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Response to Reviewers: Reviewer #1
The authors in the manuscript try to answer an important and biologically relevant
question. The manuscript is written well and the message is clearly explained.
However, we have some concerns
and comments on the manuscript.

1.The presented method is conceptually equivalent to visualisation of hierarchical
clustering, only applicable to other clustering methods. This should be made more
clear in the text.

We have mentioned the relationship to hierarchical clustering in the paper and
discussed the differences between this and clustering trees. While we accept the
similarities between them we believe that clustering trees are significantly different,
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both in how they are constructed and how they would be used.

2.We think more datasets should be considered in the study.

We have added an additional section that uses five simulated datasets to illustrate
what clustering trees would look like in different scenarios based on a suggestion from
reviewer 3. We believe that this is useful in helping to explain the concepts presented
in the paper. Adding more real datasets would provide extra examples but in our
opinion would not convey the messages of the manuscript with more clarity.

3.Clustertree considers cluster stability measured across ks. Cluster stability is not a
novel concept and the authors should include an brief overview of the existing literature
on cluster stability in the introduction (e.g.  Ben-Hur et al. 2002, Luxburg 2010) and
explain how their method is different from the existing approaches.

Thank you for the suggestion and the references. We had added a paragraph that
mentions the concept of  cluster stability more generally.

4.In application to scRNAseq the elements of the clustering tree are methodologically
very similar to the cluster stability index introduced in the SC3 package
(https://www.nature.com/articles/nmeth.4236). It would be good to have a comparison
of the two methods.

We had not considered the SC3 stability index before and there are indeed similarities,
particularly as both clustering trees and the SC3 measure can be produced from just a
set of clustering labels. We believe this measure could be useful for users and have
implemented this method in the clustree package. The SC3 stability is now
automatically calculated for each cluster and can be used to colour the nodes of the
tree. Examples of this are included in the simulation section and the differences
discussed.

5.(major) It is not obvious (at least for us) to understand from the clustering tree which
k is the best. Even for a simple iris dataset it was hard for me to guess that k=3 is the
right k. Maybe there are too many colours in the tree picture. Could the authors provide
an algorithmic approach to suggest the appropriate k(s) based on the tree perhaps in
conjunction with some kind of metadata laid over the tree?

We intend clustering trees to be a tool that can help make the decision of which
resolution to use, but not one that can provide a concrete suggestion. This could have
been made clearer in the previous version and we have tried to do so in our revised
text. Adding the simulation examples gives the reader a much clearer demonstration of
what can happen to a clustering tree as a dataset becomes over-clustered. We have
also tried to emphasise that clustering trees become more useful when combined with
other metrics or domain knowledge and that they provide a new way to visualise this
information across resolutions.

Reviewed by Tallulah Andrews and Vladimir Kiselev
Reviewer #2
The paper presents a new method to construct clustering trees for single-cell RNA-seq.
While I recognize the task is very important due to the emerging importance of single-
cell technologies, the proposed method only contains incremental improvements.
Before addressing the following concerns I have, I would not recommend acceptance.

We do not believe the reader has understood the point of this paper at all which is why
they are recommending a rejection. We are not presenting a new clustering method.
Our direct responses to the points in this review are below but we do not believe this a
suitable review for this work.

Main concerns:

1.Clarity. This paper proposed a simple clustering method for ScRNA-seq. However,
the difference to many other clustering method (e.g., hierarchical clustering) is not
clearly stated. The novelty is not clear to me.
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We do not propose a new clustering method but instead a new method for visualising
the results of existing clustering methods across resolutions. This is discussed in the
paper. We also mention that clustering trees could be used in any field that makes use
of clustering, not just scRNA-seq analysis.

2.Validity. The paper constructs a hierarchical clustering tree without considering the
specific characters of sparsity and high dropouts of single-cell RNA-seq. Due to the
existence of drop-out, traditional Euclidean/correlation metrics are not reliable (See
"Visualization and analysis of single-cell RNA-seq data by kernel-based similarity
learning", Nature Methods, 2017). However, this paper did not provide any specific
solution to this problem. I am wondering why this method is particularly suitable for
single-cell RNA-seq.

Our method is not designed specifically for scRNA-seq data and is in fact independent
of any type of dataset or clustering method. As explained in our response to the
previous point we propose a method for visualising clustering results, not a new
clustering method.

3.Experiments. This paper applies the proposed methods on one simulation and one
real PBMC dataset. However, no comparisons with other methods is provided. It is
very hard to judge how well the proposed method is really performing. Visualization is
also hard to judge. The lack of detailed experiments and comparisons is the main
concern before acceptance.

The submitted version of the manuscript did not consider any simulated datasets but
provided examples based on the real iris and PBMC datasets. Simulated datasets
have been added in the revised manuscript. We do not believe there is an existing
visualisation that is directly comparable but we have included the SC3 stability index as
an example of an existing cluster stability measure.

4.References: This paper is missing a few important references about single-cell
anlaysis: For instance: "Revealing the vectors of cellular identity with single-cell
genomics", Nature Biotech., 2016

As our paper is not specifically about scRNA-seq data or analysis we do not feel the
need to reference all important papers in that field. We have provided an introduction to
scRNA-seq data that is designed to help a general reader understand the PBMC
dataset and why clustering would be useful in that setting. We believe this is sufficient
for a technique that could be applied to many fields.
Reviewer #3:
Identification of the suitable number of clusters is an age-old question in clustering
analysis. Standard methods for identifying the number of clusters make use of
information about the 'tightness' of the clusters and the stability of the clusters with
respect to some parameters. In this manuscript, Zappia and Oshlack present a new
visualisation approach to explore the stability of cluster at different resolutions using a
polytree visual representation, which allows for overlap of information of individual
features and other external knowledge. This is an intuitive and powerful visualisation
approach which I believe will be of widespread applications. I think this is a clever
application of the hierarchical graph drawing technique. The manuscript is well written.
I believe this manuscript is of value to the community.

However, I want to make the following suggestions:
Major:
-In figure 3 and figure 4, there are number of cases where a node has two parents. In
almost all cases, the child node is placed under the parent node with the smallest node
numbering instead of the node with the highest 'in-proportion' edge. For example, in
Figure 4, the polytree has two nodes with two parent nodes. In both cases, the child
node is placed below the parent node with the smaller 'in-proportion'. I thought it would
make more sense to place them with the parent node with the higher 'in-proportion'.

We agree that this is a problem and it is the result of using existing layout algorithms
which do not consider weight of edges in any way, sometimes resulting in layouts
which seem to favour less important edges. We have addressed this by using only a
subset of important edges (those with the greatest in-proportion for each node) to
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construct the layout. This simple modification is now the default setting in the clustree
packages and results in more attractive tree which address the concerns you raise.

-Two 'positive' examples are described in the manuscript. I think it would be instructive
to showcase what the resulting visualisation may look like if the clustering was
performed on data with no or little underlying clustering structure. Could your
visualisation identify 'bad' clustering results? For example, would the clustering tree of
an entirely randomly generated data set looks differently from a data set with a strong
clustering structure? A simulation study could be instructive here.

Thank you for the suggestion of adding a simulation study. We have added a new
section to the paper that show some simulated scenarios. As you have suggested two
of these are “null” examples including randomly generated uniform noise or a single
cluster. We believe that these are instructive for the reader in showing what trees look
like in different situations and how nodes and edges change as datasets are over-
clustered.

-There are a number of graph drawing techniques for polytree, can the authors briefly
review these methods and explain why the Reingold-Tilford or the Sugiyama layout
was used?

These layout algorithms were chosen as they are the two methods designed for tree-
like graphs available in the igraph package. We have added a paragraph to the
manuscript that briefly explains how these algorithms work and why they were chosen.
Minor:
-It is important to point out that technically your 'tree' is a polytree, which is also called
a directed acyclic graph. I do not object to calling it a 'tree' for simplicity throughout the
manuscript, but I think it should be clearly noted in the introduction.
Thank you for introducing us to the idea of a polytree, this is not a term we had heard
of before. You are correct that this is the graph structure produced by our algorithm
and we have mentioned that in the text.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource

Yes
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Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Alicia Oshlack (1, 2) 5 
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Clustering techniques are widely used in the analysis of large data sets to group together samples with 8 
similar properties. For example, clustering is often used in the field of single-cell RNA-sequencing in order 9 
to identify different cell types present in a tissue sample. There are many algorithms for performing 10 
clustering and the results can vary substantially. In particular, the number of groups present in a data set is 11 
often unknown and the number of clusters identified by an algorithm can change based on the parameters 12 
used. To explore and examine the impact of varying clustering resolution we present clustering trees. This 13 
visualisation shows the relationships between clusters at multiple resolutions allowing researchers to see 14 
how samples move as the number of clusters increases. In addition, meta-information can be overlaid on 15 
the tree to inform the choice of resolution and guide in identification of clusters. We illustrate the features 16 
of clustering trees using a series of simulations as well as two real examples, the classical iris dataset and a 17 
complex single-cell RNA-sequencing dataset. Clustering trees can be produced using the clustree R package 18 
available from CRAN (https://CRAN.R-project.org/package=clustree) and developed on GitHub 19 
(https://github.com/lazappi/clustree). 20 

Keywords: Clustering - Visualisation - scRNA-seq 21 

Introduction 22 

Clustering analysis is commonly used to group similar samples across a diverse range of 23 

applications. Typically, the goal of clustering is to form groups of samples that are more similar to 24 

each other than to samples in other groups. While fuzzy or soft clustering approaches assign each 25 

sample to every cluster with some probability, and hierarchical clustering forms a tree of samples, 26 

most methods form hard clusters where each sample is assigned to a single group. This goal can 27 

be achieved in a variety of ways, such as by considering the distances between samples (e.g. 𝑘-28 

means [1–3], PAM [4]), areas of density across the dataset (e.g. DBSCAN [5]) or relationships to 29 

statistical distributions [6]. 30 

Click here to download Manuscript
clustree_paper_20180522[1].docx
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 2 

In many cases the number of groups that should be present in a dataset is not known in advance 31 

and deciding the correct number of clusters to use is a significant challenge. For some algorithms, 32 

such as 𝑘-means clustering, the number of clusters must be explicitly provided. Other methods 33 

have parameters that, directly or indirectly, control the clustering resolution and therefore the 34 

number of clusters produced. While there are methods and statistics (such as the elbow method 35 

[7] or silhouette plots [8]) designed to help analysts decide which clustering resolution to use, 36 

they typically produce a single score which only considers a single set of samples or clusters at a 37 

time. 38 

An alternative approach would be to consider clusterings at multiple resolutions and examine 39 

how samples change groupings as the number of clusters increases. This has lead to a range of 40 

cluster stability measures [9], many of which rely on clustering of perturbed or sub-sampled 41 

datasets. For example, the model explorer algorithm sub-samples a dataset multiple times, 42 

clusters each sub-sampled dataset at various resolutions and then calculates a similarity between 43 

clusterings at the same resolution to give a distribution of similarities which can inform the choice 44 

of resolution [10]. One cluster stability measure that isn’t based on perturbations is that 45 

contained in the SC3 package for clustering single-cell RNA-sequencing data [11]. Starting with a 46 

set of cluster labels at different resolutions each cluster is scored, with clusters awarded increased 47 

stability if they share the same samples as a cluster at another resolution, but penalised for being 48 

at a higher resolution. 49 

A similar simple approach is taken by the clustering tree visualisation we present here, without 50 

calculating scores: (i) a dataset is clustered using any hard clustering algorithm at multiple 51 

resolutions, producing sets of cluster nodes, (ii) the overlap between clusters at adjacent 52 

resolutions is used to build edges, (iii) the resulting graph is presented as a tree. This tree can be 53 

used to examine how clusters are related to each other, which clusters are distinct and which are 54 

unstable. In the following sections we describe how we construct such a tree and present 55 

examples of trees built from a classical clustering dataset and a complex single-cell RNA-56 

sequencing (scRNA-seq) dataset. The figures shown here can be produced in R using our publicly 57 
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 3 

available clustree package. Although clustering trees can not directly provide a clustering 58 

resolution to use they can be a useful tool for exploring and visualising the range of possible 59 

choices. 60 

Building a clustering tree 61 

To build a clustering tree, we start with a set of clusterings allocating samples to groups at several 62 

different resolutions. These could be produced using any hard-clustering algorithm that allows 63 

control of the number of clusters in some way. For example, this could be a set of samples 64 

clustered using 𝑘-means with 𝑘 = 1,2,3 as shown in Figure 1. We sort these clusterings so that 65 

they are ordered by increasing resolution (𝑘), then consider pairs of adjacent clusterings. Each 66 

cluster 𝑐𝑘,𝑖 (where 𝑖 = 1, . . . , 𝑛 and 𝑛 is the number of clusters at resolution 𝑘) is compared with 67 

each cluster 𝑐𝑘+1,𝑗 (where 𝑗 = 1, . . . , 𝑚 and 𝑚 is the number of clusters at resolution 𝑘 + 1). The 68 

overlap between the two clusters is computed as the number of samples that are assigned to both 69 

𝑐𝑘,𝑖 and 𝑐𝑘+1,𝑗. We next build a graph where each node is a cluster and each edge is an overlap 70 

between two clusters. While we refer to this graph as a tree in this paper for simplicity it can more 71 

correctly be described as a polytree, a special case of a directed acyclic graph where the 72 

underlying undirected graph is a tree [12]. 73 
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 4 

 74 

Figure 1 Illustration of the steps required to build a clustering tree. First a dataset must be 75 
clustered at different resolutions. The overlap in samples between clusters at adjacent 76 
resolutions is computed and used to calculate the in-proportion for each edge. Finally the edges 77 
are filtered and the graph visualised as a tree. 78 
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Many of the edges will be empty, for example in Figure 1 no samples in Cluster A at 𝑘 = 2 end up 79 

in Cluster B at 𝑘 = 3. In some datasets there may also be edges that contain few samples. These 80 

edges are not informative and result in a cluttered tree. An obvious solution for removing 81 

uninformative, low-count edges is to filter them using a threshold on the number of samples they 82 

represent. However, in this case the count of samples is not the correct statistic to use because it 83 

favours edges at lower resolutions and those connecting larger clusters. Instead we define the in-84 

proportion metric as the ratio between the number of samples on the edge and the number of 85 

samples in the cluster it goes towards. This metric shows the importance of the edge to the higher 86 

resolution cluster independently of the cluster size. We can then apply a threshold to the in-87 

proportion in order to remove less informative edges. 88 

The final graph can then be visualised. In theory any graph layout algorithm could be used but for 89 

the clustree package we have made use of the two algorithms specifically designed for tree 90 

structures available in the igraph package [13]. These are the Reingold-Tilford tree layout, which 91 

places parent nodes above their children [14], and the Sugiyama layout which places nodes of a 92 

directed acyclic graph in layers while minimising the number of crossing edges [15]. Both of these 93 

algorithms can produce attractive layouts and as such we have not found the need to design a 94 

specific layout algorithm for clustering trees. By default the clustree package uses only a subset of 95 

edges when constructing a layout, specifically the highest in-proportion edges for each node. We 96 

have found that this often leads to more interpretable visualisations, however users can choose to 97 

use all edges if desired. 98 

Whichever layout is used the final visualisation places the cluster nodes in a series of layers where 99 

each layer is a different clustering resolution and edges show the transition of samples through 100 

those resolutions. Edges are coloured according to the number of samples they represent and the 101 

in-proportion metric is used to control the edge transparency, highlighting more important edges. 102 

By default, the size of nodes is adjusted according to the number of samples in the cluster and 103 

their colour indicates the clustering resolution. The clustree package also includes options for 104 
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 6 

controlling the aesthetics of nodes based on the attributes of samples in the clusters they 105 

represent as shown in the following examples. 106 

While a clustering tree is conceptually similar to the tree produced through hierarchical clustering 107 

there are some important differences. The most obvious are that a hierarchical clustering tree is 108 

the result of a particular clustering algorithm and shows the relationships between individual 109 

samples while the clustering trees described here are independent of clustering method and show 110 

relationships between clusters. The branches of a hierarchical tree show how the clustering 111 

algorithm has merged samples. In contrast, edges in a clustering tree show how samples move 112 

between clusters as the resolution changes and nodes may have multiple parents. While it is 113 

possible to overlay information about samples on a hierarchical tree this is not commonly done 114 

but is a key feature of the clustree package and how clustering trees could be used in practice. 115 

A demonstration using simulations 116 

To demonstrate what a clustering tree can look like in different situations and how it behaves as a 117 

dataset is over-clustered we present some illustrative examples using simple simulations (see 118 

methods). We present five scenarios: random uniform noise (Simulation A), a single cluster 119 

(Simulation B), two clusters (Simulation C),three clusters (Simulation D) and four clusters 120 

(Simulation E). Each cluster consists of 1000 samples (points) generated from a 100 dimensional 121 

normal distribution and each synthetic dataset has been clustered using 𝑘-means clustering with 122 

𝑘 = 1, . . . ,8. We then use the clustree package to produce clustering trees for each dataset (Figure 123 

2). 124 
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Figure 2 Five synthetic datasets used to demonstrate clustering trees. For each dataset a scatter 126 
plot of the first two principal components, a default clustering tree and and clustering tree with 127 
nodes coloured by the SC3 stability index from purple (lowest) to yellow (highest) are shown. 128 
The five datasets contain: A) random uniform noise, B) a single cluster, C) two clusters, D) three 129 
clusters and E) four clusters. 130 

Looking at the first two examples (uniform noise (Figure 2A) and a single cluster (Figure 2B)) we 131 

can clearly see how a clustering tree behaves when a clustering algorithm returns more clusters 132 

than are truly present in a dataset. New clusters begin to form from multiple existing clusters and 133 

many samples switch between branches of the tree resulting in low in-proportion edges. Unstable 134 

clusters may also appear then disappear as the resolution increases as seen in Figure 2E. As we 135 

add more structure to the datasets the clustering trees begin to form clear branches and low in-136 

proportion edges tend to be confined to sections of the tree. By looking at which clusters are 137 

stable and where low in-proportion edges arise we can infer which areas of the tree are likely to be 138 

the result of true clusters and which are caused by over-clustering. 139 

The second clustering tree for each dataset shows nodes coloured according to the SC3 stability 140 

index for each cluster. As we would expect in the first two examples no cluster receives a high 141 

stability score. However, while we clearly see two branches in the clustering tree for the two 142 

cluster example (Simulation C) this is not reflected in the SC3 scores. No cluster receives a high 143 

stability score, most likely due to the high number of samples moving between clusters as the 144 

resolution increases. As there are more true clusters in the simulated datasets the SC3 stability 145 

scores become more predictive of the correct resolution to use, however it is important to look at 146 

the stability scores of all clusters at a particular resolution as taking the highest individual cluster 147 

stability score could lead to the incorrect resolution being used, as can be seen in the four cluster 148 

example (Simulation E). These examples show how clustering trees can be used to display 149 

existing clustering metrics in a way that can help to inform parameter choices. 150 

A simple example 151 

To further illustrate how a clustering tree is built, we will work through an example using the 152 

classical iris dataset [16]. This dataset contains measurements of the sepal length, sepal width, 153 

petal length and petal width from 150 iris flowers, 50 from each of three species: Iris setosa, Iris 154 
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versicolor and Iris virginica. The iris dataset is commonly used as example for both clustering 155 

and classification problems with the Iris setosa samples being significantly different to, and 156 

linearly separable from, the other samples. We have clustered this dataset using 𝑘-means 157 

clustering with 𝑘 = 1, . . . ,5 and produced the clustering tree shown in Figure 3A. 158 

 159 

Figure 3 Clustering trees based on 𝑘-means clustering of the iris dataset. In A, nodes are 160 
coloured according to the value of 𝑘 and sized according to the number of samples they 161 
represent. Edges are coloured according to the number of samples (from blue representing few 162 
to yellow representing many) and the transparency adjusted according to the in-proportion, 163 
with stronger lines showing edges that are more important to the higher resolution cluster. 164 
Cluster labels are randomly assigned by the 𝑘-means algorithm. B shows the same tree with the 165 
node colouring changed to show the mean petal length of the samples in each cluster. 166 

We see that there is one branch of the tree that is clearly distinct (presumably representing Iris 167 

setosa), remaining unchanged regardless of the number of clusters. On the other side we see the 168 

cluster at 𝑘 = 2 cleanly splits into two clusters (presumably Iris versicolor and Iris virginica) at 169 

𝑘 = 3 but as we move to 𝑘 = 4 and 𝑘 = 5 we see clusters being formed from multiple branches 170 

with more low in-proportion edges. As we have seen in the simulated examples, this kind of 171 

pattern can indicate that the data has become over-clustered and we have begun to introduce 172 

artificial groupings. 173 

We can check our assumption that the distinct branch represents the Iris setosa samples and the 174 

other two clusters at 𝑘 = 3 are Iris versicolor and Iris virginica by overlaying some known 175 

information about the samples. In Figure 3B we have coloured the nodes by the mean petal length 176 
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of the samples they contain. We can now see that clusters in the distinct branch have the shortest 177 

petals, with Cluster 1 at 𝑘 = 3 having an intermediate length and Cluster 3 the longest petals. This 178 

feature is known to separate the samples into the expected species with Iris setosa having the 179 

shortest petals on average, Iris versicolor an intermediate length and Iris virginica the longest. 180 

Although this is a very simple example it highlights some of the benefits of viewing a clustering 181 

tree. We get some indication of the correct clustering resolution by examining the edges and we 182 

can overlay known information to assess the quality of the clustering. For example, if we observed 183 

that all clusters had the same mean petal length it would suggest that the clustering has not been 184 

successful as we know this is an important feature that separates the species. We could potentially 185 

learn more by looking at which samples follow low proportion edges or overlaying a series of 186 

features to try and understand what causes particular clusters to split. 187 

Clustering trees for single-cell RNA-seq data 188 

One field that has begun to make heavy use of clustering techniques is the analysis of single-cell 189 

RNA-sequencing (scRNA-seq) data. Single-cell RNA-sequencing is a recently developed 190 

technology that can measure how genes are expressed in thousands to millions of individual cells 191 

[18]. This technology has been rapidly adopted in fields like developmental biology and 192 

immunology where it is valuable to have information from single cells rather than measurements 193 

that are averaged across the many different cells in a sample using older RNA sequencing 194 

technologies. One of the key uses for scRNA-seq is to discover and interrogate the different cell 195 

types present in a sample of a complex tissue. In this situation, clustering is typically used to 196 

group similar cells based on their gene expression profiles. Differences in gene expression 197 

between groups can then be used to infer the identity or function of those cells [19]. The number 198 

of cell types (clusters) in an scRNA-seq dataset can vary depending on factors such as the tissue 199 

being studied, its developmental or environmental state and the number of cells captured. Often 200 

the number of cells types is not known before the data is generated and some samples can contain 201 
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dozens of clusters. Therefore, deciding which clustering resolution to use is an important 202 

consideration in this application. 203 

As an example of how clustering trees can be used in the scRNA-seq context we consider a 204 

commonly used Peripheral Blood Mononuclear Cell (PBMC) dataset. This dataset was originally 205 

produced by 10x Genomics and contains 2700 peripheral blood monocuclear cells, representing a 206 

range of well-studied immune cell types [20]. We have analysed this dataset using the Seurat 207 

package [21], a commonly used toolkit for scRNA-seq analysis, following the instructions in their 208 

tutorial with the exception of varying the clustering resolution parameter from zero to five (see 209 

methods). Seurat uses a graph-based clustering algorithm and the resolution parameter controls 210 

the partitioning of this graph, with higher values resulting in more clusters. The clustering trees 211 

produced from this analysis are shown in Figure 4. 212 

 213 

Figure 4 Two clustering trees of a dataset of 2700 Peripheral Blood Mononuclear Cells 214 
(PBMCs). A) results from clustering using Seurat with resolution parameters from zero to one. 215 
At a resolution of 0.1 we see the formation of four main branches, one of which continues to split 216 
up to a resolution of 0.5, after which there are only minor changes. B) resolutions from zero to 217 
five. At the highest resolutions we begin to see many low in-proportion edges indicating cluster 218 
instability. Seurat labels clusters according to their size with Cluster 0 being the largest. 219 

The clustering tree covering resolutions zero to one in steps of 0.1 (Figure 4A) shows that four 220 

main branches form at a resolution of just 0.1. One of these branches, starting with Cluster 3 at 221 

resolution 0.1, remains unchanged while the branch starting with Cluster 2 splits only once at a 222 

resolution of 0.4. Most of the branching occurs in the branch starting with Cluster 1 which 223 
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consistently has sub-branches split off to form new clusters as the resolution increases. There are 224 

two regions of stability in this tree; at resolution 0.5-0.6 and resolution 0.7-1.0 where the branch 225 

starting at Cluster 0 splits in two. 226 

Figure 4B shows a clustering tree with a greater range of resolutions, from zero to five in steps of 227 

0.5. By looking across this range we can see what happens when the algorithm is forced to 228 

produce more clusters than are likely to be truly present in this dataset. As over-clustering occurs 229 

we begin to see more low in-proportion edges and new clusters forming from multiple parent 230 

clusters. This suggests that those areas of the tree are unstable and that the new clusters being 231 

formed are unlikely to represent true groups in the dataset. 232 

Known marker genes are commonly used to identify the cell types that specific clusters 233 

correspond to. Overlaying gene expression information onto a clustering tree provides an 234 

alternative view that can help to indicate when clusters containing pure cell populations are 235 

formed. Figure 5 shows the PBMC clustering tree in Figure 4A overlaid with the expression of 236 

some known marker genes. 237 

 238 
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Figure 5 Clustering trees of the PBMC dataset coloured according to the expression of known 239 
markers. The node colours indicate the average of the log2 gene counts of samples in each 240 
cluster. CD19 (A) identifies B cells, CD14 (B) shows a population of monocytes, CD3D (C) is a 241 
marker of T cells and CCR7 (D) shows the split between memory and naive CD4 T cells. 242 

By adding this extra information, we can quickly identify some of the cell types. CD19 (Figure 5A) 243 

is a marker of B cells and is clearly expressed in the most distinct branch of the tree. CD14 (Figure 244 

5B) is a marker of a type of monocyte, which becomes more expressed as we follow one of the 245 

central branches, allowing us to see which resolution identifies a pure population of these cells. 246 

CD3D (Figure 5C) is a general marker of T cells and is expressed in two separate branches, one 247 

which splits into low and high expression of CCR7 (Figure 5D), separating memory and naive 248 

CD4 T cells. By adding expression of known genes to a clustering tree, we can see if more 249 

populations can be identified as the clustering resolution is increased and if clusters are 250 

consistent with known biology. For most of the Seurat tutorial a resolution of 0.6 is used, but the 251 

authors note that by moving to a resolution of 0.8, a split can be achieved between memory and 252 

naive CD4 T cells. This is a split that could be anticipated by looking at the clustering tree with the 253 

addition of prior information. 254 

Discussion and conclusion 255 

Clustering similar samples into groups is a useful technique in many fields, but often analysts are 256 

faced with the tricky problem of deciding which clustering resolution to use. Traditional 257 

approaches to this problem typically consider a single cluster or sample at a time and may rely on 258 

prior knowledge of sample labels. Here we present clustering trees, an alternative visualisation 259 

that shows the relationships between clusterings at multiple resolutions. While clustering trees 260 

cannot directly suggest which clustering resolution to use they can be a useful tool for helping to 261 

make that decision, particularly when combined with other metrics or domain knowledge. 262 

Clustering trees display how clusters are divided as resolution increases, which clusters are clearly 263 

separate and distinct, which are related to each other and how samples change groups as more 264 

clusters are produced. Although clustering trees can appear similar to the trees produced from 265 

hierarchical clustering there are several important differences. Hierarchical clustering considers 266 
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the relationships between individual samples and doesn’t provide an obvious way to form groups. 267 

In contrast, clustering trees are independent of any particular clustering method and show the 268 

relationships between clusters, rather than samples, at different resolutions, any of which could 269 

be used for further analysis. 270 

To illustrate the uses of clustering trees we presented a series of simulations and two examples of 271 

real analyses, one using the classical iris dataset and a second based on a complex scRNA-seq 272 

dataset. Both examples demonstrate how a clustering tree can help inform the decision of which 273 

resolution to use and how overlaying extra information can help to validate those clusters. This is 274 

of particular use to scRNA-seq analysis as these datasets are often large, noisy and contain an 275 

unknown number of cell types or clusters. 276 

Even when determining the number of clusters is not a problem, clustering trees can be a valuable 277 

tool. They provide a compact, information dense, visualisation that can display summarised 278 

information across a range of clusters. By modifying the appearance of cluster nodes based on 279 

attributes of the samples they represent, clusterings can be evaluated and identities of clusters 280 

established. Clustering trees potentially have applications in many fields and in the future could 281 

be adapted to be more flexible, such as by accommodating fuzzy clusterings. There may also be 282 

uses for more general clustering graphs to combine results from multiple sets of parameters or 283 

clustering methods. 284 

Methods 285 

clustree 286 

The clustree software package is built for the R statistical programming language. It relies on the 287 

ggraph package (https://github.com/thomasp85/ggraph), which is itself built on the ggplot2 [22] 288 

and tidygraph packages (https://github.com/thomasp85/tidygraph). Clustering trees are 289 

displayed using the Reingold-Tilford tree layout or the Sugiyama layout, both available as part of 290 

the igraph package. 291 
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Simulations 292 

Simulated datasets were constructed by generating points from statistical distributions. The first 293 

simulation (Simulation A) consists of 1000 points randomly generated from a 100 dimensional 294 

space using a uniform distribution between zero and 10. Simulation B consists of a single 295 

normally distributed cluster of 1000 points in 100 dimensions. The centre of this cluster was 296 

chosen from a normal distribution with mean zero and standard deviation 10. Points were then 297 

generated around this centre from a normal distribution with mean equal to the centre point and 298 

a standard deviation of five. The remaining three simulations were produced by adding additional 299 

clusters. In order to have a known relationship between clusters the centre for the new clusters 300 

was created by manipulating the centres of existing clusters. For Cluster 2 a random 100 301 

dimensional vector was generated from a normal distribution with mean zero and standard 302 

deviation two and added to the centre for Cluster 1. Centre 3 was the average of Centre 1 and 303 

Centre 2 plus a random vector from a normal distribution with mean zero and standard deviation 304 

five. To ensure a similar relationship between clusters 3 and 4 as between clusters 1 and 2, Centre 305 

4 was produced by adding half the vector used to produce Centre 2 to Centre 3 plus another 306 

vector from a normal distribution with mean zero and standard deviation two. Points for each 307 

cluster were generated in the same way as for Cluster 1. Simulation C consists of the points in 308 

clusters 1 and 2, Simulation D consists of clusters 1, 2 and 3, Simulation E consists of clusters 1, 2, 309 

3 and 4. Each simulated dataset was clustered using the “kmeans” function in the stats package 310 

with values of 𝑘 from one to eight, a maximum of 100 iterations and 10 random starting positions. 311 

The clustering tree visualisations were produced using the clustree package with the tree layout. 312 

The simulated datasets and the code use to produce them are available from the repository for 313 

this paper (https://github.com/Oshlack/clustree-paper). 314 

Iris dataset 315 

The iris dataset is available as part of R. We clustered this dataset using the “kmeans” function in 316 

the stats package with values of 𝑘 from one to five. Each value of 𝑘 was clustered with a maximum 317 

of 100 iterations and with 10 random starting positions. The clustree package was used to 318 
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visualise the results using the Sugiyama layout. The clustered iris dataset is available as part of 319 

the clustree package. 320 

PBMC dataset 321 

The PBMC dataset was downloaded from the Seurat tutorial page 322 

(http://satijalab.org/seurat/pbmc3k_tutorial.html) and this tutorial was followed for most of the 323 

analysis. Briefly cells were filtered based on the number of genes they express and the percentage 324 

of counts assigned to mitochondrial genes. The data was then log-normalised and 1838 variable 325 

genes identified. Potential confounding variables (number of unique molecular identifiers and 326 

percentage mitochondrial expression) were regressed from the dataset before performing 327 

principal component analysis on the identified variable genes. The first 10 principal components 328 

were then used to build a graph which was partitioned into clusters using Louvain modularity 329 

optimisation [23] with resolution parameters in the range zero to five, in steps of 0.1 between zero 330 

and one and then in steps of 0.5. Clustree was then used to visualise the results using the tree 331 

layout. 332 
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