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Clustering trees: a visualisation 
for evaluating clusterings at 
multiple resolutions 
Luke Zappia (1, 2) 

Alicia Oshlack (1, 2) 

1 Bioinformatics, Murdoch Children’s Research Institute; 2 School of Biosciences, 
University of Melbourne 

Clustering techniques are widely used in the analysis of large data sets to group together 
samples with similar properties. For example, clustering is often used in the field of single-cell 
RNA-sequencing in order to identify different cell types present in a tissue sample. There are 
many algorithms for performing clustering and the results can vary substantially. In 
particular, the number of groups present in a data set is often unknown and the number of 
clusters identified by an algorithm can change based on the parameters used. To explore and 
examine the impact of varying clustering resolution we present clustering trees. This 
visualisation shows the relationships between clusters at multiple resolutions allowing 
researchers to see how samples move as the number of clusters increases. In addition, meta-
information can be overlaid on the tree to inform the choice of resolution and guide in 
identification of clusters. We illustrate the uses of clustering trees using two examples, the 
classical iris dataset and a complex single-cell RNA-sequencing dataset. 

Keywords: Clustering - Visualisation - scRNA-seq 

Introduction 

Clustering analysis is commonly used to group similar samples across a diverse range 

of applications. Typically, the goal of clustering is to form groups of samples that are 

more similar to each other than to samples in other groups. While fuzzy or soft 

clustering assigns each sample to every cluster with some probability, and 

hierarchical clustering forms a tree of samples, most methods form hard clusters 

where each sample is assigned to a single group. This goal can be achieved in a 

variety of ways, such as by considering the distances between sample (e.g. 𝑘-means1–

3, PAM4), areas of density across the dataset (e.g. DBSCAN5) or relationships to 

statistical distributions6. 

In many cases the number of groups that should be present in a dataset is not known 

in advance and deciding the correct number of clusters to use is a significant 

challenge. For some algorithms, such as 𝑘-means clustering, the number of clusters 

must be explicitly provided. Other methods have parameters that, directly or 

Manuscript Click here to download Manuscript clustree_paper.docx 
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indirectly, control the clustering resolution and therefore the number of clusters 

produced. While there are methods and statistics (such as the elbow method7 or 

silhouette plots8) designed to help analysts decide which clustering resolution to use, 

they typically produce a single score which only considers a single set of samples or 

clusters at a time. 

An alternative approach would be to consider clusterings at multiple resolutions and 

examine how samples change groupings as the number of clusters increases. This is 

the approach taken by the clustering tree visualisation we present here: (i) a dataset 

is clustered at multiple resolutions producing sets of cluster nodes, (ii) the overlap 

between clusters at adjacent resolutions is used to build edges, (iii) the resulting 

graph is presented as a tree. This tree can be used to examine how clusters are related 

to each other, which clusters are distinct and which are unstable. In the following 

sections we describe how we construct such a tree and present examples of trees built 

from a classical clustering dataset and a complex single-cell RNA-sequencing 

(scRNA-seq) dataset. The figures shown here can be produced in R using our publicly 

available clustree package. 

Building a clustering tree 

To build a clustering tree, we start with a set of clusterings allocating samples to 

groups at several different resolutions. These could be produced using any hard-

clustering algorithm that allows control of the number of clusters in some way. For 

example, this could be a set of samples clustered using 𝑘-means with 𝑘 = 1,2,3 as 

shown in Figure 1. We sort these clusterings so that they are ordered by increasing 

resolution (𝑘), then consider pairs of adjacent clusterings. Each cluster 𝑐𝑘,𝑖 (where 𝑖 =

1, . . . , 𝑛 and 𝑛 is the number of clusters at resolution 𝑘) is compared with each cluster 

𝑐𝑘+1,𝑗 (where 𝑗 = 1, . . . , 𝑚 and 𝑚 is the number of clusters at resolution 𝑘 + 1). The 

overlap between the two clusters is computed as the number of samples that are 

assigned to both 𝑐𝑘,𝑖 and 𝑐𝑘+1,𝑗. We next build a graph where each node is a cluster 

and each edge is an overlap between two clusters. 
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Figure 1 Illustration of the steps required to build a clustering tree. First a dataset 
must be clustered at different resolutions. The overlap in samples between clusters 
at adjacent resolutions is computed and used to calculate the in-proportion for each 
edge. Finally the edges are filtered and the graph visualised as a tree. 

Many of the edges will be empty, for example in Figure 1 no samples in Cluster A at 

𝑘 = 2 end up in Cluster B at 𝑘 = 3. In some datasets there may also be edges that 

contain few samples. These edges are not informative and result in a cluttered tree. 

An obvious solution for removing uninformative, low-count edges is to filter them 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 4 

using a threshold on the number of samples they represent. However, in this case the 

count of samples is not the correct statistic to use because it favours edges at lower 

resolutions and those connecting larger clusters. Instead we define the in-proportion 

metric as the ratio between the number of samples on the edge and the number of 

samples in the cluster it goes towards. This metric shows the importance of the edge 

to the higher resolution cluster independently of the cluster size. We apply a 

threshold to the in-proportion in order to remove less informative edges. 

The final graph is visualised using a tree layout. This places the cluster nodes in a 

series of layers where each layer is a different clustering resolution and edges show 

the transition of samples through those resolutions. Edges are coloured according to 

the number of samples they represent and the in-proportion metric is used to control 

the edge transparency, highlighting more important edges. By default, the size of 

nodes is adjusted according to the number of samples in the cluster and their colour 

indicates the resolution. The clustree package also includes options for controlling 

the aesthetics of nodes based on the attributes of samples in the clusters they 

represent. 

A simple example 

To further illustrate how a clustering tree is built, we will work through an example 

using the classical iris dataset9. This dataset contains measurements of the sepal 

length, sepal width, petal length and petal width from 150 iris flowers, 50 from each 

of three species: Iris setosa, Iris versicolor and Iris virginica. The iris dataset is 

commonly used as example for both clustering and classification problems with the 

Iris setosa samples being significantly different to, and linearly separable from, the 

other samples. We have clustered this dataset using 𝑘-means clustering with 𝑘 =

1, . . . ,5 and produced the clustering tree shown in Figure 2A. 
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Figure 2 Clustering trees based on 𝑘-means clustering of the iris dataset. In A, 
nodes are coloured according to the value of 𝑘 and sized according to the number of 
samples they represent. Edges are coloured according to the number of samples 
(from blue representing few to yellow representing many) and the transparency 
adjusted according to the in-proportion, with stronger lines showing edges that are 
more important to the higher resolution cluster. Cluster labels are randomly 
assigned by the 𝑘-means algorithm. B shows the same tree with the node colouring 
changed to show the mean petal length of the samples in each cluster. 

We see that there is one branch of the tree that is clearly distinct (presumably 

representing Iris setosa), remaining unchanged regardless of the number of clusters. 

On the other side we see the cluster at 𝑘 = 2 cleanly split into two clusters 

(presumably Iris versicolor and Iris virginica) at 𝑘 = 3 but as we move to 𝑘 = 4 and 

𝑘 = 5 we see clusters being formed from multiple branches with more low proportion 

edges. This kind of pattern indicates that the data has become over-clustered and we 

have begun to introduce artificial groupings. In this case we know that 𝑘 = 3 is the 

correct choice but this is also the value that is suggested by this tree. 

We can check our assumption that the distinct branch represents the Iris setosa 

samples and the other two clusters at 𝑘 = 3 are Iris versicolor and Iris virginica by 

overlaying some known information about the samples. In Figure 2B we have 

coloured the nodes by the mean petal length of the samples they contain. We can now 

see that clusters in the distinct branch have the shortest petals, with Cluster 1 at 𝑘 = 3 

having an intermediate length and Cluster 3 the longest petals. This feature is known 

to separate the samples into the expected species with Iris setosa having the shortest 

petals on average, Iris versicolor an intermediate length and Iris virginica the 

longest. 

Although this is a very simple example it still highlights some of the benefits of 

viewing a clustering tree. We get some indication of the correct clustering resolution 
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by examining the edges and we can overlay known information to assess the quality 

of the clustering. For example, if we observed that all clusters had the same mean 

petal length it would suggest that the clustering has not been successful as we know 

this is an important feature that separates the species. We could potentially learn 

more by looking at which samples follow low proportion edges or overlaying a series 

of features to try and understand what causes particular clusters to split. 

Clustering trees for single-cell RNA-seq data 

One field that has begun to make heavy use of clustering techniques is the analysis of 

single-cell RNA-sequencing (scRNA-seq) data. Single-cell RNA-sequencing is a 

recently developed technology that can measure how genes are expressed in 

thousands to millions of individual cells11. This technology has been rapidly adopted 

in fields like developmental biology and immunology where it is valuable to have 

information from single cells rather than measurements that are averaged across the 

many different cells in a sample using older RNA sequencing technologies. One of the 

key uses for scRNA-seq is to discover and interrogate the different cell types present 

in a sample of a complex tissue. In this situation, clustering is typically used to group 

similar cells based on their gene expression profiles. Differences in gene expression 

between groups can then be used to infer the identity or function of those cells12. The 

number of cell types in an scRNA-seq dataset can vary depending on factors such as 

the tissue being studied, its developmental or environmental state and the number of 

cells captured. Often the number of cells types is not known before the data is 

generated and some samples can contain dozens of clusters. Therefore, deciding 

which clustering resolution to use is an important consideration in this application. 

As an example of how clustering trees can be used in the scRNA-seq context we 

consider a commonly used Peripheral Blood Mononuclear Cell (PBMC) dataset. This 

dataset was originally produced by 10x Genomics and contains 2700 peripheral blood 

monocuclear cells, representing a range of well-studied immune cell types13. We have 

analysed this dataset using the Seurat package14, a commonly used toolkit for scRNA-

seq analysis, following the instructions in their tutorial with the exception of varying 

the clustering resolution parameter from zero to five (see methods). Seurat uses a 

graph-based clustering algorithm and the resolution parameter controls the 

partitioning of this graph, with higher values resulting in more clusters. The 

clustering trees produced from this analysis are shown in Figure 3. 
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Figure 3 Two clustering trees of a dataset of 2700 Peripheral Blood Mononuclear 
Cells (PBMCs). A) results from clustering using Seurat with resolution parameters 
from zero to one. At a resolution of 0.1 we see the formation of four main branches, 
one of which continues to split up to a resolution of 0.5, after which there are only 
minor changes. B) resolutions from zero to five. At the highest resolutions we begin 
to see many low in-proportion edges indicating cluster instability. Seurat labels 
clusters according to their size with Cluster 0 being the largest. 

The clustering tree covering resolutions zero to one in steps of 0.1 (Figure 3A) shows 

that four main branches form at a resolution of just 0.1. One of these branches, 

starting with Cluster 3 at resolution 0.1, remains unchanged while the branch starting 

with Cluster 2 splits only once at a resolution of 0.4. Most of the branching occurs in 

the branch starting with Cluster 1 which consistently has sub-branches split off to 

form new clusters as the resolution increases. There are two regions of stability in 

this tree; at resolution 0.5-0.6 and resolution 0.7-1.0 where the branch starting at 

Cluster 0 splits in two. 

Figure 3B shows a clustering tree with a greater range of resolutions, from zero to five 

in steps of 0.5. By looking across this range we can see what happens when the 

algorithm is forced to produce more clusters than are likely to be truly present in this 

dataset. As over-clustering occurs we begin to see more low in-proportion edges and 

new clusters forming from multiple parent clusters. This suggests that those areas of 

the tree are unstable and that the new clusters being formed are unlikely to represent 

true groups in the dataset. 

Known marker genes are commonly used to identify the cell types that specific 

clusters correspond to. Overlaying gene expression information onto a clustering tree 

provides an alternative view that can help to indicate when clusters containing pure 

cell populations are formed. Figure 4 shows the PBMC clustering tree in Figure 3A 

overlaid with the expression of some known marker genes. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 8 

 

Figure 4 Clustering trees of the PBMC dataset coloured according to the expression 
of known markers. The node colours indicate the average of the log2 gene counts of 
samples in each cluster. CD19 (A) identifies B cells, CD14 (B) shows a population of 
monocytes, CD3D (C) is a marker of T cells and CCR7 (D) shows the split between 
memory and naive CD4 T cells. 

By adding this extra information, we can quickly identify some of the cell types. CD19 

(Figure 4A) is a marker of B cells and is clearly expressed in the most distinct branch 

of the tree. CD14 (Figure 4B) is a marker of a type of monocyte, which becomes more 

expressed as we follow one of the central branches, allowing us to see which 

resolution identifies a pure population of these cells. CD3D (Figure 4C) is a general 

marker of T cells and is expressed in two separate branches, one which splits into low 

and high expression of CCR7 (Figure 4D), separating memory and naive CD4 T cells. 

By adding expression of known genes to a clustering tree, we can see if more 

populations can be identified as the clustering resolution is increased and if clusters 

are consistent with known biology. For most of the Seurat tutorial a resolution of 0.6 

is used, but the authors note that by moving to a resolution of 0.8, a split can be 

achieved between memory and naive CD4 T cells. This is a split that could be 

anticipated by looking at the clustering tree. 

Discussion and conclusion 

Clustering similar samples into groups is a useful technique in many fields, but often 

analysts are faced with the tricky problem of deciding which clustering resolution to 

use. Traditional approaches to this problem typically consider a single cluster or 
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sample at a time and may rely on prior knowledge of sample labels. Here we present 

clustering trees, an alternative visualisation that shows the relationships between 

clusterings at multiple resolutions. 

Clustering trees display how clusters are divided as resolution increases, which 

clusters are clearly separate and distinct, which are related to each other and how 

samples change groups as more clusters are produced. Although clustering trees can 

appear similar to the trees produced from hierarchical clustering there are several 

important differences. Hierarchical clustering considers the relationships between 

individual samples and doesn’t provide an obvious way to form groups. In contrast, 

clustering trees are independent of any particular clustering method and show the 

relationships between distinct groups of samples, any of which could be used for 

further analysis. 

To illustrate the uses of clustering trees we presented two examples, one using the 

classical iris dataset and a second based on a complex scRNA-seq dataset. Both 

examples demonstrate how a clustering tree can suggest the correct resolution to use 

and how overlaying extra information can help to validate those clusters. This is of 

particular use to scRNA-seq analysis as these datasets are often large, noisy and 

contain an unknown number of cell types. 

Even when the number of clusters to choose is not a problem, clustering trees can be 

a valuable tool. They provide a compact, information dense, visualisation that can 

display summarised information across a range of clusters. By modifying the 

appearance of cluster nodes based on attributes of the samples they represent, 

clusterings can be evaluated and identities of clusters established. Clustering trees 

potentially have applications in many fields and in the future could be adapted to be 

more flexible, such as by accommodating fuzzy clusterings. 

Methods 

The clustree software package is built for the R statistical programming language. It 

relies on the ggraph package (https://github.com/thomasp85/ggraph), which is itself 

built on the ggplot215 and tidygraph packages 

(https://github.com/thomasp85/tidygraph). Clustering trees are displayed using the 

Reingold-Tilford tree layout16 or the Sugiyama layout17, both available as part of the 

igraph package18. 
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The iris dataset is available as part of R. We clustered this dataset using the “kmeans” 

function in the stats package with values of 𝑘 from one to five. Each value of 𝑘 was 

clustered with a maximum of 100 iterations and with 10 random starting positions. 

The clustered iris dataset is available as part of the clustree package. 

The PBMC dataset was downloaded from the Seurat tutorial page 

(http://satijalab.org/seurat/pbmc3k_tutorial.html) and this tutorial was followed for 

most of the analysis. Briefly cells were filtered based on the number of genes they 

express and the percentage of counts assigned to mitochondrial genes. The data was 

then log-normalised and 1838 variable genes identified. Potential confounding 

variables (number of unique molecular identifiers and percentage mitochondrial 

expression) were regressed from the dataset before performing principal component 

analysis on the identified variable genes. The first 10 principal components were then 

used to build a graph which was partitioned into clusters using Louvain modularity 

optimisation19 with resolution parameters in the range zero to five, in steps of 0.1 

between zero and one and then in steps of 0.5. 
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