Supporting Information

Urinary Metabolites of Polycyclic Aromatic Hydrocarbons and their Association with Lipid Peroxidation: A Biomarker-Based Study between Los Angeles and Beijing

Yan Lin,^{1,2} Xinghua Qiu,^{2*}Nu Yu¹, Qiaoyun Yang², Jesus Araujo³ and Yifang Zhu^{1*}

- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
- ^{2.} State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
- ^{3.} Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- * Corresponding Authors: Yifang Zhu: <u>vifang@ucla.edu</u>

Xinghua Qiu: xhqiu@pku.edu.cn

Contents of this file

Table S1. Information of OH-PAHs standards, the monitored ions of methylated

 OH-PAHs in GC-MS (EI) and the method detection limits of OH-PAHs.

Table S2. The influence of individual characteristic and physical activities on urinary

- OH-PAHs based on multivariate regression model with step-wise approach
- **Table S3.** Comparison between the physical activities in Los Angeles and Beijing
- Table S4.Descriptive statistics of biomarkers urine samples in Beijing (BJ) and Los

Angeles before (LA_1) and after the trip (LA_2)

- Table S5. Pearson correlation among different OH-PAHs and metabolite ratios
- Table S6. Summary of the studies cited to investigate the relationship between

 naphthalene exposure and 1-/2-OH-NAP ratio
- Figure S1. Concentration of grouped urinary OH-PAHs.
- Figure S2. Concentration of urinary 1-OH-PYR in the population around world
- **Figure S3.** Comparison in 1+2/4-PHEs, OH-PHEs and time in secondhand smokes (SHS) among population in Los Angeles, in Beijing without SHS exposure and in Beijing with SHS
- Figure S4. Correlation between MDA and OH-PAHs in both cities
- Figure S5. Correlation between MDA and 1-OH-PYR in Los Angeles and Beijing

Compound	Abbreviation	Ions monitored	Detection Limits (pg mL ⁻¹)	Purity	Source
1-hydroxynaphthalene	1-OH-NAP	158, 159	14.9	98%	Dr. Ehrenstrofer ^a
2-hydroxynaphthalene	2-OH-NAP	158, 159	13.6	99%	Dr. Ehrenstrofer
2-hydroxybiphenyl	2-OH-BP	184, 185	13.0	97.7%	AccuStandard ^b
3-hydroxybiphenyl	3-OH-BP	184, 185	8.6	100%	AccuStandard
4-hydroxybiphenyl	4-OH-BP	184, 185	18.2	100%	AccuStandard
2,2'-dihydroxybiphenyl	2,2'-DOH-BP	214, 215	11.9	100%	AccuStandard
3,4-dihydroxybiphenyl	3,4-DOH-BP	214, 215	12.3	100%	AccuStandard
4,4'-dihydroxybiphenyl	4,4'-DOH-BP	214, 215	9.7	100%	AccuStandard
2-hydroxydibenzofuran	2-OH-DBF	198, 199	10.8	98.3%	Chiron AS ^c
2-hydroxyfluorene	2-OH-FLU	196, 197	7.5	98%	Aldrich ^d
3-hydroxyfluorene	3-OH-FLU	196, 197	12.3	N.A. ^f	Aldrich
1-hydroxyphenanthrene	1-OH-PHE	208, 209	8.8	99%	Dr. Ehrenstrofer
2-hydroxyphenanthrene	2-OH-PHE	208, 209	17.0	99%	Dr. Ehrenstrofer
3-hydroxyphenanthrene	3-OH-PHE	208, 209	12.8	99%	Dr. Ehrenstrofer
4-hydroxyphenanthrene	4-OH-PHE	208, 209	9.9	99.6%	Dr. Ehrenstrofer
1-hydroxypyrene	1-OH-PYR	217, 218	14.3	100%	AccuStandard
(SS) ¹³ C ₆ -3-hydroxyphenanthrene	¹³ C ₆ -3-OH-PHE	214, 215		≥95%	CIL ^e
(IS) d_{10} -anthracene	d ₁₀ -ANT	188, 189		99.2%	AccuStandard
(IS) d ₁₀ -pyrene	d ₁₀ -PYR	212, 213		99.1%	AccuStandard

Table S1. Information of OH-PAHs standards, the monitored ions of methylated OH-PAHs inGC-MS (EI) and the method detection limits of OH-PAHs

^{a.} Augsburg, Germany; ^{b.}New Haven, CT, USA; ^{c.}Trondheim, Norway; ^{d.} St. Louis, MO, USA; ^{e.}Andover, MA, USA^{f.} Notavailable.

model with step-wise approach												
Pollutants ^a	Gender	Age	BMI	City	CD^b	BD ^c	\mathbf{BI}^{d}	BFI ^e	DD^{f}	HD ^g	PD^h	ED^{i}
1-OH-NAP	0.6	0.61	0.15	<0.001	0.89	0.29	0.21	0.39	0.24	0.61	0.07	0.43
2-OH-NAP	<0.001	0.14	0.76	0.89	0.36	0.05	0.23	0.75	0.98	0.67	<0.05	<0.01
2-OH-BP	< 0.05	<0.05	< 0.05	0.11	0.51	0.93	0.34	0.91	<0.05	0.34	0.28	< 0.05
4-OH-BP	0.24	0.8	0.11	<0.001	0.84	0.1	0.34	0.18	0.82	0.98	0.48	0.46
4,4'-DOH-BP	0.83	0.77	< 0.05	<0.001	0.84	0.25	0.3	0.24	0.85	0.59	0.09	< 0.05
2-OH-DBF	0.24	0.62	<0.001	<0.001	0.34	0.15	0.48	0.22	0.92	0.44	0.76	0.08
2-OH-FLU	0.37	0.86	<0.001	<0.001	0.54	0.22	0.39	0.34	0.95	0.74	0.68	0.11
3-OH-FLU	0.84	1	<0.001	<0.001	0.48	0.26	0.25	0.31	0.51	0.37	0.14	< 0.05
1-OH-PHE	0.99	<0.05	<0.001	<0.001	0.73	0.05	0.15	0.8	0.94	0.78	0.6	0.23
2-OH-PHE	0.09	0.78	< 0.05	<0.001	0.82	0.32	0.66	0.53	0.69	0.81	0.43	0.38
4-OH-PHE	0.36	0.7	0.99	<0.001	0.21	0.38	0.42	0.69	0.3	0.79	0.69	0.23
1-OH-PYR	0.48	0.33	0.26	<0.001	0.58	0.27	0.51	<0.05	0.55	0.46	0.95	0.23
ΣOH-NAPs	< 0.05	0.34	0.4	0.11	0.86	0.22	0.24	0.85	0.34	0.07	0.41	<0.05
ΣOH-BPs	0.54	0.09	<0.01	<0.001	0.9	0.27	0.7	0.41	0.09	0.11	0.64	<0.01
ΣOH-FLUs	0.85	0.14	<0.001	<0.001	0.13	<0.05	0.07	0.28	0.66	0.41	0.32	0.09
ΣOH -PHEs	0.84	<0.05	<0.01	<0.001	0.18	<0.05	<0.05	0.43	0.64	0.56	0.75	0.32
Σ_8 OH-PAHs	< 0.05	0.45	0.44	<0.01	0.68	0.12	0.5	0.38	0.39	0.61	0.32	0.15
Σ_{12} OH-PAHs	< 0.05	0.25	0.21	<0.001	0.73	0.14	0.59	0.29	0.28	0.35	0.38	<0.05

 Table S2. The influence of individual characteristic and physical activities on urinary OH-PAHs based on multivariate regression

 model with step-wise approach

^{a.} Data was log-transformed before the analysis; ^{b.} CD – Cooking duration (h); ^{c.} BT – Barbecue duration (h); ^{d.} BI – Barbecue intake (pound);
 ^{e.} BFI – Baked food intake (pound); ^{f.} DD – Driving duration (h); ^{g.} HT – Duration near heavy traffic(h); ^{h.} PD – Duration in public traffic transportation (h); ^{i.} ED – Duration in environmental tobacco smoke (h).

	I J	8	J B
	In Los Angeles (n=57)	In Beijing (n=47)	<i>p</i> -value ^a
Cooking Duration(h)	0.86±0.99 ^b	0.00±0.02	<0.01
Barbecue Duration (h)	0.16 ± 0.52	0.00 ± 0.00	<0.05
Barbecue intake (pound)	0.23 ± 0.48	0.26 ± 0.59	0.73
Baked food intake (pound)	$0.54{\pm}0.78$	0.66 ± 0.56	<0.05
Driving Duration (h)	0.67 ± 1.14	0.16 ± 0.67	<0.01
Duration near heavy traffic	0.62 ± 0.99	4.03±3.49	<0.01
Duration in public transportation (h)	0.58 ± 1.21	$3.00{\pm}4.18$	<0.01
Duration in environmental tobacco			
smoke (h)	0.02 ± 0.09	1.49 ± 2.39	<0.01

Table S3. Comparison between the physical activities in Los Angeles and Beijing

a. Mann-Whitney U-test, two-tailed

b. Mean±standard deviation

D'	•	Median (IQR ^a)			<i>p</i> -value ^b	Beijing/LA	
Biomarker	In $LA_1(n=30)$	In BJ(n=47)	In LA ₂ (n=27)	LA ₁ vs. BJ	LA ₂ vs. BJ	LA ₁ vs. LA ₂	Ratio(95%CI;p-value) ^c
Exposure biomarker (ng/	mL)						
1-hydroxynaphthalene	0.86 (0.15, 1.81)	2.37 (0.95, 4.40)	0.51 (0.16, 1.09)	< 0.001	< 0.001	0.51	4.1 (2.3-7.3; <0.001)
2-hydroxynaphthalene	1.92 (0.78, 5.69)	5.20 (2.08, 6.46)	2.57 (0.80, 5.52)	< 0.05	< 0.05	0.79	1.7 (1.1-2.6; <0.05)
\sum hydroxynaphthalenes	3.47 (1.08, 8.53)	6.95 (3.78, 13.1)	2.95 (0.89, 7.30)	< 0.01	< 0.01	1.00	2.1 (1.3-3.2; <0.01)
2-hydroxybiphenyl	0.44 (0.28, 0.66)	0.53 (0.39, 1.22)	0.64 (0.46, 0.94)	< 0.05	0.84	< 0.05	1.7 (1.1-2.5; <0.05)
4-hydroxybiphenyl	0.24 (0.13, 0.39)	1.65 (0.88, 3.32)	0.25 (0.09, 0.67)	< 0.001	< 0.001	0.73	5.8 (3.8-8.7; <0.001)
4,4'-dihydroxybiphenyl	0.27 (0.12, 0.56)	1.44 (0.65, 2.43)	0.41 (0.07, 0.70)	< 0.001	< 0.001	0.61	4.2 (2.7-6.7;<0.001)
∑hydroxybiphenyls	1.04 (0.55, 1.72)	3.77 (2.17, 6.75)	1.34 (0.74, 2.98)	< 0.001	< 0.001	0.14	3.6 (2.4-5.2; <0.001)
2-hydroxydibenzofuran	0.18 (0.10, 0.37)	2.19 (1.33, 4.53)	0.30 (0.12, 0.58)	< 0.001	< 0.001	0.31	9.5 (6.5-13.7; <0.001)
2-hydroxyfluorene	0.14 (0.09, 0.29)	1.75 (0.80, 2.97)	0.26 (0.09, 0.43)	< 0.001	< 0.001	0.39	9.0 (6.1-13.3; <0.001)
3-hydroxyfluorene	0.06 (0.04, 0.09)	0.57 (0.33, 1.08)	0.07 (0.02, 0.15)	< 0.001	< 0.001	0.64	8.6 (5.6-13.2; <0.001)
∑hydroxyfluorenes	0.21 (0.13, 0.40)	2.24 (1.12, 4.02)	0.28 (0.11, 0.58)	< 0.001	< 0.001	0.41	8.8 (6.0-13.0; <0.001)
1-hydroxyphenanthrene	0.08 (0.05, 0.24)	0.70 (0.30, 1.09)	0.11 (0.05, 0.23)	< 0.001	< 0.001	0.97	6.1 (4.0-9.3; <0.001)
2-hydroxyphenanthrene	0.05 (0.03, 0.11)	0.35 (0.21, 0.56)	0.07 (0.03, 0.10)	< 0.001	< 0.001	0.74	5.5(3.9-7.7; <0.001)
4-hydroxyphenanthrene	0.04 (0.01, 0.08)	0.18 (0.07, 0.29)	0.05 (0.02, 0.10)	< 0.001	< 0.001	0.53	4.2 (2.7-6.6; <0.001)
\sum hydroxyphenanthrenes	0.19 (0.10, 0.47)	1.26 (0.49, 2.04)	0.28 (0.09, 0.49)	< 0.001	< 0.001	0.82	5.4 (3.7-7.9; <0.001)
1-hydroxypyrene	0.06 (0.03, 0.13)	0.51 (0.16, 0.94)	0.09 (0.04, 0.18)	< 0.001	< 0.001	0.52	5.2 (3.3-8.2; <0.001)
\sum_{8} hydroxylated PAHs ^d	4.05 (1.27, 8.76)	11.6 (5.89, 20.9)	3.43 (1.20, 8.27)	< 0.001	< 0.001	0.89	2.8(1.8-4.2; <0.001)
\sum_{12} hydroxylated PAHs ^e	5.51 (2.17, 10.4)	18.1 (10.3, 33.7)	6.58 (2.04, 11.1)	< 0.001	< 0.001	0.51	3.2 (2.2-4.7; <0.001)
Effect biomarker (ng/mL))						
malondialdehyde	27.9 (14.3, 52.3)	49.4 (20.2, 92.4)	36.1 (16.1, 62.8)	< 0.05	0.25	0.24	1.5 (1.0-2.0; <0.05)

Table S4 Descriptive statistics of biomarkers urine samples in Beijing (BJ) and Los Angeles before (LA₁) and after the trip(LA₂)

^{a.} IQR: interquartile range; ^{b.} Mann-Whitney test; ^{c.} Calculated by multivariate linear regression models with enter approach, adjusted by age, gender and BMI;

^{d.} Sum of OH-NAPs, OH-FLUs, OH-PHEs, and 1-OH-PYR; ^{e.} Sum of OH-PAHs, OH-BPs, and 2-OH-DBF

	ΣOH-BPs	2-OH-DBF	ΣOH-FLUs	ΣOH-PHEs	1-OH-PYR	1-/2-OH-NAP	1+2-/4-OHPHE
ΣOH-NAPs	0.56**	0.52**	0.57**	0.58**	0.58**	-0.13	-0.01
ΣOH-BPs		0.77**	0.76**	0.77**	0.68**	0.20*	0.11
2-OH-DBF			0.97**	0.91**	0.83**	0.33**	0.19*
ΣOH-FLUs				0.93**	0.86**	0.34**	0.22*
ΣOH-PHEs					0.86**	0.30**	0.15
1-OH-PYR						0.26**	0.14
1-/2-OH-NAP							0.11

 Table S5. Pearson correlation among different OH-PAHs and metabolite ratios (data was log-transformed)

**: *p*<0.01; *:*p*<0.05

Exposure		Dopulation description	Sample	Male/	Smokers/No	ΣOH-NAPs	1-/2-OH	Def
INO.	characteristic	Population description	size	Female	n-smokers	(µg/g creatinine)	-NAP	Kel.
Study1	Biomass burning	Cooking women (pre-intervention)	47	0/47	0/47	34.2	1.30	15
		Cooking women (post-intervention)	47	0/47	0/47	20.3	0.97	15
Study2	Biomass burning	Cooking women (pre-intervention)	57	0/57	0/57	39.0	1.04	16
		Cooking women (post-intervention)	57	0/57	0/57	19.6	0.96	16
Study3	Coking processes	Tar distillation operators	69	N/A ^a	56/13	1220	2.62	17
		Naphthalene oil distillation workers	33	N/A	33/0	1079	1.84	17
		Unexposed workers	36	25/11	28/8	15.8	1.70	17
Study4	Bitumen vapor	bitumen-exposed workers(pre+post shift)	112	112/0	0/112	4.38	0.77	18
		Roadside construction workers(pre+post	240	240/0	0/240	5.82	0.60	18
		shift)						
Study5	Ambient environment	Healthy people visiting a certain hospital	273	273/0	140/133	5.60	0.55	1
Study6	Coking processes	Works in distillation department	29	29/0	N/A	2204	1.75	19
		Sorting department gas fitting operators	11	11/0	N/A	677	1.89	19
Study7	Aluminum plant	Resident within 1km from the plant (Sep.	65	N/A	0/65	4.65	0.92	20
		14, 2005)						
		Resident within 1km from the plant (Sep.	68	N/A	0/68	4.05	0.62	20
		21, 2005)						
		Resident within 1km from the plant (May	109	N/A	0/109	4.22	0.40	20
		23+24, 2006)						
		Resident within 1km from the plant (May	111	N/A	0/111	3.81	0.31	20
		30+31, 2006)						

Table S6. Summary of the studies cited to investigate the relationship between naphthalene exposure and 1-/2-OH-NAP ratio

Table	S6. Summary of the stud	lies cited to investigate the relationship betw	veen naph	thalene exp	osure and 1-	2-OH-NAP rat	io (continue	ed)
		Resident living more than 11km from the	62	N/A	0/62	3.14	0.80	20
		plant (Sep. 14, 2005)						
		Resident living more than 11km from the	66	N/A	0/66	4.31	0.57	20
		plant (Sep. 21, 2005)						
		Resident living more than 11km from the	106	N/A	0/106	4.20	0.46	20
		plant (May 23+24, 2006)						
		Resident living more than 11km from the	112	N/A	0/112	4.38	0.50	20
		plant (May 30+31, 2006)						
Study8	Coking processes	Workers at adjacement workplaces of	118	118/0	0/118	12.8	1.23	21
		coken ovens						
		Workers at bottom of coken ovens	169	169/0	0/169	16.9	1.41	21
		Workers at side of coken ovens	82	82/0	0/82	25.1	1.15	21
		Workers at top of coken ovens	20	20/0	0/20	45.6	1.32	21
Study9	Creosote impregnation	Residence living at 50-360 m downwind	57	N/A	0/57	3.15	1.08	22
	plant	from the plant(morning+evening)						
		Residence living at 0.75-1.1 km upwind	51	N/A	0/51	5.23	1.28	22
		from the plant(morning+evening)						
Study10	Traffic emission	Schoolchildren near a road	64	38/26	0/64	6.81	0.41	23
Study11	Brick kiln	Brick kiln workers	46	46/0	0/46	6.60	2.39	24
		Non-exposed group	34	34/0	0/46	1.66	0.97	24
Study12	Jet fuel	Workers with low exposure(pre+post	172	N/A	0/172	2.95	0.41	25
		shift)						
		Workers with high exposure(pre+post	141	N/A	0/141	4.98	0.57	25
		shift)						

^{a.} not available

Figure S1. Concentration of grouped urinary OH-PAHs. The *solid horizontal line* represents the median, and the *red horizontal line* represents the mean. The *box* represents the 25th–75th percentiles, and the *whiskers* represent the 10th–90th percentiles. *Numbers in parentheses* are the number of detections.

Figure S2. Concentration of urinary 1-OH-PYR in the population around world. Red bars are results from this study. Nanjing: 273 male adults;¹Coatzacoalcos: 82 school children;²Chongqing: 343 male adult;³Tianjin: 116 adults in rural sites;⁴ Bangkok: 105 schoolchildren;⁵Shanghai: 343 female adults;⁶Silesia: 108 non-smokers;⁷Chonburi: 61 schoolchildren;⁵Taiwan: 93 indoor officers;⁸ San Francisco: 76 non-smokers;⁷Quebec:140 adults;⁹Frankfurt and Main: 289 non-smokers with age>20;¹⁰ USA1: 1309 people with age>20;¹¹ Korea: 129 male university students;¹² Christchurch: 89 male students;¹³ USA2: 1625 people with age>20.¹⁴

Figure S3. Comparison in 1+2/4-PHEs, ∑OH-PHEs and time in secondhand smokes (SHS) among population in Los Angeles, in Beijing without SHS exposure and in Beijing with SHS. Error bar indicates the standard error. *p*-value is calculated by Mann-Whitney U-test.

Figure S4. Correlation between MDA and OH-PAHs in both cities. $\Sigma_8 OH$ -PAHs sum of ΣOH -NAPs, ΣOH -FLUs, ΣOH -PHEs, 1-OH-PYR; $\Sigma_{12}OH$ -PAHs sum of $\Sigma_8 OH$ -PAHs, ΣOH -BPs and 2-OH-DBF.

Figure S5. Correlation between MDA and 1-OH-PYR in Los Angeles and Beijing

References:

(1). Xia, Y.; Zhu, P.; Han, Y.; Lu, C.; Wang, S.; Gu, A.; Fu, G.; Zhao, R.; Song, L.; Wang, X., Urinary metabolites of polycyclic aromatic hydrocarbons in relation to idiopathic male infertility. *Hum. Reprod*.**2009**,*24*, (5), 1067--1074.

(2). Sánchez-Guerra, M.; Pelallo-Martínez, N.; Díaz-Barriga, F.; Rothenberg, S. J.; Hernández-Cadena, L.; Faugeron, S.; Oropeza-Hernández, L. F.; Guaderrama-Díaz, M.; Quintanilla-Vega, B., Environmental polycyclic aromatic hydrocarbon (PAH) exposure and DNA damage in Mexican children. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis***2012**,*742*, (1), 66-71.

(3). Han, X.; Zhou, N.; Cui, Z.; Ma, M.; Li, L.; Cai, M.; Li, Y.; Lin, H.; Li, Y.; Ao, L.; Others, Association between urinary polycyclic aromatic hydrocarbon metabolites and sperm DNA damage: a population study in Chongqing, China. *Environ. Health Persp.***2011**,*119*, (5), 652.

(4). Yang, Q. Y.; Qiu, X. H.; Li, R.; Ma, J.; Li, K. Q.; Li, G., Polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress for a rural population from the North China Plain. *Environ. Sci. Pollut. R.***2015**,*22*, (3), 1760-1769.

(5). Ruchirawat, M.; Settachan, D.; Navasumrit, P.; Tuntawiroon, J.; Autrup, H., Assessment of potential cancer risk in children exposed to urban air pollution in Bangkok, Thailand. *Toxicol. Lett.***2007**,*168*, (3), 200-209.

(6). hofmann, J. N.; Liao, L. M.; Strickland, P. T.; Shu, X.; Yang, G.; Ji, B.; Li, H.; Rothman, N.; Kamangar, F.; Gao, Y.; Others, Polycyclic aromatic hydrocarbons: determinants of urinary 1-hydroxypyrene glucuronide concentration and risk of colorectal cancer in the Shanghai Women's Health Study. *Bmc Cancer***2013**,*13*, (1), 282.

(7). St. Helen, G.; Goniewicz, M. L.; Dempsey, D.; Wilson, M.; Jacob III, P.; Benowitz, N. L., Exposure and Kinetics of Polycyclic Aromatic Hydrocarbons (PAHs) in Cigarette Smokers. *Chem. Res. Toxicol.***2012**,*25*, (4), 952--964.

(8). Huang, H. B.; Lai, C. H.; Chen, G. W.; Lin, Y. Y.; Jaakkola, J.; Liou, S. H.; Wang, S. L., Traffic-Related Air Pollution and DNA Damage: A Longitudinal Study in Taiwanese Traffic Conductors. *PLOS ONE***2012**,*7*, (e374125).

(9). Viau, C.; Vyskočil, A.; Martel, L., Background urinary 1-hydroxypyrene levels in non-occupationally exposed individuals in the Province of Québec, Canada, and comparison with its excretion in workers exposed to PAH mixtures. *Sci. Total Environ.***1995**,*163*, (1–3), 191-194.

(10). Heudorf, U.; Angerer, J., Internal exposure to PAHs of children and adults living in homes with parquet flooring containing high levels of PAHs in the parquet glue. *Int. Arch. Occ. Env. Hea.***2001,***74*, (2), 91-101.

(11). Grainger, J.; Huang, W.; Patterson Jr., D. G.; Turner, W. E.; Pirkle, J.; Caudill, S. P.; Wang, R. Y.; Needham, L. L.; Sampson, E. J., Reference range levels of polycyclic aromatic hydrocarbons in the US population by measurement of urinary monohydroxy metabolites. *Environ. Res.***2006**,*100*, (3), 394-423.

(12). Kim, H.; Cho, S. H.; Kang, J. W.; Kim, Y. D.; Nan, H. M.; Lee, C. H.; Lee, H.; Kawamoto, T., Urinary 1-hydroxypyrene and 2-naphthol concentrations in male

Koreans. Int. Arch. Occ. Env. Hea. 2000,74, (1), 59-62.

(13). Cavanagh, J. E.; Brown, L.; Trought, K.; Kingham, S.; Epton, M. J., Elevated concentrations of 1-hydroxypyrene in schoolchildren during winter in Christchurch, New Zealand. *Sci. Total Environ*.**2007**,*374*, (1), 51-59.

(14). Li, Z.; Sandau, C. D.; Romanoff, L. C.; Caudill, S. P.; Sjodin, A.; Needham, L. L.; Patterson Jr, D. G., Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. *Environ. Res.***2008**,*107*, (3), 320--331.

(15). Riojas-Rodriguez, H.; Schilmann, A.; Marron-Mares, A. T.; Masera, O.; Li, Z.; Romanoff, L.; Sj O Din, A.; Rojas-Bracho, L.; Needham, L. L.; Romieu, I., Impact of the improved patsari biomass stove on urinary polycyclic aromatic hydrocarbon biomarkers and carbon monoxide exposures in rural mexican women. *Environ. Health Persp.***2011**,*119*, (9), 1301.

(16). Li, Z.; Sj O Din, A.; Romanoff, L. C.; horton, K.; Fitzgerald, C. L.; Eppler, A.; Aguilar-Villalobos, M.; Naeher, L. P., Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites. *Environ. Int.***2011**,*37*, (7), 1157--1163.

(17). Bieniek, G.; Others, Urinary naphthols as an indicator of exposure to naphthalene. *Scandinavian journal of work, environment* & *health***1997,**23, (6), 414--420.

(18). Pesch, B.; Spickenheuer, A.; Kendzia, B.; Schindler, B. K.; Welge, P.; Marczynski, B.; Rihs, H.; Raulf-Heimsoth, M.; Angerer, J.; Brüning, T., Urinary metabolites of polycyclic aromatic hydrocarbons in workers exposed to vapours and aerosols of bitumen. *Arch. Toxicol.***2011**,*85*, (1 Supplement), 29-39.

(19). Bieniek, G., Aromatic and polycyclic hydrocarbons in air and their urinary metabolites in coke plant workers. *Am. J. Ind. Med.***1998**,*34*, (5), 445-454.

(20). Bouchard, M.; Normandin, L.; Gagnon, F.; Viau, C.; Dumas, P.; Gaudreau, E. R.; Tremblay, C., Repeated measures of validated and novel biomarkers of exposure to polycyclic aromatic hydrocarbons in individuals living near an aluminum plant in Quebec, Canada. *Journal of Toxicology and Environmental Health, Part A***2009**,*72*, (23), 1534--1549.

(21). Kuang, D.; Zhang, W.; Deng, Q.; Zhang, X.; Huang, K.; Guan, L.; Hu, D.; Wu, T.; Guo, H., Dose-response relationships of polycyclic aromatic hydrocarbons exposure and oxidative damage to DNA and lipid in coke oven workers. *Environ. Sci. Technol.***2013**,*47*, (13), 7446--7456.

(22). Bouchard, M. E. L.; Pinsonneault, L.; Tremblay, C.; Weber, J., Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the vicinity of a creosote impregnation plant. *Int. Arch. Occ. Env. Hea.***2001**,*74*, (7), 505--513.

(23). Barraza-Villarreal, A.; Escamilla-Nuñez, M. C.; Schilmann, A.; Hernandez-Cadena, L.; Li, Z.; Romanoff, L.; Sjödin, A.; Del Río-Navarro, B. E.; Díaz-Sanchez, D.; Díaz-Barriga, F., Lung Function, Airway Inflammation, and Polycyclic Aromatic Hydrocarbons Exposure in Mexican Schoolchildren: A Pilot Study. *J. Occup. Environ. Med.***2014**,*56*, (4), 415-419.

(24). Kamal, A.; Malik, R. N.; Martellini, T.; Cincinelli, A., PAH exposure

biomarkers are associated with clinico-chemical changes in the brick kiln workers in Pakistan. *Sci. Total Environ*.**2014,***490*, 521-527.

(25). Rodrigues, E. G.; Smith, K.; Maule, A. L.; Sjodin, A.; Li, Z.; Romanoff, L.; Kelsey, K.; Proctor, S.; McClean, M. D., Urinary Polycyclic Aromatic Hydrocarbon (ho-PAH) Metabolite Concentrations and the Effect of GST Polymorphisms Among US Air Force Personnel Exposed to Jet Fuel. *J. Occup. Environ. Med.***2014**,*56*, (5), 465-471.