
GigaScience

SVEngine: an efficient and versatile simulator of genome structural variations with
features of cancer clonal evolution

--Manuscript Draft--

Manuscript Number: GIGA-D-18-00023R1

Full Title: SVEngine: an efficient and versatile simulator of genome structural variations with
features of cancer clonal evolution

Article Type: Technical Note

Funding Information: National Human Genome Research
Institute
(P01 CA91955)

Dr. Hanlee P Ji

National Human Genome Research
Institute
(R01HG006137)

Dr. Hanlee P Ji

National Cancer Institute
(U01CA15192001)

Dr. Hanlee P Ji

American Cancer Society
(RSG-13-297-01-TBG)

Dr. Hanlee P Ji

Abstract: Background: Simulating genome sequence data with variant features facilitates the
development and benchmarking of structural variant analysis programs. However,
there are only a few data simulators that provide structural variants in silico and even
fewer that provide variants with different allelic fraction and haplotypes.
Findings: We developed SVEngine, an open source tool to address this need.
SVEngine simulates next generation sequencing data with embedded structural
variations. As input, SVEngine takes template haploid sequences (FASTA) and an
external variant file, a variant distribution file and/or a clonal phylogeny tree file
(NEWICK) as input. Subsequently, it simulates and outputs sequence contigs
(FASTAs), sequence reads (FASTQs) and/or post-alignment files (BAMs). All of the
files contain the desired variants, along with BED files containing the ground truth.
SVEngine’s flexible design process enables one to specify size, position, and allelic
fraction for deletions, insertions, duplications, inversions and translocations. Finally,
SVEngine simulates sequence data that replicates the characteristics of a sequencing
library with mixed sizes of DNA insert molecules. To improve the compute speed,
SVEngine is highly parallelized to reduce the simulation time.
Conclusions: We demonstrated the versatile features of SVEngine and its improved
runtime comparisons with other available simulators. SVEngine’s features include the
simulation of locus-specific variant frequency designed to mimic the phylogeny of
cancer clonal evolution. We validated SVEngine’s accuracy by simulating genome-
wide structural variants of NA12878 and a heterogenous cancer genome. Our
evaluation included checking various sequencing mapping features such as coverage
change, read clipping, insert size shift and neighbouring hanging read pairs for
representative variant types. Structural variant callers Lumpy and Manta and tumor
heterogeneity estimator THetA2 were able to perform realistically on the simulated
data. SVEngine is implemented as a standard Python package and is freely available
for academic use at: https://bitbucket.org/charade/svengine.

Corresponding Author: Hanlee P Ji, M.D.

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Li C Xia, PhD

First Author Secondary Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Order of Authors: Li C Xia, PhD

Dongmei Ai, PhD

Hojoon Lee, PhD

Noemi Andor, PhD

Chao Li

Nancy R Zhang, PhD

Hanlee P Ji, M.D.

Order of Authors Secondary Information:

Response to Reviewers: We thank the editors and reviewers offered their great suggestions and comments
based on the previous version of SVEngine manuscript. With this revision, we
addressed all the issues raised by the reviewers and editors. And through the process,
we had improved the overall quality of this manuscript. We hope the revised
manuscript achieves the high standard of scientific publication of GigaScience. Thank
you for your consideration.

Sincerely,

Hanlee Ji, MD

Associate Professor of Medicine
Stanford University School of Medicine

[Point-to-Point Response]

[Response to editors’ comments]
Among the major points of the reviewers I'd like to highlight the need for benchmarking
and evaluation of the simulations, to show that the result resembles real data (See the
comments of reviewers 2 and 3).

Response:
We have performed additional benchmark simulation as suggested by the two
reviewers. In the revision, we reported additional simulation findings and released the
data to reproduce our results in the public domain
(https://bitbucket.org/charade/svengine/wiki/Example). By applying two popular SV
callers and one tumor heterogeneity estimator to these data and studying their
performance, we further confirmed the validity of our simulations. For details, please
see our point-to-point
responses to reviewer #3’ specific comments.

A minor comment that came up during editorial discussion of the paper was that ample
development is currently going into SV discovery / assembly software based on long
read technology (PacBio / ONT), and we wondered whether it would be possible to
amend the software in the future for this purpose? (this is a discretionary comment that
you can decide to discuss in the paper, or not).
Response:
We thank the editors for raising this point to us and fully understand its importance. We
added following discussion to the end of this manuscript as copied below:
“Structural variant analysis is a significant component of genomics research, which is
continuously being improved by a growing set of available technologies, e.g. long read
technologies such as the single-molecule, real-time (SMRT) sequencing by Pacific
Biosciences [35] and the nanopore sequencing by Oxford Nanopore Technologies [36],
or synthetic long read technologies (SLR) such as the Chromium droplet-based library
preparations by 10X Genomics [37, 38]. As the empirical data from these technologies
accumulate, platform specific read simulators like PBSIM [39] and NanoSim [40] will
become increasingly available. Although the implementation will be non-trivial, the
design of SVEngine is fully compatible with alternative read simulators. Going forward,
we will work with the community to expand SVEngine with more powerful features,
such as multi-platform simulation and co-phased SNP simulation.”
We noticed there are only a few currently published read simulators for Pacbio and

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

ONT technologies such as PBSIM and NanoSim. The design of SVEngine would allow
them to be integrated. It does require some familiarity of each read simulator’s source
code to do the proper source-code level modification. Since SVEngine is being
publicized open source, we expect us, with the help from read simulator developers,
will be able to implement these requested features in the near future.

- I believe you had discussed software licensing with one of my colleagues at
submission if I read the notes on the file correctly. As discussed, please change the
(non-OSI) Stanford license to an OSI-license such as, for example, BSD3
(https://opensource.org/licenses/BSD-3-Clause).
Response:
Yes. We had discussed the licensing options with the GigaScience editor’s. The
SVEngine software is now released as OSI compatible BSD3.

- Please register your new software application in the SciCrunch.org database to
receive a RRID (Research Resource Identification Initiative ID) number and include this
in your manuscript. This will facilitate tracking, reproducibility and re-use of your tool.
Response:
Yes. We have registered SVEngine with SciCrunch and the status is curated. The
associated RRID is SCR_016235.

If you are able to fully address these points, we would encourage you to submit a
revised manuscript to GigaScience.
Minor comment from editorial discussion: - The authors write: It is typically the normal
germline cell as depicted here, or the first generation of cells bearing common somatic
mutations that start becoming cancerous. In fact it is not typically the germline cell itself
that becomes cancerous, but cells that carry a genome that (presumably) matches the
genome of the germline.

Response:
We thank the editors for finding out this inaccuracy in our language. We have updated
the manuscript to correctly convey the idea. The corrected sentence is:
“The root node represents the lowest common ancestor cells of all subpopulations of
cancer cells. These are typically normal cells that carry a genome that matches a
germline genome, subsequently from which somatic genetic alterations accrue as part
of cancer development.”

 
[Response to reviewer #1’s comments]
Reviewer #1: This manuscript presents the design and implementation of a structural
variant simulation software called SVEngine. Compared with related software,
SVEngine provides new features, such as the simulation of locus-specific variant
frequency. Parallelization optimization is also adopted to improve the computing speed
of SVEngine. It is a topic of interest to the researchers in the related areas, but the
paper needs minor reversion before acceptance for publication.
My comments are as follows: The author claimed the performance of SVEngine scales
almost linearly with the added CPU power (1x, 15x and 48x times faster than the
single-process run) in the last paragraph of page five. The configuration of the
computing server mentioned in the article (first paragraph of page six) is a computer
equipped with one Intel i7-4790 CPU, which has four physical cores and supports eight
threads by hyper-threading. If the threads don't do I/O and there's nothing else running,
one thread per core will get you the best performance. However, that very likely not the
case in the experiment (48x speedup on 4 physical core). As the computation
performance is one of the highlights of SVEngine, the explanation of the acceleration
should be provided in detail. Evaluation and analysis under different parallel scale are
also needed, so as to locate the performance bottleneck and support the parallel
speedup of the pipeline.

Response:
We thank the reviewer for the positive and constructive comments. To the reviewer’s
question, we apologize the CPU and computer server information was incorrect in the
previous version, which caused the confusion. We can confirm that the performance
was measured on a 4-CPU computer cluster, where each CPU has 16 physical cores.
In total there is 64 cores that together give us a 48x speedup. The acceleration is

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

almost linear and within our expectation. The corrected text is below:

“All run time were measured on a computer server with four Intel® Xeon E7-4850v4
CPUs (16 cores each CPU) and with 256 GB shared RAM.”

To perform analysis under different parallel scales, we have provided additional
benchmark data that supports SVEngine’s efficient computational performance (see
our newly added data for NA12878 and a cancer genome in the revised paper). In
these experiments, we have successfully simulated ~ 20,000 in silico events in the
entire human genome at 100X coverage without issues. To generate the final BAM file
took about 1 day on a 32 physical cores (4 units of AMD Opteron 6386 SE, 8 physical
cores each unit) and 256GB RAM server. We found the overall runtime was linearly
bounded by the number of events being modeled and the total coverage and scaled
nearly as a fraction of the available cores. We can identify the real step has the
potential to be a bottleneck is to map the short reads toward human genome, which
was actually performed with bwa. It is out the scope of SVEngine’s design and is
optionally substituted if necessary. We hope we can convince the reviewer, SVEngine
is an efficient simulator, given that we have simulated dozens of human genomes with
tens of thousands of all types of events and varied coverages without issues (these
numbers are in realistic range for total SVs based on literature).

[Response to reviewer #2’s comments]
Reviewer #2: SVEngine is a welcome addition to a niche of variant simulation tools that
can produce structural rearrangements for the purpose of benchmarking SV detection
tools. SVEngine provides a few features not found elsewhere, the most notable
perhaps is the ability to simulate subclonality with a bifurcating tree model.
Given that this is a tool intended to be used for benchmarking, it would be helpful to
see some benchmarking data in the manuscript to reassure the reader that SVEngine
does indeed create SVs of each type supported that are detectable with standard SV
calling tools.
Response:
We thank the reviewer for the suggestion. In the revision we have added substantial
new benchmark data to further validate the performance of SVEngine using existing
SV calling tools. Since the newly added benchmark was structured based on reviewer
#3’s first comment, we refer reviewer #2 to our response there. The first part of new
benchmark data we described there addressed this comment.

What is the utility of supporting multiple insert sizes within the same simulation? How
often, in recent practice, does one encounter a sequencing run that was constructed
with multiple insert sizes?
Response:
Regarding the reviewer’s question on the utility of multiple insert size library, we agree
that such use is not common in our experience. However, there are circumstances
where this occurs. For example, we know of experiments where it was intentionally
designed three libraries of different insert sizes in the hope to perform sensitive and
comprehensive detection for deletions. Their rationale was, for each insert size, the
effective detection range is at least two standardard deviations away from the mean.
So, the use of multiple insert size would allow the combined effective detection range
to cover the full size spectrum of deletions. However, since that design was not
prospectively validated with bioinformatics tools using simulation data, it had caused
significant challenge in downstream analysis. Now with SVEngine, the pro and cons of
multi-insert design, if desired, can be studied before sequencing.
Another example involves mate-pair sequencing where larger inserts, 2 kb or more are
used to improve the detection of structural variants. To have benchmark in silico data
sets to reflect the properties of these libraries would require varying the insert size.
The multiple insert size simulation is also useful retrospectively, in particular when
multi-modal or asymmetric insert-size distributions arise from real data. In principle,
such multi-modal or asymmetric distributions can be approximated by a mixture of
normal densities. Using SVEngine to generate similarly distributed data with known
ground truth will enable one to benchmark the performance and robustness of intended
bioinformatics analysis. Note, this task would not be possible with the real data only
because the ground truth would not be available. We thank the reviewer for asking this
great question and we have added our answer to our online FAQ.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

I think the items in Fig 1 could use a bit more explanation. For example, from the
figure, 'sequencing library' might be interpreted to mean an actual fastq file, but it
actually means a file with information on paired end read distributions as per the
example on bitbucket, and "PAR" is just an arbitrary extension.
Response:
We thank the reviewer for the valuable suggestions. We have updated Figure 1 to
accommodate them accordingly. The newly introduced file formats like VAR, META
and PAR are starred. We briefly explained them in the figure caption and pointed
readers to the online manual for additional information. The added caption text is
copied here:
“(*) Note: new file formats VAR, META and PAR were introduced by SVEngine for
specifying specific variants (VAR) or variants’ meta-distribution (META) to be
simulated, or for specifying parameters sequencing library and run (PAR). Please see
the online manual for detailed explanations.”

Page 15, lines 51-53 "In addition, xwgsim adds a procedure to the popular NGS
simulator wgsim [31], which rejects a new read pair at 50% chance if any of its two
ends originates in a ligation region." -- I wasn't able to work out why this is necessary,
could you clarify?
Response:
We apologize for the insufficient description. We defined the ligation region as a
segment of haploid sequence where two adjacent contigs to be simulated overlaps
(see Figure 4). The ligation region is employed to ensure proper and continuous
transition from simulating reads from the first contig to the second. That also means a
ligation region would be simulated twice – once along with the first contig, and then
along with the second contig. To compensate for potential double coverage in a
ligation region, we implemented an adjusted read generation procedure in xwgsim,
which only simulates 50% of the intended read coverage within the region for one
contig. The modified text is copied here:
“Briefly, we define the ligation region as a segment of haploid sequence where two
adjacent contigs being simulated overlaps. The ligation region is employed to ensure
proper and continuous transition from simulating reads from the first contig to the
second. That also means a ligation region would be simulated twice – once along with
the first contig, and along with the second contig. To compensate for potential double
coverage in a ligation region, we implemented an adjusted read generation procedure
in xwgsim, which only simulates 50% of the intended read coverage within the region
for one contig.”

Is xwgsim integral to running SVEngine or could another read simulator be swapped in
e.g. ART? I ask because wgsim is mainly aimed at Illumina data but simulators may
exist for other data types and the ability to use them would extend the usefulness of
SVEngine.
Response:
The short answer is yes. To make possible parallelized processing by SVEngine, in
xwgsim, we modified the source code of wgsim to properly carry out contig-wise
simulation employing ligation regions so as to precisely achieve desired simulation.
xwgsim is thus integral to SVEngine.
Nonetheless, the source-code level modification as we did to wgsim is not complicated,
which is likely also doable with other open source reader simulators and for other types
of sequencing platforms, e.g., ART as mentioned here. It, however, does require some
familiarity of the read simulator’s source code. Since SVEngine is to be published open
source, we expect, with help from read simulator developers, could implement such
features, as the community getting actively engaged and coming up with these
requests.
Similarly, it wasn't clear how configurable BAM generation was: suppose I want to use
bowtie and not bwa or whatever aligner is the default - is this possible?
Response:
The short answer is yes. The direct BAM generation of SVEngine is currently tided to
BWA MEM with default parameters. However, if that is not desired behavior, one can
always take over after the FASTQ files have been generated and apply any available

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

aligner as wishes. So, what has been asked is not only possible but easily doable by
setting the option ‘-x fastq’ to SVEngine. It is actually our current default to generate
FASTQ files as end points of simulation (please refer to our online manual). The
simulated read pairs will be saved into two FASTQ files ‘xxx.fq1’ and ‘xxx.fq2’, which
are suitable input to bowtie or other aligners of choice. We have included this Q&A
information in our online FAQ.

This is referring to the program itself and not the paper: Is there an intuitive explanation
for what 'trunksize' and 'plansize' mean?
Response:
Yes. We intuitively explained these terms below and the explanations were added to
the online FAQ and the online manual.
Trunksize is a term we used to define the size of parallelly processed haploid contigs
when no structural variant is present (non-variant contigs). The divide of non-variant
contigs into trunks enables concurrent simulation of reads and their efficient merge with
reads from variant contigs. The current default trunksize is 10 Megabase, which, if
considering no variants to be simulated at all, SVEngine will distribute the overall
simulation to around 300 trunks for the human genome. In practice, the parameter
should be considered in conjunction with the number of processors available.
Intuitively, if the number of processors is 30, and by the default trunksize 1MB, each
processor will process around 10 trunks before finishing. In this case, the jobs are well
distributed. But if the trunksize was chosen as 1 GB, then only around 3 trunks will be
distributed parallelly and the rest 27 processors will be idling, which reduces
SVEngine’s efficiency and increases its running time, because it has to wait for the
bigger sized (now 1GB) trunk simulation to finish. The rule of thumb is to choose
trunksize as a fraction of what the genome size divided by the number of processors.
The trunksize, however, does not affect the task distribution of variant contigs as these
contigs are always created and distributed per variant basis.
Plansize is a term we used to describe the coarse grain unit size when we try to
randomly distribute a desired number of structural variants genome-wide. It is needed
when the input is a META file, which specifies a distribution of structural variants to be
simulated. The current default is 100 Kilobase. Intuitively, for the human genome, the
default is to divide it into around 300,000 units, all of which are marked available at the
beginning. SVEngine then randomly samples from the available units to accommodate
the next variant and mark the relevant units unavailable. The process continues until
the desired distribution is achieved. For each variant, depending on its size and type, it
could take a contiguous segment of one or more units. If the specified distribution turns
out not accommodatable with current plansize, SVEngine will report an informative
error and stop before any actual read simulation. One can then retry the simulation with
reduced plansize or opt for a less ambitious simulation.

A few notes on the comparison with BAMSurgeon, the various points made are largely
fair, but there are a few features the authors have missed. BAMSurgeon does support
insertions including insertions of arbitrary sequences (e.g. viral sequences) through the
INS type (see manual, pg 9-10). BAMSurgeon also does output the contigs generated
before and after SV spike-in - they're in the addsv_logs_* directory after the run is
complete. This isn't well-documented however. Finally, the user is able to specify per-
variant allele fraction through the -c/--cnvfile option, although it is admittedly a bit
arcane (page 4 of the manual has an explanation). These omissions are perhaps
understandable to an extent but it raises the question of whether features have
similarly been missed for the other tools compared to SVengine in this paper.
Response:
We thank the reviewers for pointing out the details regarding BAMSurgeon which we
have overlooked. We acknowledge those valid points and have updated our
comparison table to tick on the ‘locus-specific variant frequency’, ‘foreign sequence
insertion’ and ‘generate simulated contig’ boxes for BAMSurgeon. We have rechecked
publications and manuals of other tools and reaffirmed other comparisons made in the
table.
 
[Response to reviewer #3’s comments]
Reviewer #3: The authors present an SV simulation framework that is fast, easy to use,
and the bitbucket documentation is good. Making heterogeneous SV datasets is very

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

important to test new SV detection methods, and SVEngine makes this much easier.
I do have one major issue:
There needs to be an evaluation of the simulations to show that the result resembles
real data. For a "normal" case, this could be as easy as simulating NA12878's SVs,
then running a handful of SV callers on both the real and simulated data and show that
the results are similar. Given the title of the paper, the authors also need to show that
the clonal populations that were specified are observed in the data. Something like
THetA (L. Oesper Bioinformatics, 2014) or one of its successors could be used here.
Response:
We first thank the reviewer for the positive and constructive feedbacks. As suggested
by the reviewer, we included two additional set of benchmark data with this revision.
In the first benchmark:
“We additionally validated SVEngine’s correctness by applying popular structural
variant callers and a tumor heterogeneity estimating tool to SVEngine generated WGS
data and benchmarked their performance with SVEngine’s input ground truth. In the
first benchmark, we simulated WGS data for a well-studied individual NA12878 based
on her known variants [31]. We applied commonly used SV callers: Lumpy [2] and
Manta [10] and computed performance metrics such true positive rate (TPR or
sensitivity) and false discovery rate (FDR) for the callers at different simulated
coverage. In total, we simulated 20759 structural variants for NA12878 with exact
genotype and breakpoint information. The set included 19034 deletions, 1150
duplications, 328 inversions and 247 insertions. These insertions included 91 LINE1,
58 ALU and 9 SVA mobile element insertions, for which we determined the exact
inserted sequence using RepBase [32].”
In the second benchmark:
“To further validate SVEngine’s correctness in simulating various mutant allele
frequency, we simulated a series of WGS data representing two-population mixtures of
tumor and normal genomes at a chosen grade of tumor purities. We derived copy
number segment files from the SVEngine simulated data set and ran the tumor
heterogeneity caller THetA2 [33] to infer the mixing subpopulation frequency.”

The methods and results details of these benchmarks were added and were
highlighted in the revision. These include a newly added Figure 5 and two newly added
Supplementary tables S1 and S2. In summary, commonly used SV callers, Manta and
Lumpy, generally performed well on calling and typing deletions, inversions and
duplications with SVEngine simulated data. Calling and typing insertions is so far the
most challenging task for SV analysis and the capability of SVEngine to simulate
various insertions can aid the further development of insertion callers. Also, the copy
number profiles derived from SVEngine simulated tumor and normal mixture WGS data
are suitable input to standard tumor heterogeneity tools such as THetA2 for reliably
estimating tumor purities, as demonstrated by good correlation and small residual
errors between THetA2 estimates and input ground truth purities.
The results from both benchmarks have further validated the correctness and
efficiency of SVEngine and the inclusion of which has strengthened the manuscript
greatly.

I also have a suggestion:
This method would be much more powerful if it could simulate a diploid (or more)
genome with accompanying SNPs properly phased. I would expect clonal evolution
methods to use both SNPs and SVs, and that phasing these events would be quite
powerful. If SVEngine supported phased simulations, then it would have a wider
audience.
Response:
We thank the reviewer with this great suggestion and agreed such simulation would be
more powerful. Simulating SNPs and small indels require additionally domain
knowledge and a tool encompassing both requires extensive benchmark work that
together would surpass the scope of this manuscript. But we will definitely consider this
suggestion in our future development of SVEngine.

Additional Information:

Question Response

Are you submitting this manuscript to a No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

special series or article collection?

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

SVEngine: an efficient and versatile simulator of genome structural variations

with features of cancer clonal evolution

Li Charlie Xia1,2, Dongmei Ai3, Hojoon Lee1, Noemi Andor1, Chao Li3, Nancy R. Zhang2,

Hanlee P. Ji1,4,*

1Division of Oncology, Department of Medicine, Stanford University School of Medicine,

Stanford, CA 94305

2Department of Statistics, the Wharton School, University of Pennsylvania, Philadelphia, PA

18014

3School of Mathematics and Physics, University of Science and Technology Beijing, 30

Xueyuan Road, Haidian District, Beijing 100083 P. R. China

4Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304

* To whom correspondence should be addressed

genomics_ji@stanford.edu

Running Title:

SVEngine: simulation of structural variations for cancer clonal evolution

Manuscript Click here to
access/download;Manuscript;svengine_manuscript_26_June1

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:genomics_ji@stanford.edu
http://www.editorialmanager.com/giga/download.aspx?id=45031&guid=0faab551-05c4-4bf5-9181-bb2127134b06&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=45031&guid=0faab551-05c4-4bf5-9181-bb2127134b06&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=914&rev=1&fileID=45031&msid=028edd7b-d885-44f0-9d77-d28f70b74dcc

ABSTRACT

Background: Simulating genome sequence data with variant features facilitates the

development and benchmarking of structural variant analysis programs. However, there are

only a few data simulators that provide structural variants in silico and even fewer that

provide variants with different allelic fraction and haplotypes.

Findings: We developed SVEngine, an open source tool to address this need. SVEngine

simulates next generation sequencing data with embedded structural variations. As input,

SVEngine takes template haploid sequences (FASTA) and an external variant file, a variant

distribution file and/or a clonal phylogeny tree file (NEWICK) as input. Subsequently, it

simulates and outputs sequence contigs (FASTAs), sequence reads (FASTQs) and/or post-

alignment files (BAMs). All of the files contain the desired variants, along with BED files

containing the ground truth. SVEngine’s flexible design process enables one to specify size,

position, and allelic fraction for deletions, insertions, duplications, inversions and

translocations. Finally, SVEngine simulates sequence data that replicates the

characteristics of a sequencing library with mixed sizes of DNA insert molecules. To

improve the compute speed, SVEngine is highly parallelized to reduce the simulation time.

Conclusions: We demonstrated the versatile features of SVEngine and its improved

runtime comparisons with other available simulators. SVEngine’s features include the

simulation of locus-specific variant frequency designed to mimic the phylogeny of cancer

clonal evolution. We validated SVEngine’s accuracy by simulating genome-wide structural

variants of NA12878 and a heterogenous cancer genome. Our evaluation included checking

various sequencing mapping features such as coverage change, read clipping, insert size

shift and neighbouring hanging read pairs for representative variant types. Structural variant

callers Lumpy and Manta and tumor heterogeneity estimator THetA2 were able to perform

realistically on the simulated data. SVEngine is implemented as a standard Python package

and is freely available for academic use at: https://bitbucket.org/charade/svengine.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://bitbucket.org/charade/svengine

Keywords: Structural variation, next generation sequencing, sequence analysis, locus-

specific allele frequency, somatic haplotypes, cancer clonal evolution.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 1

FINDINGS

Background

Next generation sequencing (NGS) has enabled researchers to detect and resolve complex

genomic structural features at base-pair resolution. One can detect a variety of structural

variations (SVs) including deletions, insertions, inversions, tandem duplications and

translocations based on NGS whole genome sequence data [1]. A variety of algorithms

have been developed for structural variant calling from NGS data. This includes programs

such as Breakdancer, CNVnator, Delly, Haplotype Caller, Manta, Lumpy, SWAN, Pindel

among others [2-10]. Even with these programs, accurate SV detection remains a

significant challenge. For example, some SVs occur in lower allelic fractions as seen in

tumors with intratumoral heterogeneity [11]. This is frequently the case as seen in genome

sequencing of tumor samples, where cancer starts from a seeding clone and through clonal

evolution, successively acquires additional rearrangements at lower allelic fractions.

Benchmarking structural variant callers with available ground truth data sets is critical for

software tool development, bioinformatics pipeline testing and objective assessment of

detection accuracy [12]. Whole genome data sets are available from high sequencing

coverage with Illumina or Pacific Bioscience systems [13]. However, for those users who

wish to generate new sequencing data sets with specific features, identification and

generation of ground truth data sets is a laborious and cost-prohibitive endeavour. Moreover,

it is extremely difficult to empirically determine the analytical consequences of different

sample processing methods, experimental variability in library preparation and issues of

sequencing bias in analysis [14].

Simulating NGS data provides an inexpensive alternative for assessing new algorithms in

the context of sequencing data variation as noted [15]. With simulated datasets, one can

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 2

start refining analysis procedures in silico. Simulated NGS datasets can incorporate the

variability associated with NGS sequence data including: sequencing coverage; number of

libraries and insert size; base error rates; tool parameters at the data analysis level. For in

silico NGS data, a large number of SV characteristics can be readily designed including the

number, the category, the size, the breakpoint sequence, the variant fraction and the

haplotype for any given locus. As a result, investigators can use this simulated data to

assess the potential performance and make the trade-off between analysis cost and

sensitivity before even carrying out the experiment.

Several programs generate NGS read sets to simulate metagenomics or single nucleotide

polymorphisms are available [16-22]. Only recently have we seen the development and

release of structural variant simulators. An early example is RSVSim [23], an R package

which amends template sequence files with structural variant changes. However, this

program requires an interactive R session and as a result, does not support batch

processing. SCNVSim [24] improves upon RSVSim by providing a command line interface.

It simulates somatic copy number variants given a number of desired SV events and/or

contigs. Nonetheless, both SCNVSim and RSVSim produce very limited variant-containing

contig files (FASTA), which require external steps to simulate sequence reads (FASTQ) and

output resulting alignments (BAM). VarSim [14] improves upon RSVSim and SCNVSim with

integrated read simulation using read simulators such as ART [25]. Instead of using a

template sequence file, BAMSurgeon [26] patches an existing alignment file to embed

structural variants. However, this application requires a high depth of coverage in the

existing BAM file to successfully assemble a local contig for sequence patching. Moreover,

the resulting structural variant may not have the exact breakpoints for the intended

simulation. Overall, none of the listed tools provide a straightforward, joint control of an

individual variant, including its exact breakpoints, ploidy and locus-specific allelic fraction.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 3

These more complex features are particularly useful in simulating the clonal expansion of

somatic structural variants as seen in tumors.

As a solution to the limitations of current structural variant simulators, we designed and

implemented SVEngine, a full-featured simulation program suite. SVEngine is capable of

generating short sequence read sets, such as produced by an Illumina system, for

thousands of spike-in variants that cover different types, sizes, haplotypes and allelic

fractions. Our application produces these simulated NGS data sets in a fraction of the time

of other similar tools. SVEngine’s flexibility for accepting different formats enables a user to

generate whole genome or targeted sequencing data mimicking germ-line, somatic and

complex clonal structured genomes with ease. It offers a high degree of allelic control

through its parallelized divide-and-conquer planning scheme. In the simplest mode, users

only need to provide the template (reference) sequences and a desired meta-distribution of

type, size and variant frequency to receive a full set of resulting FASTA, FASTQ and BAM

outputs along with the ground truth BED file.

SVEngine features and simulation performance

We compare the available features of SVEngine with other simulators that include RSVsim

[23], SCNVsim [24], VarSim [14] and BAMsurgeon [26], as shown in Table 1. SVEngine and

the other tools can simulate common types of copy number events, e.g. deletions and

tandem duplications. All simulators except SCNVsim simulate copy number neutral events,

including insertions, inversions, and translocations. SVEngine improves the simulation of

more complex SV events – it incorporates a variety of additional structural variant types

originating from a combination of changes, such as inverted translocations, inverted

duplications, duplicated translocation, and foreign sequence insertions. Users directly

specify these events while preparing their input parameters – this process is more

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 4

streamlined compared to other tools. For example, viral genome sequence insertion, which

is a hallmark of the genomes of infected cells as seen in viral diseases and cancers [27], is

easily achieved with SVEngine, but not available with other simulation software except for

BAMSurgeon.

In terms of input/output flexibility and ease of use, SVEngine provides automates template

sequence modification, read simulation and read mapping steps. These features are not

found in other simulators of SV events. Also, SVEngine is the only tool which outputs a full

set of simulation results in standard formats, including altered contig sequence (FASTA),

simulated short reads (FASTQ) and alignment (BAM) files (Figure 1). At the input step, all

tools take in template sequences in FASTA format as the starting material, while

BAMsurgeon additionally requires a pre-existing alignment file in BAM format as input.

Overall, read coverage of this BAM file has to be large (typically >30x), to successfully

assemble local contigs. Such requirements preclude the use of BAMSurgeon in applications

generating low coverage and consequently limit its users to mimicking conditions based on

available high-coverage BAMs. The VarSim tool needs structural variant prototypes from

DGV [28] making it only applicable to the human genome. At the output step, RSVsim and

SCNVSim provide modified sequence contigs in FASTA files. BAMsurgeon mainly outputs

modified alignment in BAM files. The associated contigs need to be extracted from log files.

VarSim provides both contigs containing a variant and simulated short reads, but it still

requires additional user effort to generate alignment files.

With regard to precise and versatile control of individual variants, SVEngine enables one to

easily specify variant type, size, exact breakpoint, ploidy and allelic fraction for individual loci.

Additionally, SVEngine simulates a full spectrum of germline, somatic and clonal structural

variations by the specified meta-distribution. In comparison, RSVSim does not support loci-

level control, as it only patches template sequence on demand. With SCNVsim and VarSim,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 5

one only controls a meta-distribution of structural variants, such as the total number for each

variant type, minimum and maximum variant size. SCNVsim allows the specification of

ploidy, number and type of clones but does not have the capability to specify exact

breakpoints. VarSim randomly resamples breakpoint and other variant information from a

DGV database dump. Only BAMsurgeon and SVEngine support locus-specific variant

fractions, i.e. allowing different allele fractions for individual variants. Moreover, only

SVEngine supports locus-specific ploidy, i.e. allowing a different ploidy state for individual

variants. Both BAMsurgeon and SVEngine also support exact breakpoints for individual

variants. However, in practice, the actual breakpoints generated by BAMsurgeon may differ

from input, as a result of improvised local contig assembly. Another unique feature of

SVEngine is the ability to specify multiple sequencing libraries, which can each have

different insert size mean and standard deviation, intended coverage depth, and read length.

In addition to the features listed in Table 1, SVEngine allows users to designate some

regions while avoiding others. Examples of such applications include simulating exome or

targeted sequencing data sets. This feature enables one to avoid complex regions such as

telomeres and centromeres. SVEngine also features parallelized simulation by dividing

genome into pieces, embedding variants into each piece and then stitching them together.

Therefore, its performance can be boosted using the multi-core processors.

Table 2 lists the runtime on a test set of 15,000 SV events into a 30x coverage whole

genome sequencing simulation, including 2,500 that consist of deletions, tandem

duplications, inversions, translocations and domestic or foreign sequence insertions. In

multi-processor mode, SVEngine has the shortest runtime in all three levels of simulation, i.e.

obtaining altered contigs, simulated reads and alignments in FASTA, FASTQ and BAM

formats in less than 10 min, 20 mins and 3 hours, respectively. Overall, SVEngine is 1x, 15x

and 48x times faster than the single-process SVEngine run. The performance scales almost

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 6

linearly with the added CPU power in generating the alignment output, because the read

mapping time cost dominates other time costs including data serializing time. Finally, even

the single-process SVEngine (SVE-single) is more efficient than its other counterparts. For

example, it took only 10 mins for SVE-single to generate all altered contigs when RSVSim

and SCNVSim took several hours. SVE-single required half the time BAMSurgeon needs to

generate all read alignments. All run time were measured on a computer server with four

Intel® Xeon E7-4850 CPUs (with 16 cores each CPU) and with 256 GB shared RAM.

Simulating cancer genome evolution

SVEngine provides a high degree of control over SV events with variable allelic fractions –

this feature enables one to simulate heterogeneous cancer genomes undergoing a

phylogeny tree-structured clonal evolutionary process. As a demonstration, we present an

example simulated with SVEngine (Figure 2). To simplify the description of the phylogenetic

process of cancer evolution, we use a binary tree representation of phylogeny. This binary

tree is easily converted to a typical phylogeny tree by merging all nodes of identical cell

subpopulations.

One example is a binary tree shown in Figure 2A, where each of the five (𝑚 = 5) internal

tree nodes denotes a bifurcation event when part of the parental cell population is gaining an

additional mutation (𝑉𝑗, 𝑗 = 1 … 𝑚). The root node represents the lowest common ancestor

cells of all subpopulations of cancer cells. These are typically normal cells that carry a

genome that matches a germline genome, subsequently from which somatic genetic

alterations accrue as part of cancer development. The root cell populations are split by the

next immediate event, i.e., gaining the mutation 𝑉1, resulting in two daughter cell populations

depending on a cell’s status of carrying 𝑉1 or not, as represented by its two daughter cellular

node. We denote the conditional cell fraction of gaining 𝑉1 as 𝑓(𝑉1), which is 50% or 0.5 in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 7

this case, and is denoted at the root. The mutational process goes on for subsequent

internal nodes and until all variants (a total of five in this example) are represented by their

bifurcation internal node. The resulting binary tree has six (𝑛 = 6) leaf nodes (𝐶𝑖, 𝑖 = 1 … 𝑛),

which represent all possible somatic genotypes of the terminal cell subpopulations.

As we can see, any terminal somatic genotype is completely determined by following the

mutational path from the root down to a leaf node. We use a tertiary vector 𝐶𝑖 = (𝑐𝑖,1 … 𝑐𝑖,𝑚)

to indicate such path, where

𝑐𝑖,𝑗 = {

0, if 𝑉𝑗 is not in the mutation path to 𝐶𝑖

 1, if 𝑉𝑗 is in the mutation path to 𝐶𝑖 but 𝐶𝑖 doesn′t carry 𝑉𝑗

 2, if 𝑉𝑗 is in the mutation path to 𝐶𝑖 and 𝐶𝑖 does carry 𝑉𝑗

In addition, we define the conditional frequencies 𝑓(𝑉𝑖), which is the fraction of cells derived

from a parent population carrying event 𝑉𝑖 as: 𝑓(𝑉𝑖) =
Child cells Gains 𝑉𝑖

Parent cells at the verge of gaining 𝑉𝑖
.

Therefore, the final population frequency 𝐹(𝐶𝑖) of cell subpopulations 𝐶𝑖 is expressed as:

𝐹(𝐶𝑖) = ∏ [(𝑐𝑖,𝑗 − 1) ∗ 𝑓(𝑉𝑖) + (2 − 𝑐𝑖,𝑗)(1 − 𝑓(𝑉𝑖))]

𝑗:𝑐𝑖,𝑗>0

 (1).

With 𝐼(.) as the indicator function, the concurrent proportion 𝐹(𝑉𝑗) of all extant cells is simply

the marginal sum of all cells carrying 𝑉𝑗:

𝐹(𝑉𝑗) = ∑ 𝐼(

𝑛

𝑖=1

𝑐𝑖,𝑗 = 2)𝐹(𝐶𝑖) (2).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 8

Figure 2B shows the derivation of the above quantities for the example binary tree. The

sequence of events ensures a partial order that the mutant allele frequency is always higher

for events occurring upstream, as compared to events occurring downstream on the same

lineage. It is possible that terminal genotypes may not all coexist in extant populations. The

proposed binary tree representation accommodates a deceased population by having zero

proportion for such leaf node. SVEngine allows user to input a binary tree with relevant

bifurcation fractions to structure the variant fractions that fall along the line of the

evolutionary tree. For designating this feature, the input to SVEngine is in standard

NEWICK format – a widely accepted format using parentheses to encode nested tree

structures [29]. Each internal node is labelled by the population splitting variant and

weighted by the conditional splitting fraction. Each leaf node is labelled by associated

terminal genotype and weighted by the subpopulation fraction as an optional feature. For

instance, the NEWICK string for the example binary tree is: ((C1, C2) V5: 0.8, ((C3, C4)

V4:0.8, (C5, C6) V3: 0.9) V2:0.6) V1:0.5.

Figure 2C shows the IGV browser view of SVEngine simulated BAM alignments of five

equal-size deletions following the mutational process as represented by the example binary

tree. The read depth shows the difference of allelic fractions corresponding to the computed

final variant fractions based on the tree. We display an example of monoclonal cancer

evolution, assuming that all cellular subpopulations start from a set of common ancestor

cells (as denoted by the root node in the tree). In addition, simulations of multiclonal

evolution are also possible with SVEngine. For example, one simply assigns an empty

event to 𝑉1 and then sets the conditional fractions of the two child events 𝑉1 and 𝑉5 to 100%

to simulate a two-clonal origin evolution. With SVEngine’s high efficiency, the simulation is

easily scaled to tens of thousands of variants with a tree having a more complex structure.

Simulating the multitude of structural variations

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 9

Current structural variation detection methods mostly rely on detecting altered read mapping

features to identify structure changes [30]. The most important such features are read

depth/coverage, read pair insert size, single ended read pairs (hanging reads), soft-clipped

reads and split reads (clip/split reads). It is essential for structural variant simulators to

correctly produce such feature changes corresponding to the causal event. In Figure 3, we

comprehensively illustrate the expected changes in mapping that result from different types

of structural variants.

In the scenario of a deletion (Figure 3, first row), all the mapping features, such as

coverage, insert size, hanging read and soft-clip/split read are expected to change, as

illustrated in the Coverage, InsertSize, HangingRead and ClipSplitRead columns,

respectively. First, there is a reduction of read coverage over the deleted region because no

reads are present. Second, for those read pairs that are mapped straddling the breakpoints,

the insert size is expected to increase as inferred by alignment to the reference. This

extended insert size is possible because the deleted region is not present in the real DNA

molecules where these read pairs originating from. Third, a fraction of read pairs aligning to

the left of the left breakpoint lack a mapped mate read – this generates a right mate hanging

read pair. This phenomenon is also called a right hang. This phenomenon occurs because

the left breakpoint has interrupted the mate mapping by reducing similarity between the read

and the reference. Due to symmetry, left mate hanging read pairs (left hang) form to the

right of the deletion. Finally, when the breakpoint interruption in the mate is limited to the

end of the read, it is possible that the mate read can still partially map. The non-contiguous

part of the mate is either clipped or, if it is long enough, mapped to near the other end of the

deletion. Such resulting read pairs are what we refer to as left or right soft-clipped (or split

mapped) reads depending on which side of the reads were split or clipped. These read pairs

are expected to map right next to both breakpoints with the clipping (or splitting site) aligned

to the exact break point location, as shown.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 10

For an insertion (Figure 3, second row), the most noticeable change is the clustering of

both the right and left hanging read pairs centering over the breakpoint. One observes a

similar clustering for the left and right clip/split reads. As shown in Figure 3, an insertion

exhibits fewer changes than other types of structural variants, and so insertions are

generally the most difficult to detect. In the scenario of a tandem duplication (Figure 3, third

row), the read coverage is expected to increase within the duplicated region. The insert size

of reads mapping to the left of the right breakpoint is expected to decrease, or even produce

a negative value based on the duplication’s position in the chromosome. This is the case

because the mate is likely to have the same sequence as the segment preceding the read.

Then, when the mate is mapped upstream of the current read, it causes a reversal of normal

read strand order and introduces a negative insert size in the read mapping. By the same

reasoning, the right hanging, clipped and split reads are clustered upstream next to the right

breakpoint. Similarly, the left hanging, clipped and split reads are clustered downstream

next to the left breakpoint, making the tandem duplication almost a mirror image of deletion.

In the scenario of an inversion (Figure 3, fourth row), the coverage shows almost no

change. The insert size near the left breakpoint is similar to the deletion scenario, which has

an increase. This occurs as a result of the mate from the reverse complement of the other

end of the inverted segment – this scenario creates an inflated insert estimate and an

abnormal forward-forward strand read pair. Similarly, the insert size near the right

breakpoint is decreased and forms an abnormal reverse-reverse strand read pair. When

these abnormal pairs are interrupted by the breakpoints, it creates corresponding hanging

read and clipped/split read clusters around both breakpoints. Citing another example, a

chromosomal translocation is simply a combination of features at the region deleted by the

translocation and insertion features at the region inserted.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 11

Simulation benchmark with NA12878

We additionally validated SVEngine’s simulated data by applying popular structural variant

callers and a tumor heterogeneity estimating tool to SVEngine generated WGS data and

benchmarked their performance with SVEngine’s input ground truth. For our initial

benchmark, we simulated WGS data for a well-studied individual NA12878 based on her

known variants [31]. We applied the commonly used SV callers: Lumpy [2] and Manta [10]

and computed performance metrics such true positive rate (TPR or sensitivity) and false

discovery rate (FDR) for the callers at different simulated coverage. In total, we simulated

20,759 structural variants for NA12878 with exact genotype and breakpoint information. The

set included 19,034 deletions, 1,150 duplications, 328 inversions and 247 insertions. These

insertions included 91 LINE1, 58 ALU and 9 SVA mobile element insertions, for which we

determined the exact inserted sequence using RepBase [32].

As shown in Figure 5 (A) and (B), both SV callers performed well on the SVEngine

simulated data. For Manta, the overall TPR (i.e. true positive rate or sensitivity) ranges from

60% at 10x of coverage to 98% at 100x. For Lumpy, the TPR is 40% at 10x of coverage and

raise to 88% at 100x. There seems to be a critical coverage value at around 25x, above

which both callers can reach >80% sensitivity. This is in agreement with the widely

accepted empirical coverage choice at 30x for WGS. The overall FDR (i.e. false discovery

rate) for Manta was consistently within the 2%-3% range for average coverage ranging from

10x to 100x. The FDR for Lumpy was considerably higher from <1% at 10x to 23% at 100x.

This is counterintuitive since we generally assume that higher coverage leads to improved

performance and not the other way around. Why is this so for Lumpy? The deviation of the

two tools in FDR may result from their different calling strategy. Manta likely has a dynamic

coverage-based threshold. Lumpy’s default parameter (as provided in its online manual) is

likely tuned for <50x coverage for optimal performance. For higher coverage data, Lumpy

may need to be calibrated and this can be done using SVEngine’s simulated data. As SV

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 12

typing is still challenging for SV callers, to compute these overall TPR and FDR, we required

only adjacent match of predicted breakpoint and the ground truth.

If one considers the SV type (see Supplementary Table S1), deletions are the least

challenging SV type for all callers. Manta had a TPR ranges from 60% to 99% as the

coverage increased from 10x to 100x. Its FDR was consistently low at <1.2%. The same

was true for Lumpy, which had a TPR increase from 42% to 88% with a consistently low

FDR at <2%. Calling inversions was also well achieved by the callers. Manta and Lumpy

had a TPR from 83% to 100% and 66% to 97.3%, respectively, with increasing coverage.

Both maintained a FDR that was approximately zero. Their performance diverges when it

came to calling duplications and insertions. Manta maintained a good performance at calling

duplications, with TPR increasing from 47.5% to 90.6% with coverage and the FDR

maintained close to zero. Its performance with insertion was less impressive, as the TPR

increased from 0% to 41% with coverage with considerable FDR in the range of 30-40%.

On the other hand, Lumpy did not correctly type any duplications and insertions and

breakpoints of these SV types were more likely to be classified as unknown. Lumpy had a

significantly increasing number of untyped calls with higher coverage. Between 30% to 50%

of such calls were validated breakpoints of duplications and insertions. Generally, the SV

callers performed well on calling and typing deletions, inversions and duplications with

SVEngine simulated data. Manta had the best overall performance. Calling and typing

insertions was the most challenging task for SV analysis. SVEngine simulation of insertions

will aid the further development of insertion callers.

Simulation benchmark with tumor heterogeneity

To validate SVEngine’s correctness in simulating various mutant allele frequency, we

simulated a series of WGS data representing two-population mixtures of tumor and normal

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 13

genomes at a chosen level of tumor purity. We derived copy number segment files from the

SVEngine simulated data set and ran the tumor heterogeneity caller THetA2 [33] to infer the

mixing subpopulation frequency.

We compared the THetA2 estimates to the input ground truth purity to SVEngine in Figure 5

(C) and Supplementary Table S2. The THetA2 estimated purities are (0.165, 0.234, 0.466,

0.728, 0.844) for input ground truth purities at (10%, 25%, 50%, 75%, 90%) respectively.

The root mean square deviation (RMSD) is 0.043 and the Pearson’s correlation coefficient is

0.996 (i.e. 𝑅2 > 0.99). The high correlation and small error measure indicate SVEngine’s

correct simulation of tumor and normal mixture WGS data. The copy number segments

derived from such data are suitable input to standard tumor heterogeneity tools such as

THetA2 for reliably estimating tumor purities, even for simulating extreme cases where the

tumor purity is as low as 10%.

CONCLUSION

We have developed and released SVEngine, a structural variant simulator, available as an

open source program. It simulates next generation sequencing data that has embedded

structural variations as well as an assortment of complex sequence features. SVEngine

simulates and outputs mutated sequence contigs (FASTA), sequence reads (FASTQ) and/or

alignments (BAM) files with desired variants, along with BED files containing ground truth.

SVEngine’s flexible design enables one to specify size, position, and heterogeneity for

deletion, insertion, duplication, inversion and translocation variants. SVEngine’s additional

features include simulating sequencing libraries having multiple different molecular

parameters, and targeted sequencing data sets. SVEngine is highly parallelized for rapid

and high throughput execution.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 14

We showed the versatility and efficiency of SVEngine by comparison of features and runtime

versus other available simulators. We demonstrated the utility of SVEngine in an example

mimicking the phylogeny in cancer clonal evolution, by simulating the associated variant

allelic frequency. We validated the accuracy of SVEngine simulations by examining

expected sequence mapping features such as coverage change, read clipping, insert size

shift and neighbouring hanging read pairs for representative variant types. SVEngine is

implemented as a standard Python package and is freely available for academic use at:

https://bitbucket.org/charade/svengine.

The analysis of structural variants is an important part of genomics research. Improvements

in the field also come from a growing set of available technologies, e.g. long read

technologies such as the single-molecule, real-time (SMRT) sequencing by Pacific

Biosciences [34] and the nanopore sequencing by Oxford Nanopore Technologies [35], or

synthetic long read technologies (SLR) such as the Chromium droplet-based library

preparations by 10X Genomics [36-38]. As the empirical data from these technologies

accumulate, platform specific read simulators like PBSIM [39] and NanoSim [40] will become

increasingly available. Although the implementation is non-trivial, the design of SVEngine is

fully compatible with alternative read simulators. Going forward, we will work with the

community to expand SVEngine with more powerful features, such as multi-platform

simulation and co-phased SNP simulation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://bitbucket.org/charade/svengine

 15

METHODS

Simulation software and pipeline

SVEngine was developed as a standard Python package with a C extension. SVEngine

provides two Python executables and one C command line executable: mutforge, tree2var

and xwgsim, respectively. The mutforge command implements a parallelized algorithm that

divides the template genome into blocks of contigs, spikes structural variants into the contigs,

samples short reads from the altered contigs, and finally merges the short-read sets back

into one file and performs the alignment. The tree2var command implements a procedure

that determines variant fractions from an input phylogeny tree based on Equations (1) and

(2) and a depth first search graph algorithm, and then substitutes these allele fractions in an

input VAR file. The xwgsim command implements a modification to wgsim, which reduces

the read sampling rate by 50% for the overlapping regions between contigs (i.e. ligation

regions). The overlaps were designed so as to allow for the proper merging of contig-wise

read sets. xwgsim only interacts with mutforge thus is mostly transparent to a user.

As shown in Figure 1, the required inputs to mutforge are three-fold: 1) a template haploid

sequence file(s) in FASTA format. This can be a standard human genome reference, or any

other reference genome sequence. 2) A VAR file or a META file for specifying structural

variants (distributions). These are tab delimited files with columns defined in SVEngine’s

manual. The VAR format is intended for specifying exact information for individual variants,

which includes variant id, parent id (if part of a complex event such a deletion occurring due

to a translocation), fraction, ploidy, chromosome, starting position, and the sequence length

to be deleted and/or the sequence content to be inserted. Alternatively, the META format is

intended for higher-level control, allowing one to specify a desired meta distribution of

variants, including variant type, and total number of events, size, allele fraction, and ploidy

distributions per type.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 16

One can specify where and how to insert the sample sequence in the case of foreign DNA

insertion. For example, a user can readily design 100 deletions of size ranging from 100bp

to 10kbp, of a uniform distribution of allelic fraction and a fair Bernoulli distribution of homo-

and heterozygosity in one line of text in the META file. 3) The PAR file is used to model an

experimental design, including insert size, read length and coverage, as well as additional

options for xwgsim. The file can be used to specify multiple libraries with different mean

insert size and standard deviation. One can use such normal mixtures to approximate

irregular libraries of multiple modes and asymmetric tails. The xwgsim command also

provides random embedding of SNVs and indels if desired. In the SVEngine’s Wiki page,

we supply example VAR, META and PAR files with detailed annotation to facilitate their

usage.

Once all inputs are provided, the SVEngine master process divides the template genome

into blocks and serializes spike-in tasks to parallel worker processes. The worker process

patches its assigned contig and if read pairs were required, it also calls xwgsim to simulate

read pairs. The read pair subsets are then collected by the master process and merged,

and if alignments were required, it also calls bwa-mem and samtools to map the reads to the

reference.

The output of SVEngine has three levels. At the first level (contig), only two files would be

generated: one is a FASTA file containing all the altered contigs, the other is the ground truth

of spiked-in variants in a BED3 format file with the additional columns following the VAR

format as in the input. At the second level (read pair), SVEngine additionally outputs the

read 1 and read 2 of the simulated read pairs in two FASTQ files. Finally, at the third level

(alignment), SVEngine provides the read alignment output to the given reference in a BAM

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 17

file format. The runtime of SVEngine increases with the specified output level, as additional

processing time will be required. Table 2 can be used as a reference for runtime estimates

for different output levels.

The tree2var command simulates a clonal evolution scenario, which requires an additional

tree input file (NEWICK). tree2var also takes a VAR file, which can be generated from

mutforge with a META file input and in the dryrun mode. The user must insure that the

identifier of the tree’s internal nodes and the variant match each other, as this is used to

identify and replace allele fraction with the value computed from tree phylogeny. The

tree2var outputs a new VAR file which contains the rewritten allele fraction fields that reflects

the clonal structure described by the user tree. For intuitive diagnostics, tree2var also

outputs a ASCII text based plot of the parsed input tree. SVEngine’s tree parsing interacts

with DendroPy [29], which allows further functionality such as random tree simulations and

many tree statistics. The output VAR file from tree2var then becomes the input to mutforge

for actual read simulation.

A parallel simulation framework

SVEngine’s major improvements to existing structural variant simulation tools involve one’s

ability to alter the allelic fraction, control of haplotypes and highly efficient parallelized

simulation. These improvements were achieved through the core algorithm as illustrated in

Figure 4. In general, we used a divide-and-conquer approach intertwined with multi-process

execution: First, the SVEngine master process lays out a genome grid for simulation. For

any input haploid sequence, the entire genome is partitioned into 𝑁 equal size non-

overlapping blocks: 𝐵1, 𝐵2,…, 𝐵𝑁, where 𝐵𝑘 = [
𝐺(𝑘−1)

𝑁
+ 1,

𝐺𝑘

𝑁
]. The planned block size

𝐺

𝑁
 (i.e.

plan size in the manual) can be chosen at the input, where 𝐺 is the entire genome length.

Ligation regions of length 𝑙 (i.e. ligation size in the manual) are also defined, which consists

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 18

of symmetric touching border regions of equal size adjacent blocks: 𝐿1, 𝐿2,…, 𝐿𝑁−1, where

𝐿𝑘 = [
𝐺𝑘

𝑁
−

𝑙

2
+ 1,

𝐺𝑘

𝑁
+

𝑙

2
]. These serve as buffer regions that enable the SVEngine to ligate

block sequence-based simulations back together. The block generating procedure is similar

for multi-chromosome genomes except blocks representing chromosome ends might be

shorter than the standard block size.

Second, the SVEngine master process coordinates all of the tasks. In one task, a structural

variant is embedded into the adjacent sequence – this is done by assigning a sequence of

blocks that it impacts. All the variant’s control information is attached to the task as well. In

the figure, the first variant, a 50% deletion 𝑆𝑉𝑖 was assigned blocks 𝐵𝑖1
, 𝐵𝑖1+1,…, 𝐵𝑖𝑛

 and the

next variant, a 100% deletion 𝑆𝑉𝑗 was assigned blocks 𝐵𝑗1
, 𝐵𝑗1+1,…, 𝐵𝑗𝑛

. Depending on its

size, a variant can take anywhere from one block, to as many blocks as needed. The

genomic region which is not altered, between adjacent variants, say 𝑆𝑉𝑖 and 𝑆𝑉𝑗, also

becomes a task. This is assigned to the sequence blocks complementary to the blocks

taken by 𝑆𝑉𝑖 and 𝑆𝑉𝑗 and with a no-op instruction attached. If necessary, no-op tasks with

large block sequences are further broken down to no-op tasks with size-capped block

sequences to improve efficiency of parallelization. The size cap is defined by the trunk size

option as explained in the manual.

Third, the SVEngine master process dispatches all the tasks to an auto revolving worker

process pool and then waits for all the workers to finish. Each worker process, when

assigned a new task, loads the haploid sequence defined by the task’s block sequence plus

left and right ligation regions. For example, a worker would load sequence from [
𝐺𝑖1

𝑁
−

𝑙

2
+

1,
𝐺𝑖𝑛

𝑁
+

𝑙

2
] for 𝑆𝑉𝑖 as the original contig, or [

𝐺𝑗1

𝑁
−

𝑙

2
+ 1,

𝐺𝑗𝑛

𝑁
+

𝑙

2
] for 𝑆𝑉𝑗, or [

𝐺(𝑖𝑛+1)

𝑁
−

𝑙

2
+

1,
𝐺(𝑗1−1)

𝑁
+

𝑙

2
] for the no-op task in between them. The original contig is then operated on for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 19

deletion, insertion, or other alternations to form the altered contig. If no-op the original contig

is unaffected. The worker then calls xwgsim to simulate the proper numbers of read pairs

from the original and altered contigs according to the specified frequency and resulting

contig sizes. The xwgsim step also takes care of attenuated sampling (at half the normal

rate) within the designated ligation regions as the worker provides the ligation size 𝑙 in its

arguments. In addition, xwgsim adds a procedure to the popular NGS simulator wgsim [41]

to correctly adjust coverage for a ligation region. Briefly, we define the ligation region as a

segment of haploid sequence where two adjacent contigs to be simulated overlaps. The

ligation region is employed to ensure proper and continuous transition from simulating reads

from the first contig to the second. That also means a ligation region would be simulated

twice – once along with the first contig, and then along with the second contig. To

compensate for potential double coverage in a ligation region, we implemented an adjusted

read generation procedure in xwgsim, which only simulates 50% of the intended read

coverage within the region for one contig. Such patterns of expected read pair coverage

from the 𝑆𝑉𝑖, 𝑆𝑉𝑗 and no-op tasks are illustrated in Figure 4.

Fourth, when the worker processes are completed, the master process collects all simulated

read pairs from all tasks and concatenates them into two final files, one for read 1 and the

other for read 2. Also, it collects all original and altered contigs and concatenate them into

one final sequence file. Finally, it performs read pair alignment to the reference genome

using bwa-mem and samtools. This is last step, although sequential in SVEngine, is already

thread parallelized by other required programs such as the bwa and samtools tools [22, 42].

Patterns of expected read pair coverages after merging the 𝑆𝑉𝑖, 𝑆𝑉𝑗 and no-op tasks are also

illustrated in Figure 4. The described algorithm assumes one haploid for simplicity. For

multi-ploidy, each haploid is handled in a similar way by the worker process except that the

variant’s haplotype status is also taken into consideration. Overall, this SVEngine’s core

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 20

algorithm is very efficient as demonstrated by the runtime comparison, is very versatile and

accurate as demonstrated by multiple example applications described in this paper.

Notable simulator features

To comprehensively evaluate structural variant callers, one may need a wide spectrum and

large number of SV events. This range is more easily specified by distributions of variants

rather than individual variants. SVEngine supports variant distributions as specified in the

META format. The expansion of distributions to actual variants takes place in the master

process before any spike-in. The distributions are expanded on a target genome

sequentially by randomly pick the next event’s start position from regions that can

accommodate it. Afterwards, it removes the impact region from the remaining available

regions and so on. Once all distributions are expanded, the master process returns a list of

variant fulfils user’s specification and outputs them into a VAR file. The user can choose to

run SVEngine in dryrun mode to stop the execution at this point and inspect the resulted

variants. The user also has the option to continue the simulation to the end, which is

equivalent to input the output VAR file into SVEngine for simulation in the next step.

To increase the sensitivity of SV detection, researchers may prepare multiple sequencing

libraries with different molecular parameters for analysis. For example, different insert sizes

enable the detection of a wider spectrum detection of SVs [43]. Longer sequence read

length can boost the performance of some callers that employ remapping strategies [44]. A

unique feature of SVEngine is its ability to simulate NGS data modelling multiple libraries

with different mean insert size and standard deviation, coverage and read lengths. The

feature is implemented within the worker process. When using a multi library task,

SVEngine will call xwgsim multiple times to generate read pairs in accordance with the

library specification.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 21

SVEngine provides simulation data that target or masks specific genomic regions. This

feature emulates targeted sequencing applications, such as exome sequencing and gene

panel sequence data. It can be used to exclude problematic regions such as gaps, telomere

and centromere regions of the reference template. One only needs to provide standard BED

format files to SVEngine listing the regions to be masked or targeted by the simulated

sequencing.

Databases like DGV and much other literature provide a list of known population variants.

Tools like RepeatMasker (http://repeatmasker.org) provide extensive lists of known regions

of human repeats and/or homolog sequences, with enrichment of structural variant

breakpoints. Although not provided in our examples due to their varied formats, in principle,

these population and repeats-mediated variants can be downloaded in general tab delimited

formats, such as BED or VCF files. Subsequently, these annotation formats are easily

converted into an SVEngine VAR format input file using text processing utilities such as awk

and sed. Using a VAR file generated in this way, SVEngine can easily embed these variants

into simulation data.

Simulation benchmark with NA12878

To validate SVEngine’s correctness in simulating various structural variants, we simulated

WGS data for a well-studied individual NA12878 based on her known variants as published

by the 1000 Genomes Project (1KG) [31], ran commonly used SV callers: Lumpy [2] and

Manta [10] and computed performance metrics such true positive rate (TPR or sensitivity)

and false discovery rate (FDR) for the callers as an indication of our simulation correctness.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 22

In detail, we downloaded 1KG’s NA12878 final call set from its ftp site

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3). We also downloaded human mobile

element sequences form RepBase [32] (version 23.02). After cleaning up inconsistent

variants registered by multiple callers and those were mobile elements insertion without

available RepBase sequences, we arrived at 20759 structural variants for NA12878 with

exact genotype and breakpoint information. The set included 19034 deletions, 1150

duplications, 328 inversions and 247 insertions. These insertions included 91 LINE1, 58 ALU

and 9 SVA mobile element insertions, the inserted sequence of which we were able to

determine from the RepBase.

We encoded the information of these variants, such as SV type, genotype, breakpoint and

inserted sequences into a VAR format suitable for input to SVEngine. We specified the

sequencing library with a mean insert size of 300 and the sequencing run with 2 x 150bp

pair-end read and ran SVEngine to generate a series of WGS data in BAM files with

coverage of 10x, 25x, 50x, 75x and 100x. The latest version of Lumpy and Manta were

downloaded from their GitHub site and installed. We applied them on the SVEngine

generated WGS data series with their default parameters. The resulting SV calls were

parsed into BED files and compared with ground truth VAR file using BEDTOOLS. We

consider a true positive hit if a call’s breakpoint is within 20 base pairs of ground truth. We

compared caller’s performance both with and without enforcing correct SV typing. The

performance metrics true positive rate (TPR) or sensitivity and false discovery rate (FDR)

were calculated as following:

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑜𝑓 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
 %

and

𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 (𝐹𝐷𝑅) =
𝑜𝑓 𝐶𝑎𝑙𝑙𝑠 − # 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑜𝑓 𝐶𝑎𝑙𝑙𝑠
 %.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3

 23

Simulation benchmark with tumor heterogeneity

To further validate SVEngine’s correctness in simulating various mutant allele frequency, we

simulated a series of WGS data representing different mixtures of tumor and normal

genomes, ran the tumor heterogeneity caller THetA2 [33] on the simulated data derived

segment file and compared the THetA2 estimates to our ground truth purities.

In detail, we downloaded and installed the latest version of THetA2 from its GitHub site. We

simulated a two-subpopulation scenario, where one tumor cell population and one normal

cell population were mixed. We used the example segmental intervals provided by THetA2

as the ground truth copy number status of the tumor cell population and the human

reference genome for the normal cell population. The copy number file has 84 segments,

including 45 neutral, 26 losses and 13 gains. We accordingly encoded these copy number

variants into a series of VAR files with allelic frequencies: 10%, 25%, 50%, 75% and 90%.

We used SVEngine to generate WGS data BAM files based on the series of VAR files, with

mean insert size 300bp, 2 x 150bp pair-end read and 100x coverage. We used

featureCounts [45] to compute probe segment file suitable for input to THetA2 and ran

THetA2 with default parameters to estimate the tumor heterogeneity. We regressed the

THetA2 estimated purity over SVEngine ground truth purity to find the 𝑅2 statistic with the lm

function in R.

Availability of supporting source code and requirements

Project name: SVEngine

Project home page: https://bitbucket.org/charade/svengine

Operating system: Linux/Unix

Programming language: standard Python package with a C extension

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://bitbucket.org/charade/svengine

 24

Other requirements: GNU C Compiler or similar

License: BSD3

Research Resource Identifier (RRID): SVengine, SCR_016235

Data availability

In silico data sets are available via Bitbucket [46]. An archival copy of the Bitbucket

repository is also available via the GigaScience database GigaDB [47].

Abbreviations

 SV: Structural Variation/Variant

 NGS: Next Generation Sequencing

Ethics approved and consent to participate

Not applicable. No human subjects or data. No animal subjects or data.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

LCX, NRZ and HPJ were supported by National Institute of Health (NIH) R01HG006137. NA

was supported by National Cancer Institute’s (NCI) Cancer Target Discovery and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 25

Development (CTDD) Consortium (U01CA17629901), NCI K99 CA215256 and the Don and

Ruth Seiler Fund. HPJ was also supported by NIH P01 CA91955. HJL and HPJ were

supported by NIH U01CA15192001. DMA and CL were supported by the National Natural

Science Foundation of China (61370131). Other support for HPJ came from the Gastric

Cancer Foundation and the Research Scholar Grant, RSG-13-297-01-TBG from the

American Cancer Society.

Author contributions

LCX, NRZ and HPJ designed the study. LCX developed the algorithm, wrote the program

and tested the software. HJL and NA provided feedback on the software design and testing.

LCX and DMA generated and analyzed the data with assistance from CL. LCX and HPJ

wrote the manuscript. All authors approved the manuscript.

Acknowledgements

We thank John Bell, Sue Grimes and Erik Hopmans at Stanford University and Yuchao

Jiang at University of Pennsylvania for helpful discussions.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 26

REFERENCES

1. Alkan C, Coe BP, Eichler EE: Genome structural variation discovery and
genotyping. Nat Rev Genet 2011, 12(5):363-376.

2. Layer RM, Chiang C, Quinlan AR, Hall IM: LUMPY: a probabilistic framework for
structural variant discovery. Genome Biol 2014, 15(6):R84.

3. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD,
Wendl MC, Zhang Q, Locke DP et al: BreakDancer: an algorithm for high-
resolution mapping of genomic structural variation. Nat Methods 2009, 6(9):677-
681.

4. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO: DELLY: structural
variant discovery by integrated paired-end and split-read analysis.
Bioinformatics 2012, 28(18):i333-i339.

5. Abyzov A, Urban AE, Snyder M, Gerstein M: CNVnator: an approach to discover,
genotype, and characterize typical and atypical CNVs from family and
population genome sequencing. Genome Res 2011, 21(6):974-984.

6. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z: Pindel: a pattern growth approach
to detect break points of large deletions and medium sized insertions from
paired-end short reads. Bioinformatics 2009, 25(21):2865-2871.

7. Xia LC, Sakshuwong S, Hopmans ES, Bell JM, Grimes SM, Siegmund DO, Ji HP,
Zhang NR: A genome-wide approach for detecting novel insertion-deletion
variants of mid-range size. Nucleic Acids Res 2016, 44(15):e126.

8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella
K, Altshuler D, Gabriel S, Daly M et al: The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res 2010, 20(9):1297-1303.

9. Moncunill V, Gonzalez S, Bea S, Andrieux LO, Salaverria I, Royo C, Martinez L,
Puiggros M, Segura-Wang M, Stutz AM et al: Comprehensive characterization of
complex structural variations in cancer by directly comparing genome
sequence reads. Nat Biotechnol 2014, 32(11):1106-1112.

10. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, Cox AJ,
Kruglyak S, Saunders CT: Manta: rapid detection of structural variants and
indels for germline and cancer sequencing applications. Bioinformatics 2016,
32(8):1220-1222.

11. English AC, Salerno WJ, Hampton OA, Gonzaga-Jauregui C, Ambreth S, Ritter DI,
Beck CR, Davis CF, Dahdouli M, Ma S et al: Assessing structural variation in a
personal genome-towards a human reference diploid genome. BMC Genomics
2015, 16:286.

12. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP: Sequencing depth and
coverage: key considerations in genomic analyses. Nat Rev Genet 2014,
15(2):121-132.

13. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit M:
Integrating human sequence data sets provides a resource of benchmark SNP
and indel genotype calls. Nat Biotechnol 2014, 32(3):246-251.

14. Mu JC, Mohiyuddin M, Li J, Bani Asadi N, Gerstein MB, Abyzov A, Wong WH, Lam
HY: VarSim: a high-fidelity simulation and validation framework for high-
throughput genome sequencing with cancer applications. Bioinformatics 2015,
31(9):1469-1471.

15. Ugaz VM: Introduction to next generation sequencing and genotyping issue.
Electrophoresis 2012, 33(23):3395-3396.

16. Richter DC, Ott F, Auch AF, Schmid R, Huson DH: MetaSim: a sequencing
simulator for genomics and metagenomics. PLoS One 2008, 3(10):e3373.

17. Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW: Grinder: a versatile
amplicon and shotgun sequence simulator. Nucleic Acids Res 2012, 40(12):e94.

18. McElroy KE, Luciani F, Thomas T: GemSIM: general, error-model based simulator
of next-generation sequencing data. BMC Genomics 2012, 13:74.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 27

19. Johnson S, Trost B, Long JR, Pittet V, Kusalik A: A better sequence-read simulator
program for metagenomics. BMC Bioinform 2014, 15 Suppl 9:S14.

20. Yuan X, Zhang J, Yang L: IntSIM: An Integrated Simulator of Next-Generation
Sequencing Data. IEEE transactions on bio-medical engineering 2017, 64(2):441-
451.

21. Pattnaik S, Gupta S, Rao AA, Panda B: SInC: an accurate and fast error-model
based simulator for SNPs, Indels and CNVs coupled with a read generator for
short-read sequence data. BMC bioinformatics 2014, 15:40.

22. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R, Genome Project Data Processing S: The Sequence Alignment/Map
format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.

23. Bartenhagen C, Dugas M: RSVSim: an R/Bioconductor package for the
simulation of structural variations. Bioinformatics 2013, 29(13):1679-1681.

24. Qin M, Liu B, Conroy JM, Morrison CD, Hu Q, Cheng Y, Murakami M, Odunsi AO,
Johnson CS, Wei L et al: SCNVSim: somatic copy number variation and
structure variation simulator. BMC Bioinform 2015, 16(1):66.

25. Huang W, Li L, Myers JR, Marth GT: ART: a next-generation sequencing read
simulator. Bioinformatics 2012, 28(4):593-594.

26. Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C, Yamaguchi TN, Bare JC, P'ng
C, Waggott D, Sabelnykova VY et al: Combining tumor genome simulation with
crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat
Methods 2015, 12(7):623-630.

27. Sadeyen JR, Tourne S, Shkreli M, Sizaret PY, Coursaget P: Insertion of a foreign
sequence on capsid surface loops of human papillomavirus type 16 virus-like
particles reduces their capacity to induce neutralizing antibodies and
delineates a conformational neutralizing epitope. Virology 2003, 309(1):32-40.

28. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW: The Database of
Genomic Variants: a curated collection of structural variation in the human
genome. Nucleic Acids Res 2014, 42(Database issue):D986-992.

29. Sukumaran J, Holder MT: DendroPy: a Python library for phylogenetic
computing. Bioinformatics 2010, 26(12):1569-1571.

30. Alkan C, Coe BP, Eichler EE: Genome structural variation discovery and
genotyping. Nat Rev Genet 2011, 12(5):363-376.

31. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J,
Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M et al: An integrated map of structural
variation in 2,504 human genomes. Nature 2015, 526(7571):75-81.

32. Bao W, Kojima KK, Kohany O: Repbase Update, a database of repetitive
elements in eukaryotic genomes. Mob DNA 2015, 6:11.

33. Oesper L, Satas G, Raphael BJ: Quantifying tumor heterogeneity in whole-
genome and whole-exome sequencing data. Bioinformatics 2014, 30(24):3532-
3540.

34. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C,
O'Malley R, Figueroa-Balderas R, Morales-Cruz A et al: Phased diploid genome
assembly with single-molecule real-time sequencing. Nat Methods 2016,
13(12):1050-1054.

35. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD,
Dilthey AT, Fiddes IT et al: Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nat Biotechnol 2018, 36(4):338-345.

36. Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-
Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM et al: Haplotyping germline
and cancer genomes with high-throughput linked-read sequencing. Nat
Biotechnol 2016, 34(3):303-311.

37. Xia LC, Bell JM, Wood-Bouwens C, Chen JJ, Zhang NR, Ji HP: Identification of
large rearrangements in cancer genomes with barcode linked reads. Nucleic
Acids Res 2018, 46(4):e19.

38. Bell JM, Lau BT, Greer SU, Wood-Bouwens C, Xia LC, Connolly ID, Gephart MH, Ji
HP: Chromosome-scale mega-haplotypes enable digital karyotyping of cancer
aneuploidy. Nucleic Acids Res 2017.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 28

39. Ono Y, Asai K, Hamada M: PBSIM: PacBio reads simulator--toward accurate
genome assembly. Bioinformatics 2013, 29(1):119-121.

40. Yang C, Chu J, Warren RL, Birol I: NanoSim: nanopore sequence read simulator
based on statistical characterization. GigaScience 2017, 6(4):1-6.

41. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009, 25(14):1754-1760.

42. Li H: Toward better understanding of artifacts in variant calling from high-
coverage samples. Bioinformatics 2014, 30(20):2843-2851.

43. Bashir A, Bansal V, Bafna V: Designing deep sequencing experiments: detecting
structural variation and estimating transcript abundance. BMC Genomics 2010,
11:385.

44. Zagordi O, Daumer M, Beisel C, Beerenwinkel N: Read length versus depth of
coverage for viral quasispecies reconstruction. PLoS One 2012, 7(10):e47046.

45. Liao Y, Smyth GK, Shi W: featureCounts: an efficient general purpose program
for assigning sequence reads to genomic features. Bioinformatics 2014,
30(7):923-930.

46. SVEngine: Allele Specific and Haplotype Aware Structural Variants Simulator.
Bitbucket repository. https://bitbucket.org/charade/svengine. Accessed 26 June 2018.

47 Xia LC, Ai D, Lee H, Andor N, Li C, Zhang NR, Ji HP. Supporting data for
"SVEngine: an efficient and versatile simulator of genome structural variations
with features of cancer clonal evolution" GigaScience Database 2018.
http://dx.doi.org/100473

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 29

TABLES

Table 1. Available features of structural variant simulators.

Use Cases SVEngine RSVsim SCNVsim VarSim BAMsurgeon

Copy number events: deletions,
tandem duplications

       

Copy number neutral events:
inversions, insertions, translocations

      

Phylogenetic clonal structure:
cancer clonal evolution tree model

      

Foreign sequence insertion: virus
integration

       

Non-human genome: variable
haploid template and ploidy

        

Not requiring pre-existing
alignment: without BAM input

       

Generate simulated contig: with
FASTA output

      

Generate simulated reads: with
FASTQ output

     

Generate simulated alignment:
with BAM output

    

Locus-specific variant ploidy:
allelic imbalance

       

Locus-specific variant frequency:
variable somatic allele frequency

      

Exact breakpoint:
specifiable at base pair resolution

        

Multiple sequencing libraries:
multiple insert size, read length, etc.

        

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 30

Table 2. Runtime performance comparison.

15000
events at

30x
coverage

SVEngine
(64 cores)

SVEngine
(1 core)

RSVSim SCNVSim VarSim BAMSurgeon

FASTA
output

<10 min < 10 min 10 hr 2 hr
Not

Available
Not Available

FASTQ
output

<20 min 5 hr External External 6 hr Not Available

BAM output 2hr 5 days External External External >10 days

Not Available: output format is not available

 External: output format is only available through additional external software, thus not tested

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 31

FIGURES

Figure 1. Inputs, outputs and execution components of SVEngine. The flow of data

was marked by gray arrows. The input, SVEngine functioning and output data spaces were

color shaded. (*) Note: new file formats VAR, META and PAR were introduced by SVEngine

for specifying specific variants (VAR) or variants’ meta-distribution (META) to be simulated,

or for specifying parameters for sequencing library and run (PAR). Please see the online

manual for detailed explanations.

Figure 2. Simulating cancer evolution. (A) An example cancer evolution tree. The

conditional fraction in each internal node represents the fraction of cell population gaining

the next structural variation, which is represented by the label of the internal node. (B) An

example computation table to determine final variant frequency of each variation and cell

population frequency of each terminal genotypes. (C) Integrated Genomics Viewer view of

SVEngine simulated BAM data of five deletions following clonal structure in the example

binary tree.

Figure 3. Expected read mapping features of structural variant prototypes. Rows –

variant prototypes: 1) Deletion, 2) Insertion, 3) Duplication, 4) Inversion. Columns – mapping

features: 1) Read coverage, 2) Read pair insert size, 3) Single end mapped read

(HangingRead), 4) Soft clipped read or split mapped read (ClipSplitRead). X-axis is genomic

coordinates. Y-axis is feature value/counts. Dashed orange line stands for expected feature

value without alteration. Solid blue line stands for expected feature value with alteration.

Dotted green bar denotes the breakpoint(s).

Figure 4. The core parallelized simulation algorithm of SVEngine. Here are two

neighboring events 𝑆𝑉𝑖 and 𝑆𝑉𝑗: a 50% deletion and a 100% deletion to be spiked-in. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 32

first deletion event spans blocks 𝐵𝑖1
, 𝐵𝑖1+1,…, 𝐵𝑖𝑛

 and the second deletion event spans

genome blocks 𝐵𝑗1
, 𝐵𝑗1+1,…, 𝐵𝑗𝑛

. The genome blocks are shaded in blue while the ligation

regions are shaded in orange. The resulting read pairs are represented by their coverage in

black dash patterns. The parallel execution tasks were boxed in green color.

Figure 5. Simulation benchmark of SVEngine. We measured (A) True Positive Rate (TPR)

and (B) False Discovery Rate (FDR) for the two SV callers (Lumpy and Manta) using

SVEngine simulated WGS data with 10x, 25x, 50x, 75x and 100x coverage respectively. (C)

We measured the concordance in 𝑅2 between THetA2 estimated purity and ground truth

with 10%, 25%, 50%, 75% and 90% tumor cell fractions, based on SVEngine simulated

WGS data.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 33

SUPPLMENTARY TABLES

Table S1 Simulation benchmark on NA12878. The table includes full data of NA12878

simulation results, including computed true positive rate (TPR) and false discovery rate (FDR)

for overall performance when SV typing correctness was not enforced (‘all’) or for

performance involving specific SV categories when SV typing correctness was enforced

(‘del’, ‘ins’, ‘inv’, ‘dup’).

Table S2 Simulation benchmark on tumor heterogeneity. The table includes THetA2

estimated purity and input ground truth purity to SVEngine for the tumor heterogeneity

simulation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FASTA BED FASTQ

META* PAR*VAR*FASTA or

Template
genomes

Exact
variants

Seq library
parameters

Variant
distribution

tree2varmutforge

Altered genome
contig

Simulated
reads

Variant
ground truth

Read
alignments

NEWICK

Phylogeny
tree

In
pu

t
O

ut
pu

t
SV

En
gi

ne

BAM TXT

ASCII tree
plot

xwgsim

Figure 1. Inputs, outputs and execution components of SVEngine. Click here to access/download;Figure;vs07_svengine_figure1.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42112&guid=27ffe69e-57ad-4413-b9b6-9e6a18833566&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42112&guid=27ffe69e-57ad-4413-b9b6-9e6a18833566&scheme=1

V2/
0.6

V4/
0.8

V5/
0.8

V3/
0.9

V1/
0.5

C1/
0.1

C2/
0.4

C3/
0.04

C4/
0.16

C5/
0.03

C6/
0.27

n

y

y

y

y

n

n

n

n

y

A An example binary tree clonal structure representation

Cell Pop.
Variants

Leaf
Node

Internal Nodes / Variant Evolutionary
Path

Cell
Pop.
Freq.

V1 V2 V3 V4 V5 F(Ci)

Normal C1 1 0 0 0 1 0.1

V5 C2 1 0 0 0 2 0.4

V1 C3 2 1 0 1 0 0.04

V1, V4 C4 2 1 0 2 0 0.16

V1, V2 C5 2 2 1 0 0 0.03

V1, V2, V3 C6 2 2 2 0 0 0.27

Var. Cond.
Fraction: f(Vi) 0.5 0.6 0.9 0.8 0.8

Var. Total
Fraction: F(Vi) 0.5 0.3 0.27 0.16 0.4

B Deriving cell subpopulations and variant frequencies

C Simulated BAM data of five deletions following clonal structure in the binary tree

Genomic
Coordinate

Read
Depth

n = not having
y = having

Variant
Loci

1 x mean depth

0.5

0

F(V1)=0.5 F(V2)=0.3 F(V3)=0.27 F(V4)=0.16 F(V5)=0.4

Figure 2. Simulating cancer evolution. Click here to access/download;Figure;Xia_svengine_figure2.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42108&guid=bf09e287-d678-45de-8fb9-d1e51be1ed81&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42108&guid=bf09e287-d678-45de-8fb9-d1e51be1ed81&scheme=1

Deletion

Inversion

Duplication

Insertion

x = Genomic Coordinate

Expected Read Mapping Features
SV Breakpoints

Feat. w/o SV

Keys

Feat. with SV

x

y

x

y
x

y

y = Coverage

x

y

y = InsertSize

x

y

x

y

x

y

x

y

x

y

x

y

Left hang
Right hang

y = HangingRead

x

y

x

y

y = ClipSplitRead
Left clip
Right clip

x

y

x

y

x

y

x

y

Figure 3. Expected read mapping features of structural variant prototypes. Click here to access/download;Figure;Xia_svengine_figure3.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42109&guid=532ff8e5-d51e-4930-82f9-83e7ed2a9970&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42109&guid=532ff8e5-d51e-4930-82f9-83e7ed2a9970&scheme=1

𝐵1 𝐵𝑁

𝐵𝑖1 𝐵𝑖𝑛

𝑺𝑽𝒊 (50% DEL) 𝑺𝑽𝒋 (100% DEL)

Contigs

Reads

Merged Reads

…

𝐵𝑖1 𝐵𝑖𝑛… 𝐵𝑗1 𝐵𝑗𝑛…

. 𝐵𝑖1 𝐵𝑖𝑛…

Genome Blocks

Parallelized Execution

ligation region
Figure 4. The core parallelized simulation algorithm of SVEngine. Click here to access/download;Figure;Xia_svengine_figure4.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42110&guid=498988c5-7917-4c74-b412-51e289493b77&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42110&guid=498988c5-7917-4c74-b412-51e289493b77&scheme=1

A B CFigure 5. Simulation benchmark of SVEngine. Click here to access/download;Figure;vs07_svengine_figure5.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42113&guid=cfa11e20-a7e0-46ec-bd75-54cae5ab23fc&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42113&guid=cfa11e20-a7e0-46ec-bd75-54cae5ab23fc&scheme=1

Supplementary Table

Click here to access/download
Supplementary Material

vs07_svengine_supp_tables.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42114&guid=c75e9a02-8bc8-495e-8c02-2bf2a7d2ab6a&scheme=1

