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1. Assessing effect of prior assumptions on model results

In addition to the simulations reported in the main paper, we
here illustrate the effects that different prior assumptions regard-
ing the functional dimensionality of a region have, depending
on the true dimensionality and the noise level.

1.1. Methods

The simulated data reported here were created in the same
way as described in the main paper. We simulated data for three
different ground-truth dimensionalities (4, 8, and 12) and 10
steps of exponentially increasing noise-level. We ran a total of
10 of these simulations for each combination of ground-truth
dimensionality and noise-level.

We built three different hierarchical Bayesian models, each
with a different prior distribution over the parameter of the pop-
ulation dimensionality estimate µ. Each prior distribution was
parametrized as a beta-distribution for which we set the two
shape parameters to 1) 1 and 99, expressing a prior favoring
low dimensionality estimates, 2) 99 and 1, which favors high di-
mensionality estimates, and 3) 50 and 50, which favors medium
dimensionalities.

As before, we combined all posterior estimates of the single
simulated participants’ dimensionalities (parameter µi) across
all simulated voxels, separately for each hierarchical model.
The width of the distributions of these posteriors reflects the
uncertainty of the estimated population dimensionality, and the
distributions’ means reflect the estimated population dimen-
sionality.

1.2. Results and Discussion

Across 10 simulations of data with a ground-truth dimension-
ality of 4, 8, or 12 and ten different noise levels, we assessed the
effect of three different priors on estimated dimensionalities.

We can see that the general pattern of results mirrors the re-
sults we found when modeling the data with a uniform prior
(see Figure S1, cf Figure 5). For a low noise level, the esti-
mated dimensionalities largely overlap with the ground-truth.
With increasing noise, estimated dimensionalities deviate more
strongly from the underlying ground-truth and shift towards a
medium dimensionality. Furthermore, the uncertainty in the di-
mensionality estimates increases, reflected in the width of the
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Figure 1: Effect of different prior distributions on estimated dimensionalities.
A: Given a prior of Beta(1, 99), that is, favoring low dimensionalities, esti-
mated dimensionalities for high ground-truth dimensionalities tend to be under-
estimated. With increasing noise, estimates become more uncertain and set-
tle at an estimated dimensionality of approximately 6. B: Given a prior of
Beta(99, 1), that is, favoring high dimensionalities, estimated dimensionalities
for low ground-truth dimensionalities tend to be over-estimated. With increas-
ing noise, estimates become more uncertain and settle at an estimated dimen-
sionality of around 9. C: Given a prior of Beta(50, 50), that is, favoring medium
dimensionalities, estimated dimensionalities match closely the ground-truth di-
mensionalities for low noise and become more uncertain as the noise increases,
settling at a value of approximately 8.



distributions. If we compare the results from the three differ-
ent models implementing different priors, we see that estimated
dimensionalities given a prior favoring high values tend to be
higher, with a larger uncertainty for ground-truth low dimen-
sionalities, whereas estimated dimensionalities given a prior
favoring low values show the opposite pattern. However, all
posterior distributions always include the ground-truth dimen-
sionality, which highlights the robustness of our method given
reasonable prior assumptions.

2. Identifying areas carrying functional dimensionality

With the first dataset from a category learning study by Mack
et al. (2013), we aimed to identify areas carrying functional di-
mensionality and compare them with the areas found by the
original authors’ model-based analysis.

2.1. Methods

Pre-processing of the data was carried out using SPM12
(Penny et al., 2006). Functional EPI data were motion-
corrected with respect to the mean-image, T1 weighted anatom-
ical scans were realigned to the EPI images, and both functional
and anatomical images were normalized to MNI space with a
voxel-resolution of 3 × 3 × 3. Data were high-pass filtered at
128Hz to account for slow signal drifts. Beta estimates were
derived from a GLM containing one regressor per stimulus (16
regressors in total), convolved with the HRF. Motion regressors
were included in the GLM as covariates of no interest. Tempo-
ral autocorrelations were accounted for by implementing an au-
toregressive model (AR-1) during parameter estimation. Resid-
uals of the GLM for each timestep were saved and used later on
for pre-whitening of the data.

3. Using functional dimensionality to assess sensitivity to
stimulus features

Using data from a study of real-world categories using pho-
tographic stimuli by Bracci and Op de Beeck (2016), we tested
whether different regions show functional dimensionality in re-
sponse to different stimulus features, depending on how the
stimulus-space is summarized.

3.1. Methods

During the experiment of the second dataset, participants per-
formed a 1-back real-world size judgment task. Each partic-
ipant completed two sessions (on two different days) of eight
runs. For one participant, four runs were lost. Each image was
presented twice per run.

Pre-processing of the data was carried out using SPM12.
Functional EPI data were motion-corrected with respect to the
mean-image, T1 weighted anatomical scans were realigned to
EPI images, and both functional and anatomical images were
normalized to MNI space with a voxel-resolution of 3 × 3 × 3.
Data were high-pass filtered at 128Hz to account for slow signal

drifts. We aimed to test if our method could be applied to as-
sessing qualitative coding differences across the brain by vary-
ing how the stimulus space is summarized. In line with the au-
thors original analysis, we tested for differences depending on
whether the stimuli were averaged to emphasize their category
or shape information. To that end, we constructed two sepa-
rate GLMs. The first GLM (catGLM) was composed of one re-
gressor per category (six in total), thus averaging across objects
shapes. The second GLM (shapeGLM) consisted of nine differ-
ent regressors, one for each shape, averaging neural responses
across object categories. In both GLMs, regressors were con-
volved with the HRF and six motion-regressors as covariates of
no interest were included.

Dimensionality was estimated separately for both GLMs. We
ran a wholebrain searchlight with a 7mm sphere on the beta es-
timates of the respective GLM, again pre-whitening and mean-
centering voxel patterns within each searchlight before estimat-
ing the dimensionality. Reconstruction correlations were av-
eraged across runs for each participant and tested for signifi-
cance across participants using FSL’s randomise function (Win-
kler et al., 2014). Results were FWE corrected using a TFCE
threshold of p < .05.

4. Measuring task-dependent differences in dimensionality

In this third dataset, we considered whether the underlying
dimensionality of neural representations changes as a function
of task. In Mack et al. (2016), participants learned a catego-
rization rule over a common stimulus set that either depended
on one or two stimulus dimensions. We predicted that the esti-
mated functional dimensionality, as measured by our hierarchi-
cal Bayesian method, should be higher for the more complex
categorization problem, extending the original authors’ find-
ings.

4.1. Methods

Each participant completed twelve functional runs in total, of
which four were on type I problem and four on type II problem
(the first four runs served as familiarization with the stimuli).

Pre-processing of the data was carried out using SPM12
(Penny et al., 2006). Functional EPI data were motion-
corrected with respect to the mean-image, T1 weighted anatom-
ical scans were realigned to EPI images, and both functional
and anatomical images were normalized to MNI space with a
voxel-resolution of 3 × 3 × 3. Data were high-pass filtered at
128Hz to account for slow signal drifts. Beta estimates were
derived from a GLM containing one regressor per stimulus (8
regressors in total), convolved with the HRF. Six motion re-
gressors were included in the GLM as covariates of no interest.
Temporal autocorrelations were accounted for by implementing
an autoregressive model during parameter estimation. Residu-
als of the GLM for each timestep were saved and used later on
for pre-whitening of the data.

We defined a region of interest (ROI) in the left and right
LOC based on voxels that showed increased activation with trial
onset, based on a separate GLM with only a single regressor
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modeling all trials (p < .001, uncorrected; left LOC: 120 vox-
els, right LOC: 220 voxels). Using an ROI instead of a search-
light approach allowed us to estimate the degree of functional
dimensionality rather than only identifying which areas showed
functional dimensionality. We estimated dimensionality across
these two ROIs separately for the two different categorization
tasks. To reduce the impact of category-learning on the esti-
mated dimensionality, the first functional run of each problem
type was excluded from the analysis, resulting in three runs for
each problem.
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