
Supplementary Material

S1. Comparison of within- and between-subject similarity for Datasets A and B.

The top panels  of  Figure  S1 display the comparison of the  within-subject  and between-
subject similarities (WSS and BSS, respectively) for the covariances FC0 and FC1. They are
very similar to those for corrFC in Figure 2B (main text). The bottom left panel shows the same
distributions for corrFC/SC, which are the elements of the usual correlation-based FC (corrFC)
that correspond to existing connections, as determined by the structural connectivity (SC). The
distributions are more compact than with corrFC (as well as FC0 and FC), but the overlap is
similar, as indicated by the standard deviation represented by the error bars. In summary, all FC-
based connectivity measures exhibit similar overlap between WSS and BSS, which is larger
than that for EC in Figure 2B (main text).

The bottom right  panel  shows the overlap  for  Σ,  the  local  excitability  estimated by  the
model.  The overlap there is larger and, in general,  the similarity for the Σ profiles is much
higher than that for the connectivity measures.

The results for Dataset B are qualitatively similar to those for Dataset A in Figures 2 and S1.
A quantification of the overlap using the Kolmogorov-Smirnoff distance is given in Table 2
(main text).

Figure S1. Similarity distributions of FC0, FC1, corrFC/SC and Σ calculated form Dataset
A. Distributions of WSS and BSS similarity values for Datasets A1 (blue and red), as well as the
BSS values for Dataset A2 (green). The plot is similar to Figure 2B: similarity is calculated
using the Pearson correlation coefficient (PCC) between every pair of sessions from the same
subjects or from different subjects respectively.



Figure S2. Similarity distributions for Dataset B: comparison of EC, corrFC, FC0, FC1,
corrFC/SC, and Σ. Same as Figure 2B and S1 for Datasets B with WSS and BSS similarity
values (blue and red).



S2. Degree of clustering in the space of principal components (PCs)

When  applying  principal  component  analysis  (PCA),  the  silhouette  coefficients  become
significantly larger (indicating a better separability), as can be seen in Figure 2E (main text).
However,  this  depends on the choice of PCs used to project  the data (6 in Figure 2E with
Dataset A1). The curves in Figure S3 show the evolution of the mean of the distributions over
all sessions and subjects (similar to those in the right panels of Figure 2E) when varying the
number of first PCs (indicated on the x-axis). With both Datasets A1 and B, the mean silhouette
coefficient for EC increases until the number of PCs reaches the number of subjects (6 and 30,
respectively), then decreases. This means that the largest variability of EC estimates captures by
the first PCs conveys individual information about the subjects. In contrast, the mean silhouette
coefficient for FC is much lower; it also requires more PCs to reach its maximum, suggesting
that the largest part of variability with corrFC (first PCs) is not very informative for subject
identification.

Figure S3. Average silhouette coefficient as a function of the number of first PCs (x-axis)
used  to  calculate  the  similarity.  PCA was  applied  on  the  whole  set  of  subjects  for  both
Datasets A1 and B. The silhouette coefficients are calculated for all sessions after projecting the
original data in the space of the first PCs (from 1 to 20 for Dataset A1; from 1 to 50 for Dataset
B). The curves correspond to the mean silhouette for EC (in red) and corrFC (in blue), with
large value indicating the good quality of clustering. 



S3. Classification of subjects using a 1NN classifier

Figure S4 depicts the method used in previous studies to identify subjects from resting-state
sessions (Finn 2015; Kaufman 2017). 

Figure S4. Principle of the 1NN classifier. For each target session to classify, we calculate
the similarity values (as measured by PCC, same as in Figure S1 and S2) with each session in
the database, giving S1 to S6 with Dataset A1 (6 subjects, 40-50 sessions per subject) as shown
here. The session is attributed to the subject with largest similarity.



S4. MLR and 1NN in the PCA space

As mentioned in  the  main  text  about  the  silhouette  coefficients,  PCA may improve  the
classification by reducing the high dimensionality of the data. However, an important issue is
whether the variability captured by first PCs – which account for the largest part of the total
variability – carries information about subjects’ identities or if it is rather related to the session-
to-session variability. If the latter is true, the classification performance might even be worsened
by an erroneous choice of PCs.

To firstly examine the influence of PCA on the classification, we optimized the 1NN and
MLR while varying the number of training sessions with Dataset  A1. Recall  that  PCA was
calculated  using  the  training  sessions  only  (see  Figure  3A).  This  hardly  changed  the
performance for the MLR (less than 1% for FC, almost zero for EC), whereas the performance
of the 1NN increased by a few % (but remained far below that of the MLR). This suggests that
the 1NN benefited more from the data denoising. The small improvements by PCA for the MLR
may come from the fact that the classification accuracy for MLR is already very high (~95%
with EC and 1 training session); recall that EC is much less noisy than corrFC (see Figure 2B).
Similar results were obtained for Dataset B.

PCA also allowed for the investigation of the distribution of the subject-specific information
between PCs supporting the classification. By choosing the number of PCs to train the classifier
with Dataset B, fewer PCs are sufficient to obtain a close-to-perfect classification for EC than
corrFC, as shown in Figure S6. When the accuracy stabilizes close to 1, this means that the
remaining PCs carry redundant information for the subject identification.

This is further illustrated for Dataset A1 in Figure S7, where the left panel shows that the
first 6 PCs convey relevant information for subject identification, especially PC3 to PC6. The
very first  PCs actually  are  less  informative than the following ones  in  Figure  S8:  PC2 for
Dataset A1 and PC1 to PC6 (without PC4) for Dataset BThis suggests that the main variability
(first PCs) of EC is common to all subjects; subsequent PCs with lower variability are actually
more informative about the subjects' identity. Note also that PC10, PC11, PC13 and PC17 are as
discriminative as PC4 and PC7 are (and much less than other PCs), meaning that there is not
clear relationship between the order of PCs and subject-specific information. This supports the
use of proper machine learning tools to extract this distributed information, because the PCs
may mix subject-specific traits  differently when the number of subjects increases.  A proper
extraction of discriminative features in the EC links is thus necessary, which is exactly what the
MLR algorithm does.

Figure  S5.  Marginal  improvement  of  the  classification  performance  by  PCA.  The
panelscorrespond to the classification of sessions using 1NN (left  column) and MLR (right
column) with EC (top row) and corrFC (bottom row). The performance is plotted as a function
of the number of training sessions (x-axis) using Dataset A1.



Figure S6. Performance of MLR classifier for EC and corrFC sessions when increasing the
number of PCs.  Dataset B with 30 subjects and 3 sessions per subject was used for training.
PCA was  calculated  using  the  training  sessions  only.  The  information  relevant  for  the
classification is distributed across the first 20 PCs for EC, as indicated by the steep increase.
More PCs (at least 40) are necessary with corrFC for the classifier to reach a similarly quasi-
perfect performance.

Figure S7. Decomposition of the contributions along each principal component (PC) of the
MLR+PCA classifier. The MLR was trained using EC from Dataset A1 with 20 sessions per
subject;  these many training sessions capture the overall  session-to-session variability of the
whole DatasetA1. The left plot shows for subjects 1 to 5 (in color,  corresponding each to a
regressor of the classifier against the 6th subject) the weight for each PC (beta 1 to 6). Large
values indicate that PC strongly contributes to the discrimination of the subject. The middle and
right panels display a visualization of many averages of 20 sessions (distinct from the training
ones, represented each by a colored dot) in the PC space; PC2 is omitted.



Fig S8. Comparison of the contributions of all MLR+PCA regressors along the PCs for
Datasets A1 and B. After training the MLR with PCA on EC, we calculate for each PC a single
value that measures the importance of that PC in the global classification; it simply collapses the
values in the left panel of Figure S6 by summing them for each PC.



S5. Evaluation of the number of EC links necessary for quasi perfect classification with
MLR.

This is the classification performance of subjects after sorting the most discriminant EC links
selected  by  recursive  feature  extraction  (RFE,  see  Methods  for  details).  Here  90%  of  all
available sessions were used for training and the remaining 10% for testing, in order to account
for the session-so-session variability in the train set. The matrix of EC links corresponding to
the saturation of the curves close to perfect classification is depicted in Figure 3D: 18 links for
Dataset A1 and 44 for Dataset B.

Figure S9: Test set accuracy of MLR classifier varying number of EC links (features, x-
axis). The order of the EC links is determined by RFE, based on their individual contribution to
the correct subject identification.



Supplementary Table S1
List of ROIs for the AAL parcellation with groups for the matrix in Figures 3d (main text) and
S10.



Supplementary Table S2
List of ROIs for the Hagmann parcellation with groups for the matrix in Figure 4c.


