
GigaScience
 

SVEngine: an efficient and versatile simulator of genome structural variations with
features of cancer clonal evolution

--Manuscript Draft--
 

Manuscript Number: GIGA-D-18-00023

Full Title: SVEngine: an efficient and versatile simulator of genome structural variations with
features of cancer clonal evolution

Article Type: Technical Note

Funding Information: National Human Genome Research
Institute
(P01 CA91955)

Dr. Hanlee P Ji

National Human Genome Research
Institute
(R01HG006137)

Dr. Hanlee P Ji

National Cancer Institute
(U01CA15192001)

Dr. Hanlee P Ji

American Cancer Society
(RSG-13-297-01-TBG)

Dr. Hanlee P Ji

Abstract: Background: Simulating genome sequence data with features can facilitate the
development and benchmarking of structural variant analysis programs. However,
there are a limited number of data simulators that provide structural variants in silico.
Moreover, there are a paucity of programs that generate structural variants with
different allelic fraction and haplotypes.
Findings: We developed SVEngine, an open source tool to address this need.
SVEngine simulates next generation sequencing data with embedded structural
variations.  As input, SVEngine takes template haploid sequences (FASTA) and an
external variant file, a variant distribution file and/or a clonal phylogeny tree file
(NEWICK) as input.  Subsequently, it simulates and outputs sequence contigs
(FASTAs), sequence reads (FASTQs) and/or post-alignment files (BAMs).  All of the
files contain the desired variants, along with BED files containing the ground truth.
SVEngine's flexible design process enables one to specify size, position, and allelic
fraction for deletion, insertion, duplication, inversion and translocation variants.  Finally,
SVEngine simulates sequence data that replicates the characteristics of a sequencing
library with mixed sizes of DNA insert molecules.  To improve the compute speed,
SVEngine is highly parallelized to reduce the simulation time.
Conclusions: We demonstrated the versatile features of SVEngine and its improved
runtime comparisons with other available simulators.  SVEngine's features include the
simulation of locus-specific variant frequency designed to mimic the phylogeny of
cancer clonal evolution.  We validated the accuracy of the simulations.  Our evaluation
included checking various sequencing mapping features such as coverage change,
read clipping, insert size shift and neighbouring hanging read pairs for representative
variant types.  SVEngine is implemented as a standard Python package and is freely
available for academic use at: https://bitbucket.org/charade/svengine.
Keywords: Structural variation, next generation sequencing, sequence analysis, locus-
specific allele frequency, somatic haplotypes, cancer clonal evolution.

Corresponding Author: Hanlee P Ji, M.D.

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Li C Xia, PhD

First Author Secondary Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Order of Authors: Li C Xia, PhD

Dongmei Ai, PhD

Hojoon Lee, PhD

Noemi Andor, PhD

Chao Li

Nancy R Zhang, PhD

Hanlee P Ji, M.D.

Order of Authors Secondary Information:

Opposed Reviewers:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability


(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


 

SVEngine: an efficient and versatile simulator of genome structural variations 

with features of cancer clonal evolution 

Li Charlie Xia1,2, Dongmei Ai3, Hojoon Lee1, Noemi Andor1, Chao Li3, Nancy R. Zhang2, 

Hanlee P. Ji1,4,* 

 

1Division of Oncology, Department of Medicine, Stanford University School of Medicine, 

Stanford, CA 94305 

2Department of Statistics, the Wharton School, University of Pennsylvania, Philadelphia, PA 

18014 

3School of Mathematics and Physics, University of Science and Technology Beijing, 30 

Xueyuan Road, Haidian District, Beijing 100083 P. R. China 

4Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304 

 

* To whom correspondence should be addressed 

genomics_ji@stanford.edu 

 

Running Title: 

SVEngine: simulation of structural variations for cancer clonal evolution 

 

Manuscript Click here to download Manuscript
Xia_svengine_manuscript.docx

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:genomics_ji@stanford.edu
http://www.editorialmanager.com/giga/download.aspx?id=31935&guid=83c295b3-97cd-4180-8a06-03c697ae69f2&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=31935&guid=83c295b3-97cd-4180-8a06-03c697ae69f2&scheme=1


 

ABSTRACT 

Background: Simulating genome sequence data with features can facilitate the 

development and benchmarking of structural variant analysis programs. However, there are 

a limited number of data simulators that provide structural variants in silico.  Moreover, there 

are a paucity of programs that generate structural variants with different allelic fraction and 

haplotypes. 

Findings: We developed SVEngine, an open source tool to address this need.  SVEngine 

simulates next generation sequencing data with embedded structural variations.  As input, 

SVEngine takes template haploid sequences (FASTA) and an external variant file, a variant 

distribution file and/or a clonal phylogeny tree file (NEWICK) as input.  Subsequently, it 

simulates and outputs sequence contigs (FASTAs), sequence reads (FASTQs) and/or post-

alignment files (BAMs).  All of the files contain the desired variants, along with BED files 

containing the ground truth.  SVEngine’s flexible design process enables one to specify size, 

position, and allelic fraction for deletion, insertion, duplication, inversion and translocation 

variants.  Finally, SVEngine simulates sequence data that replicates the characteristics of a 

sequencing library with mixed sizes of DNA insert molecules.  To improve the compute 

speed, SVEngine is highly parallelized to reduce the simulation time. 

Conclusions: We demonstrated the versatile features of SVEngine and its improved 

runtime comparisons with other available simulators.  SVEngine’s features include the 

simulation of locus-specific variant frequency designed to mimic the phylogeny of cancer 

clonal evolution.  We validated the accuracy of the simulations.  Our evaluation included 

checking various sequencing mapping features such as coverage change, read clipping, 

insert size shift and neighbouring hanging read pairs for representative variant types.  

SVEngine is implemented as a standard Python package and is freely available for 

academic use at: https://bitbucket.org/charade/svengine. 

Keywords: Structural variation, next generation sequencing, sequence analysis, locus-

specific allele frequency, somatic haplotypes, cancer clonal evolution.
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FINDINGS 

Background 

Next generation sequencing (NGS) has enabled researchers to detect and resolve complex 

genomic structural features at base-pair resolution.  One can detect a variety of structural 

variations (SVs) including deletions, insertions, inversions, tandem duplications and 

translocations based on NGS whole genome sequence data [1].  A variety of algorithms 

have been developed for structural variant calling from NGS data.  This includes programs 

such as Breakdancer, CNVnator, Delly, Haplotype Caller, Lumpy, SWAN, Pindel among 

others [2-10].  Even with these programs, accurate SV detection remains a significant 

challenge.  For example, some SVs occur in lower allelic fractions as seen in tumors with 

intratumoral heterogeneity [11].  This is frequently the case in sequencing tumor samples, 

where cancer starts from a seeding clone and through clonal evolution, successively 

acquires additional rearrangements at lower allelic fractions. 

 

Benchmarking structural variant callers with available ground truth data sets is critical for 

software tool development, bioinformatics pipeline testing and objective assessment of 

detection accuracy [12].  Whole genome data sets are available from high sequencing 

coverage with Illumina or Pacific Bioscience systems [13].  However, for those users who 

wish to generate new sequencing data sets with specific features, identification and 

generation of ground truth data sets is a laborious and cost-prohibitive endeavour.  Moreover, 

it is extremely difficult to empirically determine the analytical consequences of different 

sample processing methods, experimental variability in library preparation and issues of 

sequencing bias in analysis [14]. 

 

Simulating NGS data provides an inexpensive alternative for assessing new algorithms in 

the context of sequencing data variation as noted [15].  With simulated datasets, one can 
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 2 

start refining analysis procedures in silico.  Simulated NGS datasets can incorporate the 

variability associated with NGS sequence data including: sequencing coverage; number of 

libraries and insert size; base error rates; tool parameters at the data analysis level.  For in 

silico NGS data, a large number of SV characteristics can be readily designed including the 

number, the category, the size, the breakpoint sequence, the variant fraction and the 

haplotype for any given locus.  As a result, investigators can use this simulated data to 

assess the potential performance and make the trade-off between analysis cost and 

sensitivity before even carrying out the experiment. 

 

A number of programs generate NGS read sets to simulate metagenomics or single 

nucleotide polymorphisms are available [16-22].  Only recently have we seen the 

development and release of structural variant simulators.  An early example is RSVSim [23], 

an R package which amends template sequence files with structural variant changes.  

However, it requires an interactive R session thus does not support batch processing.  

SCNVSim [24] improves upon RSVSim by providing a command line interface.  It simulates 

somatic copy number variants given a number of desired SV events and/or contigs.  

Nonetheless, both SCNVSim and RSVSim can only output mutated contig files (FASTA), 

which require external steps to simulate sequence reads (FASTQ) and output resulting 

alignments (BAM).  VarSim [14] improves upon RSVSim and SCNVSim with integrated read 

simulation using read simulators such as ART [25].  Instead of using a template sequence 

file, BAMSurgeon [26] patches an existing alignment file to embed structural variants.  

However, this application requires a high depth of coverage in the existing BAM file to 

successfully assemble a local contig for sequence patching.  Moreover, the resulting 

structural variant may not have the exact breakpoints for the intended simulation.  Overall, 

none of the listed tools provide a straightforward, joint control of an individual variant, 

including its exact breakpoints, ploidy and locus-specific allelic fraction.  These features are 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 3 

particularly useful in simulating the clonal expansion of somatic structural variants as seen in 

tumors. 

 

As a solution to the limitations of current structural variant simulators, we designed and 

implemented SVEngine, a full-featured simulation program suite.  SVEngine is capable of 

generating short sequence read sets, such as produced by an Illumina system, for 

thousands of spike-in variants that cover different types, sizes, haplotypes and allelic 

fractions.  Our application produces these simulated NGS data sets in a fraction of the time 

of other similar tools.  SVEngine’s flexibility for accepting different formats enables a user to 

generate whole genome or targeted sequencing data mimicking germ-line, somatic and 

complex clonal structured genomes with ease.  It offers a high degree of allelic control 

through its parallelized divide-and-conquer planning scheme.  In the simplest mode, users 

only need to provide the template (reference) sequences and a desired meta-distribution of 

type, size and variant frequency to receive a full set of resulting FASTA, FASTQ and BAM 

outputs along with the ground truth BED file. 

 

SVEngine features and simulation performance 

We compare the available features of SVEngine with other simulators that include RSVsim 

[23], SCNVsim [24], VarSim [14] and BAMsurgeon [26], as shown in Table 1.  SVEngine and 

the other tools can simulate common types of copy number events, e.g. deletions and 

tandem duplications.  All simulators except SCNVsim can simulate copy number neutral 

events, including insertions, inversions, and translocations.  SVEngine improves the 

simulation of more complex SV events – it incorporates a variety of additional structural 

variant types originating from a combination of changes, such as inverted translocations, 

inverted duplications, duplicated translocation, and foreign sequence insertions.  Users 

directly specify these events while preparing their input parameters – this process is more 
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 4 

streamlined compared to other tools.  For example, viral genome sequence insertion, which 

is a hallmark of the genomes of infected cells as seen in viral diseases and cancers [27], is 

easily achieved with SVEngine, but not available with other simulation software. 

 

In terms of input/output flexibility and ease of use, SVEngine provides automates template 

sequence modification, read simulation and read mapping steps.  These features are not 

found in other simulators of SV events.  Also, SVEngine is the only tool which outputs a full 

set of simulation results in standard formats, including altered contig sequence (FASTA), 

simulated short reads (FASTQ) and alignment (BAM) files (Figure 1).  At the input step, all 

tools take in template sequences in FASTA format as the starting material, while 

BAMsurgeon additionally requires a pre-existing alignment file in BAM format as input.  

Overall, read coverage of this BAM file has to be large (typically >30x), to successfully 

assemble local contigs.  Such requirements preclude the use of BAMSurgeon in applications 

generating low coverage and consequently limit its users to mimicking conditions based on 

available high-coverage BAMs.  The VarSim tool needs structural variant prototypes from 

DGV [28] making it only applicable to the human genome.  At the output step, RSVsim and 

SCNVSim provide modified sequence contigs in FASTA files.  BAMsurgeon outputs modified 

alignment in BAM files, but without providing associated modified contigs.  VarSim provides 

both contigs containing a variant and simulated short reads, but it still requires additional 

user effort to generate alignment files. 

 

With regard to precise and versatile control of individual variants, SVEngine enables one to 

easily specify variant type, size, exact breakpoint, ploidy and allelic fraction for individual loci.  

Additionally, SVEngine simulates a full spectrum of germline, somatic and clonal structural 

variations by the specified meta-distribution.  In comparison, RSVSim does not support loci-

level control, as it only patches template sequence on demand.  With SCNVsim and VarSim, 

one can only control a meta-distribution of structural variants, such as the total number for 
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 5 

each variant type, minimum and maximum variant size.  SCNVsim allows the specification of 

ploidy, number and type of clones but does not have the capability to specify exact 

breakpoints.  VarSim randomly resamples breakpoint and other variant information from a 

DGV database dump.  Only BAMsurgeon and SVEngine support locus-specific variant 

fractions, i.e. allowing different allele fractions for individual variants.  Only SVEngine 

supports locus-specific ploidy, i.e. allowing a different ploidy state for individual variants. 

Both BAMsurgeon and SVEngine also support exact breakpoints for individual variants. 

However, in practice, the actual breakpoints generated by BAMsurgeon may differ from input, 

as a result of improvised local contig assembly.  Another unique feature of SVEngine is the 

ability to specify multiple sequencing libraries, which can each have different insert size 

mean and standard deviation, intended coverage depth, and read length. 

 

In addition to the features listed in Table 1, SVEngine allows user to designate some regions 

while avoiding others.  Examples of such applications include simulating exome or targeted 

sequencing data sets.  Moreover, this feature enables one to avoid complex regions such as 

telomeres and centromeres.  SVEngine also features parallelized simulation by dividing 

genome into pieces, embedding variants into each piece and then stitching them together.  

Therefore, its performance can be boosted using the multi-core processors. 

 

Table 2 lists the runtime on a test set of 15,000 SV events into a 30x coverage whole 

genome sequencing simulation, including 2,500 events each of deletion, tandem duplication, 

inversion, translocation and domestic or foreign sequence insertion.  In multi-processor 

mode, SVEngine has the shortest runtime in all three levels of simulation, i.e. obtaining 

altered contigs, simulated reads and alignments in FASTA, FASTQ and BAM formats in less 

than 10 min, 20 mins and 3 hours, respectively.  Overall, SVEngine is 1x, 15x and 48x times 

faster than the single-process SVEngine run.  The performance scales almost linearly with 

the added CPU power in generating the alignment output, because the read mapping time 
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 6 

cost dominates other time costs including data serializing time.  Moreover, even the single-

process SVEngine (SVE-single) is more efficient than its other counterparts. For example, it 

took only 10 mins for SVE-single to generate all altered contigs when RSVSim and 

SCNVSim took several hours.  SVE-single required half the time BAMSurgeon needs to 

generate all read alignments.  All run time were all measured on 8 Intel® Core i7-4790 CPU 

@ 3.60GHz with 32 GB RAM computer. 

 

Simulating cancer genome evolution 

SVEngine provides a high degree of control over SV events with variable allelic fractions – 

this feature enables one to simulate heterogeneous cancer genomes undergoing a 

phylogeny tree-structured clonal evolutionary process.  As a demonstration, we present a 

simple example scenario in which we simulated with SVEngine (Figure 2).  To simplify the 

description of the phylogenetic process of cancer evolution, we use a binary tree 

representation of phylogeny.  This binary tree is easily converted to a typical phylogeny tree 

by merging all nodes of identical cell subpopulations. 

 

One example is a binary tree shown in Figure 2A, where each of the five (𝑚 = 5) internal 

tree nodes denotes a bifurcation event when part of the parental cell population is gaining an 

additional mutation (𝑉𝑗, 𝑗 = 1 … 𝑚).  The root node represents the lowest common ancestor 

genotype of all subpopulations of cancer cells.  It is typically the normal germline cell as 

depicted here, or the first generation of cells bearing common somatic mutations that start 

becoming cancerous.  The “root” cell populations are split by the next immediate event, i.e., 

gaining the mutation 𝑉1, resulting in two child populations depending on a cell’s status of 

carrying 𝑉1 or not, as represented by its two child nodes.  We denote the conditional cell 

fraction of gaining 𝑉1 as 𝑓(𝑉1), which is 50% or 0.5 in this case, and is denoted at the root.  

The mutational process goes on for subsequent internal nodes and until all variants (a total 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 7 

of five in this example) are represented by their bifurcation internal node.  The resulting 

binary tree has six (𝑛 = 6) leaf nodes (𝐶𝑖, 𝑖 = 1 … 𝑛), which represent all possible somatic 

genotypes of the terminal cell subpopulations. 

 

As we can see, any terminal somatic genotype is completely determined by following the 

mutational path from the root down to a leaf node.  We use a tertiary vector 𝐶𝑖 = (𝑐𝑖,1 … 𝑐𝑖,𝑚) 

to indicate such path, where 

 

𝑐𝑖,𝑗 = {

0, if 𝑉𝑗 is not in the mutation path to 𝐶𝑖

         1,   if 𝑉𝑗 is in the mutation path to 𝐶𝑖 but 𝐶𝑖 doesn′t carry 𝑉𝑗  

        2, if 𝑉𝑗 is in the mutation path to 𝐶𝑖 and 𝐶𝑖 does carry 𝑉𝑗 

 

 

In addition, we define the conditional frequencies 𝑓(𝑉𝑖), which is the fraction of cells derived 

from a parent population carrying event 𝑉𝑖 as: 𝑓(𝑉𝑖) =  
# Child cells Gains 𝑉𝑖

# Parent cells at the verge of gaining 𝑉𝑖 
. 

Therefore, the final population frequency 𝐹(𝐶𝑖) of cell subpopulations 𝐶𝑖 is expressed as: 

 

𝐹(𝐶𝑖) =  ∏ [(𝑐𝑖,𝑗 − 1) ∗ 𝑓(𝑉𝑖) + (2 − 𝑐𝑖,𝑗)(1 − 𝑓(𝑉𝑖))]

𝑗:𝑐𝑖,𝑗>0

                                     (1). 

 

With 𝐼(. ) as the indicator function, the concurrent proportion 𝐹(𝑉𝑗) of all extant cells is simply 

the marginal sum of all cells carrying 𝑉𝑗: 

𝐹(𝑉𝑗) = ∑ 𝐼(

𝑛

𝑖=1

𝑐𝑖,𝑗 = 2)𝐹(𝐶𝑖)                                                      (2). 
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 8 

Figure 2B shows the derivation of the above quantities for the example binary tree.  The 

sequence of events ensures a partial order that the mutant allele frequency is always higher 

for events occurring upstream, as compared to events occurring downstream on the same 

lineage. It is possible that terminal genotypes may not all coexist in extant populations.  The 

proposed binary tree representation accommodates a deceased population by having zero 

proportion for such leaf node.  SVEngine allows user to input a binary tree with relevant 

bifurcation fractions to structure the variant fractions that falls along the line of the 

evolutionary tree.  For designating this feature, the input to SVEngine is in standard 

NEWICK format  – a widely accepted format using parenthesis to encode nested tree 

structures [29].  Each internal node is labelled by the population splitting variant and 

weighted by the conditional splitting fraction.  Each leaf node is labelled by associated 

terminal genotype and weighted by the subpopulation fraction as an optional feature.  For 

instance, the NEWICK string for the example binary tree is: ((C1, C2) V5: 0.8, ((C3, C4) 

V4:0.8, (C5, C6) V3: 0.9) V2:0.6) V1:0.5. 

 

Figure 2C shows the IGV browser view of SVEngine simulated BAM alignments of five 

equal-size deletions following the mutational process as represented by the example binary 

tree.  The read depth shows the difference of allelic fractions corresponding to the computed 

final variant fractions based on the tree.  We display an example of monoclonal cancer 

evolution, assuming that all cell subpopulations start from a set of common ancestor cells 

(as denoted by root node in the tree).  However, simulations of multiclonal evolution are also 

possible with SVEngine.  For example, one simply assigns an empty event to 𝑉1 and then 

sets the conditional fractions of the two child events 𝑉1 and 𝑉5 to 100% to simulate a two-

clonal origin evolution.  With SVEngine’s high efficiency, the simulation is easily scaled to 

tens of thousands of variants with a tree having a more complex structure. 

 

Simulating the multitude of structural variations 
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Current structural variation detection methods mostly rely on detecting altered read mapping 

features to identify structure changes [30].  The most important such features are read 

depth/coverage, read pair insert size, single ended read pairs (hanging reads), soft-clipped 

reads and split reads (clip/split reads).  It is essential for structural variant simulators to 

correctly produce such feature changes corresponding to the causal event.  In Figure 3, we 

comprehensively illustrate the expected changes in mapping that result from different types 

of structural variants. 

 

In the scenario of a deletion (Figure 3, first row), all the mapping features, such as 

coverage, insert size, hanging read and soft-clip/split read are expected to change, as 

illustrated in the Coverage, InsertSize, HangingRead and ClipSplitRead columns, 

respectively.  First, there is a reduction of read coverage over the deleted region because no 

reads are present.  Second, the insert size of read pairs that are mapped straddling the 

breakpoints is expected to increase as inferred by alignment to the reference.  This extended 

insert size is possible because the deleted region is not present in the real DNA molecules 

where these read pairs originating from.  Third, a fraction of read pairs aligning to the left of 

the left breakpoint lack a mapped mate read – this forms right mate hanging read pairs (right 

hang).  It is because the left breakpoint has interrupted the mate mapping by reducing 

similarity between the read and the reference.  Due to symmetry, left mate hanging read 

pairs (left hang) form to the right of the deletion.  Finally, when the breakpoint interruption in 

the mate is not as severe, it is possible that the mate read can still partially map.  The non-

contiguous part of the mate is either clipped or, if it is long enough, mapped to near the other 

end of the deletion.  Such resulting read pairs are what we refer to as left or right soft-clipped 

(or split mapped) reads depending on which side of the reads were split or clipped.  These 

read pairs are expected to map right next to both breakpoints with the clipping (or splitting 

site) aligned to the exact break point location, as shown. 
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For an insertion (Figure 3, second row), the most noticeable change is the clustering of 

both the right and left hanging read pairs centering over the breakpoint.  One observes a 

similar clustering for the left and right clip/split reads.  As shown in Figure 3, an insertion 

exhibits fewer changes than other types of structural variants, and so insertions are 

generally the most difficult to detect.  In the scenario of a tandem duplication (Figure 3, third 

row), the read coverage is expected to increase within the duplicated region.  The insert size 

of reads mapped to the left of the right breakpoint is expected to decrease, or even be 

negative, because the mate is likely to have the same sequence as the segment preceding 

the read.  Then, when the mate is mapped upstream of the current read, it causes a reversal 

of normal read strand order and introduces a negative insert size in the read mapping. By 

the same reasoning, the right hanging, clipped and split reads are clustered upstream next 

to the right breakpoint.  Similarly, the left hanging, clipped and split reads are clustered 

downstream next to the left breakpoint, making the tandem duplication almost a mirror image 

of deletion. 

 

In the scenario of an inversion (Figure 3, fourth row), the coverage shows almost no 

change.  The insert size near the left breakpoint is similar to the deletion scenario, which has 

an increase. This is because the mate is from the reverse complement of the other end of 

the inverted segment, which creates an inflated insert estimate and an abnormal forward-

forward strand read pair.  Similarly, the insert size near the right breakpoint is decreased and 

forms an abnormal reverse-reverse strand read pair.  When these abnormal pairs are 

interrupted by the breakpoints, it creates corresponding hanging read and clipped/split read 

clusters around both breakpoints.  Citing another example, a chromosomal translocation is 

simply a combination of features at the region deleted by the translocation and insertion 

features at the region inserted. 

 

CONCLUSION 
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We have developed and released SVEngine, a structural variant simulator, available as an 

open source program.  It simulates next generation sequencing data that has embedded 

structural variations as well as an assortment of complex sequence features.  SVEngine 

simulates and outputs mutated sequence contigs (FASTA), sequence reads (FASTQ) and/or 

alignments (BAM) files with desired variants, along with BED files containing ground truth. 

SVEngine’s flexible design enables one to specify size, position, and heterogeneity for 

deletion, insertion, duplication and inversion and translocation variants.  SVEngine’s 

additional features include simulating sequencing libraries having multiple different molecular 

parameters, and targeted sequencing data sets.  SVEngine is highly parallelized for rapid 

and high throughput execution. 

 

We showed the versatility and efficiency of SVEngine by comparison of features and runtime 

versus other available simulators.  We demonstrated the utility of SVEngine in an example 

mimicking the phylogeny in cancer clonal evolution, by simulating the associated variant 

allelic frequency.  We validated the accuracy of SVEngine simulations by examining 

expected sequence mapping features such as coverage change, read clipping, insert size 

shift and neighbouring hanging read pairs for representative variant types.  SVEngine is 

implemented as a standard Python package and is freely available for academic use at: 

https://bitbucket.org/charade/svengine. 

 

METHODS 

Simulation software and pipeline 

SVEngine was developed as a standard Python package with a C extension.  SVEngine 

provides two Python executables and one C command line executable: mutforge, tree2var 

and xwgsim, respectively.  The mutforge command implements a parallelized algorithm that 

divides the template genome into blocks of contigs, spikes structural variants into the contigs, 
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samples short reads from the altered contigs, and finally merges the short-read sets back 

into one file and performs the alignment.  The tree2var command implements a procedure 

that determines variant fractions from an input phylogeny tree based on Equations (1) and 

(2) and a depth first search graph algorithm, and then substitutes these allele fractions in an 

input VAR file.  The xwgsim command implements a modification to wgsim, which reduces 

the read sampling rate by 50% for the overlapping regions between contigs (i.e. ligation 

regions).  The overlaps were designed so as to allow for the proper merging of contig-wise 

read sets. xwgsim only interacts with mutforge thus is mostly transparent to a user. 

 

As shown in Figure 1, the required inputs to mutforge are three-fold: 1) a template haploid 

sequence file(s) in FASTA format.  This can be a standard human genome reference, or any 

other reference genome sequence. 2) A VAR file or a META file for specifying structural 

variants (distributions).  These are tab delimited files with columns defined in SVEngine’s 

manual.  The VAR format is intended for specifying exact information for individual variants, 

which includes variant id, parent id (if part of a complex event such a deletion occurring due 

to a translocation), fraction, ploidy, chromosome, starting position, and the sequence length 

to be deleted and/or the sequence content to be inserted.  Alternatively, the META format is 

intended for higher-level control, allowing one to specify a desired meta distribution of 

variants, including variant type, and total number of events, size, allele fraction, and ploidy 

distributions per type. 

 

One can specify where and how to insert the sample sequence in the case of foreign DNA 

insertion.  For example, a user can readily design 100 deletions of size ranging from 100bp 

to 10kbp, of a uniform distribution of allelic fraction and a fair Bernoulli distribution of homo- 

and heterozygosity in one line of text in the META file.  3) The PAR file is used to model an 

experimental design, including insert size, read length and coverage, as well as additional 

options for xwgsim.  The file can be used to specify multiple libraries with different mean 
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insert size and standard deviation.  One can use such normal mixtures to approximate 

irregular libraries of multiple modes and asymmetric tails.  The xwgsim command also 

provides random embedding of SNVs and indels if desired.  In the SVEngine’s Wiki page, 

we supply example VAR, META and PAR files with detailed annotation to facilitate their 

usage. 

 

Once all inputs are provided, the SVEngine master process divides the template genome 

into blocks and serializes spike-in tasks to parallel worker processes.  The worker process 

patches its assigned contig and if read pairs were required, it also calls xwgsim to simulate 

read pairs.  The read pair subsets are then collected by the master process and merged, 

and if alignments were required, it also calls bwa-mem and samtools to map the reads to the 

reference. 

 

The output of SVEngine has three levels.  At the first level (contig), only two files would be 

generated: one is a FASTA file containing all the altered contigs, the other is the ground truth 

of spiked-in variants in a BED3 format file with the additional columns following the VAR 

format as in the input.  At the second level (read pair), SVEngine additionally outputs the 

read 1 and read 2 of the simulated read pairs in two FASTQ files.  Finally, at the third level 

(alignment), SVEngine provides the read alignment output to the given reference in a BAM 

file format.  The runtime of SVEngine increases with the specified output level, as additional 

processing time will be required.  Table 2 can be used as a reference for runtime estimates 

for different output levels. 

 

The tree2var command simulates a clonal evolution scenario, which requires an additional 

tree input file (NEWICK). tree2var also takes a VAR file, which can be generated from 

mutforge with a META file input and in the dryrun mode.  The user must insure that the 
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identifier of the tree’s internal nodes and the variant match each other, as this is used to 

identify and replace allele fraction with the value computed from tree phylogeny.  The 

tree2var outputs a new VAR file which contains the rewritten allele fraction fields that reflects 

the clonal structure described by the user tree.  For intuitive diagnostics, tree2var also 

outputs a ASCII text based plot of the parsed input tree. SVEngine’s tree parsing interacts 

with DendroPy [29], which allows further functionality such as random tree simulations and 

many tree statistics.  The output VAR file from tree2var then becomes the input to mutforge 

for actual read simulation. 

 

A parallel simulation framework  

SVEngine’s major improvements to existing structural variant simulation tools involve one’s 

ability to alter the allelic fraction, control of haplotypes and highly efficient parallelized 

simulation.  These improvements were achieved through the core algorithm as illustrated in 

Figure 4.  In general, we used a divide-and-conquer approach intertwined with multi-process 

execution:  First, the SVEngine master process lays out a genome grid for simulation.  For 

any input haploid sequence, the entire genome is partitioned into 𝑁 equal size non-

overlapping blocks:  𝐵1, 𝐵2,…, 𝐵𝑁, where 𝐵𝑘 =  [
𝐺(𝑘−1)

𝑁
+ 1,

𝐺𝑘

𝑁
].  The block size 

𝐺

𝑁
 can be 

chosen at the input, where 𝐺 is the entire genome length.  Ligation regions of length 𝑙 are 

also defined, which consists of symmetric touching border regions of equal size adjacent 

blocks: 𝐿1, 𝐿2,…, 𝐿𝑁−1, where 𝐿𝑘 =  [
𝐺𝑘

𝑁
−

𝑙

2
+ 1,

𝐺𝑘

𝑁
+

𝑙

2
].  These serve as buffer regions that 

enable the SVEngine to ligate block sequence-based simulations back together.  The block 

generating procedure is similar for multi-chromosome genomes except blocks representing 

chromosome ends might be shorter than the standard block size. 

 

Second, the SVEngine master process coordinates all of the tasks.  In one task, a structural 

variant is embedded into the adjacent sequence – this is done by assigning a sequence of 
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blocks that it impacts.  All the variant’s control information is attached to the task as well. In 

the figure, the first variant, a 50% deletion 𝑆𝑉𝑖 was assigned blocks 𝐵𝑖1
, 𝐵𝑖1+1,…, 𝐵𝑖𝑛

 and the 

next variant, a 100% deletion 𝑆𝑉𝑗 was assigned blocks 𝐵𝑗1
, 𝐵𝑗1+1,…, 𝐵𝑗𝑛

.  Depending on its 

size, a variant can take anywhere from one block, to as many blocks as needed.  The 

genomic region which is not altered, between adjacent variants, say  𝑆𝑉𝑖 and 𝑆𝑉𝑗, also 

becomes a task.  This is assigned to the sequence blocks complementary to the blocks 

taken by 𝑆𝑉𝑖 and 𝑆𝑉𝑗 and with a no-op instruction attached.  If necessary, no-op tasks with 

large block sequences are further broken down to no-op tasks with size-capped block 

sequences to improve efficiency of parallelization. 

 

Third, the SVEngine master process dispatches all the tasks to an auto revolving worker 

process pool and then waits for all the workers to finish.  Each worker process, when 

assigned a new task, loads the haploid sequence defined by the task’s block sequence plus 

left and right ligation regions.  For example, a worker would load sequence from [
𝐺𝑖1

𝑁
−

𝑙

2
+

1,
𝐺𝑖𝑛

𝑁
+

𝑙

2
] for 𝑆𝑉𝑖 as the original contig, or [

𝐺𝑗1

𝑁
−

𝑙

2
+ 1,

𝐺𝑗𝑛

𝑁
+

𝑙

2
] for 𝑆𝑉𝑗, or [

𝐺(𝑖𝑛+1)

𝑁
−

𝑙

2
+

1,
𝐺(𝑗1−1)

𝑁
+

𝑙

2
]  for the no-op task in between them.  The original contig is then operated on for 

deletion, insertion, or other alternations to form the altered contig. If no-op the original contig 

is unaffected.  The worker then calls xwgsim to simulate the proper numbers of read pairs 

from the original and altered contigs according to the specified frequency and resulting 

contig sizes.  The xwgsim step also takes care of attenuated sampling (at half the normal 

rate) within the designated ligation regions as the worker provides the ligation size 𝑙 in its 

arguments.  In addition, xwgsim adds a procedure to the popular NGS simulator wgsim [31], 

which rejects a new read pair at 50% chance if any of its two ends originates in a ligation 

region.  Patterns of expected read pair coverage from the 𝑆𝑉𝑖, 𝑆𝑉𝑗 and no-op tasks are 

illustrated in Figure 4. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 16 

Fourth, when the worker processes are completed, the master process collects all simulated 

read pairs from all tasks and concatenates them into two final files, one for read 1 and the 

other for read 2.  Also, it collects all original and altered contigs and concatenate them into 

one final sequence file.  Finally, it performs read pair alignment to the reference genome 

using bwa-mem and samtools.  This is last step, although sequential in SVEngine, is already 

thread parallelized by other required programs such as the bwa and samtools tools [22, 32].  

Patterns of expected read pair coverages after merging the 𝑆𝑉𝑖, 𝑆𝑉𝑗 and no-op tasks are also 

illustrated in Figure 4.  The described algorithm assumes one haploid for simplicity.  For 

multi-ploidy, each haploid is handled in a similar way by the worker process except that the 

variant’s haplotype status is also taken into consideration.  Overall, this SVEngine’s core 

algorithm is very efficient as demonstrated by the runtime comparison, is very versatile and 

isaccurate as demonstrated by multiple example applications described in this paper. 

 

Notable simulator features 

To comprehensively evaluate structural variant callers, one may need a wide spectrum and 

large number of SV events.  This range is more easily specified by distributions of variants 

rather than individual variants.  SVEngine supports variant distributions as specified in the 

META format.  The expansion of distributions to actual variants takes place in the master 

process before any spike-in.  The distributions are expanded on a target genome 

sequentially by randomly pick the next event’s start position from regions that can 

accommodate it.  Afterwards, it removes the impact region from the remaining available 

regions and so on.  Once all distributions are expanded, the master process returns a list of 

variant fulfils user’s specification and outputs them into a VAR file.  The user can choose to 

run SVEngine in dryrun mode to stop the execution at this point and inspect the resulted 

variants.  The user also has the option to continue the simulation to the end, which is 

equivalent to input the output VAR file into SVEngine for simulation in the next step. 
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To increase the sensitivity of SV detection, researchers may prepare multiple sequencing 

libraries with different molecular parameters for analysis.  For example, different insert sizes 

enable the detection of a wider spectrum detection of SVs [33].  Longer sequence read 

length can boost the performance of some callers that employ remapping strategies [34].  A 

unique feature of SVEngine is its ability to simulate NGS data modelling multiple libraries 

with different mean insert size and standard deviation, coverage and read lengths.  The 

feature is implemented within the worker process.  When using a multi library task, 

SVEngine will call xwgsim multiple times to generate read pairs in accordance with the 

library specification. 

 

SVEngine provides simulation data that target or masks specific genomic regions.  This 

feature emulates targeted sequencing applications, such as exome sequencing and gene 

panel sequence data.  It can be used to exclude problematic regions such as gaps, telomere 

and centromere regions of the reference template.  One only needs to provide standard BED 

format files to SVEngine listing the regions to be masked or targeted by the simulated 

sequencing. 

 

Databases like DGV and much other literature provide a list of known population variants. 

Tools like RepeatMasker (http://repeatmasker.org) provide extensive lists of known regions 

of human repeats and/or homolog sequences, with enrichment of structural variant 

breakpoints.  Although not provided in our examples due to their varied formats, in principle, 

these population and repeats-mediated variants can be downloaded in general tab delimited 

formats, such as BED or VCF files.  Subsequently, these annotation formats are easily 

converted into an SVEngine VAR format input file using text processing utilities such as awk 

and sed.  Using a VAR file generated in this way, SVEngine can easily embed these variants 

into simulation data.  
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Availability of supporting source code and requirements 

Project name: SVEngine 

Project home page: https://bitbucket.org/charade/svengine 

Operating system: Linux/Unix 

Programming language: standard Python package with a C extension 

Other requirements: GNU C Compiler or similar 

License: Stanford University 

 

Data availability 

In silico data sets are available at  https://bitbucket.org/charade/svengine. 

 

Abbreviations 

 SV: Structural Variation/Variant 

 NGS: Next Generation Sequencing 
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TABLES 

Table 1. Available features of structural variant simulators. 

Use Cases SVEngine RSVsim SCNVsim VarSim BAMsurgeon

Copy number events: deletions, 
tandem duplications 

       

Copy number neutral events: 
inversions, insertions, translocations 

      

Phylogenetic clonal structure: 
cancer evolution 

      

Foreign Sequence Insertion: virus 
integration 

       

Non-human genome: various 
template and ploidy 

        

Not requiring pre-existing 
alignment: no high coverage BAM 
input 

       

Generate mutated contig: FASTA 
output 

      

Generate short reads: FASTQ 
output 

     

Generate alignment: BAM output     

Locus-specific variant ploidy         

Locus-specific variant frequency        

Exact breakpoint         

Multiple sequencing libraries          
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Table 2. Runtime performance comparison. 

15000 
events at 

30x 
coverage 

SVEngine 
(64 procs) 

SVEngine  
(1 proc) 

RSVSim SCNVSim VarSim BAMSurgeon 

FASTA 
output 

<10 min < 10 min 10 hr 2 hr 
Not 

Available 
Not Available 

FASTQ 
output 

<20 min 5 hr External External 6 hr Not Available 

BAM output 2hr 5 days External External External >10 days 

Not Available: output format is not available 

   External: output format is only available through additional external software, thus not tested 
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FIGURES 

Figure 1. Inputs, outputs and execution components of SVEngine.  The flow of data 

was marked by gray arrows. The input, SVEngine functioning and output data spaces were 

color shaded. 

 

Figure 2. Simulating cancer evolution.  (A) An example cancer evolution tree. The 

conditional fraction in each internal node represents the fraction of cell population gaining 

the next structural variation, which is represented by the label of the internal node. (B) An 

example computation table to determine final variant frequency of each variation and cell 

population frequency of each terminal genotypes. (C) Integrated Genomics Viewer view of 

SVEngine simulated BAM data of five deletions following clonal structure in the example 

binary tree. 

 

Figure 3. Expected read mapping features of structural variant prototypes.  Rows – 

variant prototypes: 1) Deletion, 2) Insertion, 3) Duplication, 4) Inversion. Columns – mapping 

features: 1) Read coverage, 2) Read pair insert size, 3) Single end mapped read 

(HangingRead), 4) Soft clipped read or split mapped read (ClipSplitRead). X-axis is genomic 

coordinates. Y-axis is feature value/counts. Dashed orange line stands for expected feature 

value without alteration. Solid blue line stands for expected feature value with alteration. 

Dotted green bar denotes the breakpoint(s). 

 

Figure 4. The core parallelized simulation algorithm of SVEngine. Here are two 

neighboring events 𝑆𝑉𝑖 and 𝑆𝑉𝑗: a 50% deletion and a 100% deletion to be spiked-in. The 

first deletion event spans blocks 𝐵𝑖1
, 𝐵𝑖1+1,…, 𝐵𝑖𝑛

 and the second deletion event spans 

genome blocks 𝐵𝑗1
, 𝐵𝑗1+1,…, 𝐵𝑗𝑛

. The genome blocks are shaded in blue while the ligation 
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regions are shaded in orange. The resulting read pairs are represented by their coverage in 

black dash patterns. The parallel execution tasks were boxed in green color. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



FASTA BED FASTQ

META PARVARFASTA or

Template
genomes

Exact
variants

Sequencing
libraries

Variant
distribution

tree2varmutforge

Altered genome
contig

Simulated
reads

Variant
ground truth

Read
alignments

NEWICK

Phylogeny
tree

In
pu

t
O

ut
pu

t
SV

En
gi

ne

BAM TXT

ASCII tree
plot

xwgsim
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A An example binary tree clonal structure representation 

Cell Pop. 
Variants

Leaf
Node

Internal Nodes / Variant Evolutionary 
Path

Cell 
Pop. 
Freq.

V1 V2 V3 V4 V5 F(Ci)

Normal C1 1 0 0 0 1 0.1

V5 C2 1 0 0 0 2 0.4

V1 C3 2 1 0 1 0 0.04

V1, V4 C4 2 1 0 2 0 0.16

V1, V2 C5 2 2 1 0 0 0.03

V1, V2, V3 C6 2 2 2 0 0 0.27

Var. Cond.
Fraction: f(Vi) 0.5 0.6 0.9 0.8 0.8

Var. Total
Fraction: F(Vi) 0.5 0.3 0.27 0.16 0.4

B Deriving cell subpopulations and variant frequencies

C Simulated BAM data of five deletions following clonal structure in the binary tree
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