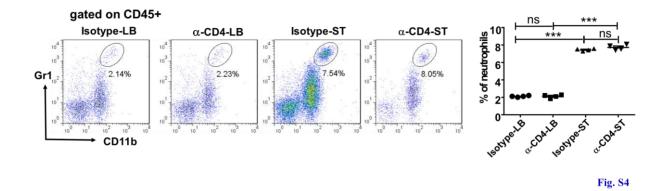
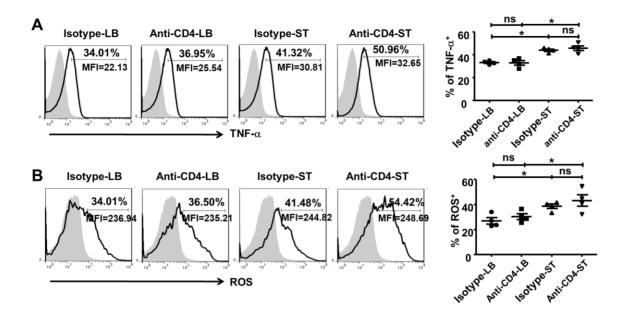

Supplementary Figure Legends

Supplementary Fig 1. Oral *S. typhimurium* infection induces mouse enteritis and system infection. C57BL/6 mice were infected orally with *S. typhimurium* (1×10^5) or mock-infected with Luria-Bertani (LB). Weight loss was evaluated at various time points post-infection (n = 5) (A). Hematoxylin and eosin (H&E)-stained sections of small intestines from infected mice (B). Bacterial loads of the liver, spleen, and MLN were determined by LB plate assay (n = 6) (C). *p < 0.05, **p < 0.01, ***p < 0.001, compared with the group on day 0.



Supplementary Fig 2. Phenotype and activation of macrophage in the Lamina propria of *S. typhimurium*-infected mice. The expression of CD80, CD40, MHC-II and ROS, as well as intracellular TNF- α and IL-1 β on/in F4/80⁺CD11b⁺ macrophages was detected by FACS and statistically analyzed. Data are representative of three independent experiments (means ±SD). *p<0.05, **p<0.01, ***p<0.001, compared with the LB group.



Supplementary Fig 3. The *in vivo* depletion efficiency of CD4⁺T, CD8⁺T, macrophages, and NK cells. Depleting antibodies (α -CD4, α -CD8, α -NK1.1) and Cl₂MDP-liposome were injected *i.p.* into C57BL/6 mice. Three days later, the removal efficiency was detected by FACS.

Supplementary Fig 4. CD4⁺T cells depletion has no effect on the proportion of intestinal lamina propria neutrophils during *S. typhimurium* infection. α -CD4 antibody were injected *i.p.* into C57BL/6 mice. Three days later, mice were orally infected with *S. typhimurium*. Five days later, the percentage of intestinal neutrophils were detected by FACS. The LP leukocytes were first gated (FSC-H vs. FSC-H) and further stained with 7-AAD to exclude dead cells, leukocytes were then selected by the expression of CD45. The percentage of Gr1⁺CD11b⁺neutrophils were determined by flow cytometry. Data are representative of three independent experiments (means \pm SD). ***p < 0.001, compared with the control group.

Supplementary Fig 5. Depletion of CD4⁺T cells did not impair the production of TNF- α and ROS by intestinal macrophages during *S. typhimurium* infection. Mice were injected *i.p.* with anti-CD4 antibodies. Three days later, the treated mice were orally infected with *S. typhimurium*. Five days after infection, the small intestinal LP lymphocytes were isolated and the production of TNF- α (A) and ROS (B) by F4/80+CD11c+ macrophages was detected by flow cytometry. Data are expressed as the means \pm SD of at least three independent experiments. *p < 0.05.

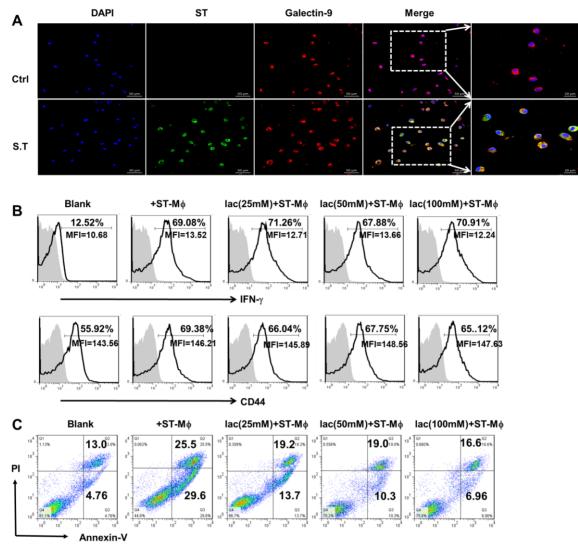


Figure S6

Supplementary Fig 6. Tim-3–galectin-9 pathway is involved in the induction of CD4⁺T cell apoptosis. LP macrophages were infected with *S. typhimurium* (MOI=10:1). One hour later, the expression of galectin-9 on macrophages was determined by immunofluorescence staining. Green and red colors represent *S. typhimurium* and galectin-9, respectively; blue represents nuclei. (A). CD4⁺T cells isolated from LP lymphocytes by MACS were co-cultured with *S. typhimurium*-infected macrophages. The production of IFN- γ and expression of CD44 by CD4⁺T cells were measured by FACS (B). The apoptosis of CD4⁺T cells were measured by Annexin-V/PI double staining methods (C). Data are representative of three independent experiments.

Antibody	Company	Clone
NK1.1	BD Biosciences	PK136
CD4	eBioscience	GK1.5
CD8	Biolegend	53-5.8
CD11c	Biolegend	N418
CD40	eBioscience	HM40.3
CD80	eBioscience	16-10A1
CD69	eBioscience	H1.2F3
CD44	eBioscience	IM7
IFN-γ	eBioscience	XMG1.2
IL-1β	R&D Systems	166931
CD11b	Biolegend	M1/70
F4/80	eBioscience	BM8
Tim-3	eBioscience	RMT3-23
MHC II	Biolegend	M5/114.15.2
CD3e	Biolegend	145-2c11
galectin-9	eBioscience	RG9-35
Ly-6C	ebioscience	HK1.4
CD45	BD Biosciences	30-F11
Siglec-F	BD Biosciences	E50-2440
Ly-6G	Biolegend	1A8
Gr1	Biolegend	RB6-8C5

Supplementary Table 1. Antibodies used for flow cytometry.