016 units (Table 2, Model
- 3 3), or an interpolated -50.6 bp/pregnancy based on previous southern blot measured TL in a
- 4 subset of these samples². The age related decline in TL in 36-69 year old women in this
- 5 population was previously found to be 0.0043 relative TL units/year $(n=1,845, p=7.19 \times 10^{-16})^3$ or
- 6 13.6 bp/year, while the age related decline in TL within the younger and narrow age range in this
- sample is estimated between -0.027 and -0.047/year (Table 2, Models 1-4). In other populations
- 8 the age-related decline in mid-late adulthood is approximately 25 bp/year². This implies that one
- 9 pregnancy is equivalent to between 0.34 and 3.72 years of telomere aging depending on the
- 10 comparison population. Consistent with this calculation, each additional pregnancy was
- associated with 0.44-year (0.27 to 0.61 years) increase in DNAmAge acceleration (Table 2,
- 12 Model 7).

	Telomere Length				DNAmAge			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Age	-0.047	-0.029	-0.028	-0.029	0.485	0.667	0.656	0.645
5	$p = 0.003^{**}$	$p = 0.071^+$	$p = 0.073^+$	$p = 0.068^+$	p = 0.293	p = 0.157	p = 0.158	p = 0.165
No.Pregnancies	-0.014	-0.013	-0.014	-0.016	0.363	0.326	0.459	0.510
0	$p = 0.025^*$	$p = 0.039^*$	$p = 0.031^*$	$p = 0.020^*$	$p = 0.026^*$	$p = 0.049^*$	$p = 0.007^{**}$	$p = 0.005^{**}$
PC1	•	-0.419	-0.418	-0.419	•	-11.623	-11.250	-11.219
		$p = 0.065^+$	$p = 0.066^+$	$p = 0.066^+$		$p = 0.084^+$	$p = 0.090^+$	$p = 0.091^+$
PC2		-0.154	-0.155	-0.143		5.098	4.793	4.341
		p = 0.501	p = 0.499	p = 0.535		p = 0.458	p = 0.480	p = 0.523
PC3		0.005	0.001	0.007		8.510	10.074	9.856
		p = 0.984	p = 0.996	p = 0.975		p = 0.202	p = 0.127	p = 0.136
PC4		-0.030	-0.026	-0.033		11.991	10.450	10.511
		p = 0.894	p = 0.909	p = 0.883		$p = 0.069^+$	p = 0.109	p = 0.107
PC5		-0.235	-0.237	-0.231		-14.123	-14.033	-13.766
		p = 0.312	p = 0.308	p = 0.321		$p = 0.023^{*}$	$p = 0.022^*$	$p = 0.025^*$
PC6		-0.294	-0.301	-0.291		-4.002	-1.683	-2.286
		p = 0.204	p = 0.194	p = 0.211		p = 0.548	p = 0.799	p = 0.731
PC7		-0.506	-0.515	-0.517		18.513	21.220	21.471
		$p = 0.031^{*}$	$p = 0.029^{*}$	$p = 0.028^{*}$		$p = 0.008^{**}$	$p = 0.003^{**}$	$p = 0.002^{**}$
PC8		0.421	0.421	0.425		3.987	3.930	3.829
		$p = 0.067^+$	$p = 0.067^+$	$p = 0.064^+$		p = 0.534	p = 0.535	p = 0.545
PC9		-0.462	-0.460	-0.465		-1.730	-2.332	-2.337
		$p = 0.040^{*}$	$p = 0.041^{*}$	$p = 0.039^{*}$		p = 0.789	p = 0.715	p = 0.714
PC10		0.555	0.551	0.544		-2.701	-1.329	-1.043
		$p = 0.021^*$	$p = 0.022^*$	$p = 0.023^*$		p = 0.690	p = 0.843	p = 0.876
SES-score		-0.006	-0.006	-0.004		-0.180	-0.214	-0.291
		p = 0.143	p = 0.161	p = 0.395		p = 0.146	$p = 0.081^+$	$p = 0.055^+$
Urbanicity-score		0.002	0.002	0.002		0.015	0.017	0.017
		$p < 0.001^{**}$	$p < 0.001^{**}$	$p < 0.001^{**}$		p = 0.270	p = 0.213	p = 0.226
Currently Pregnancy (Y)			0.011	0.011			-1.472	-1.460
			p = 0.534	p = 0.540			$p = 0.001^{**}$	$p = 0.001^{**}$
No.Pregnancies*SES-score				-0.004				0.106
				p = 0.362				p = 0.385
Intercept	1.826	1.337	1.332	1.343	14.818	10.319	10.611	10.850
	$p < 0.001^{**}$	$p < 0.001^{**}$	$p < 0.001^{**}$	$p < 0.001^{**}$	p = 0.138	p = 0.318	p = 0.297	p = 0.287
Observations	821	821	821	821	397	397	397	397
\mathbb{R}^2	0.018	0.079	0.079	0.080	0.016	0.075	0.103	0.104
Adjusted \mathbb{R}^2	0.015	0.063	0.062	0.062	0.011	0.041	0.067	0.067
Residual Std. Error	$0.161 \ (df = 818)$	0.157 (df = 806)	$0.157 (\mathrm{df} = 805)$	0.157 (df = 804)	3.165 (df = 394)	3.117 (df = 382)	3.074 (df = 381)	3.075 (df = 380)
F Statistic	7.347**	4.929**	4.623**	4.385^{**}	3.220*	2.214**	2.902**	2.766**
	(df = 2; 818)	(df = 14; 806)	(df = 15; 805)	(df = 16; 804)	(df = 2; 394)	(df = 14; 382)	(df = 15; 381)	(df = 16; 380)

Table S1: Full model estimates for the effect of parity on telomere length (1-4) and DNAmAge (5-8) among young women in the Philippines.

Note:

+p<0.1; *p<0.05; **p<0.01; ***p<0.001

1 **References**

- Eisenberg DT, Kuzawa CW, Hayes MG. Improving qPCR telomere length assays: Controlling
 for well position effects increases statistical power. Am J Hum Biol, 2015, 27:570–5
- 4 2. Hansen MEB, Hunt SC, Stone RC, Horvath K, Herbig U, Ranciaro A, Hirbo J, Beggs W,
- 5 Reiner AP, Wilson JG, Kimura M, De Vivo I, Chen MM, Kark JD, Levy D, Nyambo T,
- Tishkoff SA, Aviv A. Shorter telomere length in Europeans than in Africans due to
 polygenetic adaptation. Hum Mol Genet, 2016
- 8 3. Eisenberg DT, Hayes MG, Kuzawa CW. Delayed paternal age of reproduction in humans is
 9 associated with longer telomeres across two generations of descendants. Proc Natl Acad Sci,
- 10 2012, 109:10251-6
- 11