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Clustering techniques are widely used in the analysis of large data sets to group together samples with 11 
similar properties. For example, clustering is often used in the field of single-cell RNA-sequencing in order 12 
to identify different cell types present in a tissue sample. There are many algorithms for performing 13 
clustering and the results can vary substantially. In particular, the number of groups present in a data set is 14 
often unknown and the number of clusters identified by an algorithm can change based on the parameters 15 
used. To explore and examine the impact of varying clustering resolution we present clustering trees. This 16 
visualisation shows the relationships between clusters at multiple resolutions allowing researchers to see 17 
how samples move as the number of clusters increases. In addition, meta-information can be overlaid on 18 
the tree to inform the choice of resolution and guide in identification of clusters. We illustrate the features 19 
of clustering trees using a series of simulations as well as two real examples, the classical iris dataset and a 20 
complex single-cell RNA-sequencing dataset. Clustering trees can be produced using the clustree R package 21 
available from CRAN (https://CRAN.R-project.org/package=clustree) and developed on GitHub 22 
(https://github.com/lazappi/clustree). 23 
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Introduction 25 

Clustering analysis is commonly used to group similar samples across a diverse range of 26 

applications. Typically, the goal of clustering is to form groups of samples that are more similar to 27 

each other than to samples in other groups. While fuzzy or soft clustering approaches assign each 28 

sample to every cluster with some probability, and hierarchical clustering forms a tree of samples, 29 

most methods form hard clusters where each sample is assigned to a single group. This goal can 30 

be achieved in a variety of ways, such as by considering the distances between samples (e.g. 𝑘-31 
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means [1–3], PAM [4]), areas of density across the dataset (e.g. DBSCAN [5]) or relationships to 32 

statistical distributions [6]. 33 

In many cases the number of groups that should be present in a dataset is not known in advance 34 

and deciding the correct number of clusters to use is a significant challenge. For some algorithms, 35 

such as 𝑘-means clustering, the number of clusters must be explicitly provided. Other methods 36 

have parameters that, directly or indirectly, control the clustering resolution and therefore the 37 

number of clusters produced. While there are methods and statistics (such as the elbow method 38 

[7] or silhouette plots [8]) designed to help analysts decide which clustering resolution to use, 39 

they typically produce a single score which only considers a single set of samples or clusters at a 40 

time. 41 

An alternative approach would be to consider clusterings at multiple resolutions and examine 42 

how samples change groupings as the number of clusters increases. This has lead to a range of 43 

cluster stability measures [9], many of which rely on clustering of perturbed or sub-sampled 44 

datasets. For example, the model explorer algorithm sub-samples a dataset multiple times, 45 

clusters each sub-sampled dataset at various resolutions and then calculates a similarity between 46 

clusterings at the same resolution to give a distribution of similarities which can inform the choice 47 

of resolution [10]. One cluster stability measure that isn’t based on perturbations is that 48 

contained in the SC3 package for clustering single-cell RNA-sequencing data [11]. Starting with a 49 

set of cluster labels at different resolutions each cluster is scored, with clusters awarded increased 50 

stability if they share the same samples as a cluster at another resolution, but penalised for being 51 

at a higher resolution. 52 

A similar simple approach is taken by the clustering tree visualisation we present here, without 53 

calculating scores: (i) a dataset is clustered using any hard clustering algorithm at multiple 54 

resolutions, producing sets of cluster nodes, (ii) the overlap between clusters at adjacent 55 

resolutions is used to build edges, (iii) the resulting graph is presented as a tree. This tree can be 56 

used to examine how clusters are related to each other, which clusters are distinct and which are 57 

unstable. In the following sections we describe how we construct such a tree and present 58 
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 3 

examples of trees built from a classical clustering dataset and a complex single-cell RNA-59 

sequencing (scRNA-seq) dataset. The figures shown here can be produced in R using our publicly 60 

available clustree package. Although clustering trees can not directly provide a clustering 61 

resolution to use they can be a useful tool for exploring and visualising the range of possible 62 

choices. 63 

Building a clustering tree 64 

To build a clustering tree, we start with a set of clusterings allocating samples to groups at several 65 

different resolutions. These could be produced using any hard-clustering algorithm that allows 66 

control of the number of clusters in some way. For example, this could be a set of samples 67 

clustered using 𝑘-means with 𝑘 = 1,2,3 as shown in Figure 1. We sort these clusterings so that 68 

they are ordered by increasing resolution (𝑘), then consider pairs of adjacent clusterings. Each 69 

cluster 𝑐𝑘,𝑖 (where 𝑖 = 1, . . . , 𝑛 and 𝑛 is the number of clusters at resolution 𝑘) is compared with 70 

each cluster 𝑐𝑘+1,𝑗 (where 𝑗 = 1, . . . , 𝑚 and 𝑚 is the number of clusters at resolution 𝑘 + 1). The 71 

overlap between the two clusters is computed as the number of samples that are assigned to both 72 

𝑐𝑘,𝑖 and 𝑐𝑘+1,𝑗. We next build a graph where each node is a cluster and each edge is an overlap 73 

between two clusters. While we refer to this graph as a tree in this paper for simplicity it can more 74 

correctly be described as a polytree, a special case of a directed acyclic graph where the 75 

underlying undirected graph is a tree [12]. 76 
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 77 

Figure 1 Illustration of the steps required to build a clustering tree. First a dataset must be 78 
clustered at different resolutions. The overlap in samples between clusters at adjacent 79 
resolutions is computed and used to calculate the in-proportion for each edge. Finally the edges 80 
are filtered and the graph visualised as a tree. 81 
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Many of the edges will be empty, for example in Figure 1 no samples in Cluster A at 𝑘 = 2 end up 82 

in Cluster B at 𝑘 = 3. In some datasets there may also be edges that contain few samples. These 83 

edges are not informative and result in a cluttered tree. An obvious solution for removing 84 

uninformative, low-count edges is to filter them using a threshold on the number of samples they 85 

represent. However, in this case the count of samples is not the correct statistic to use because it 86 

favours edges at lower resolutions and those connecting larger clusters. Instead we define the in-87 

proportion metric as the ratio between the number of samples on the edge and the number of 88 

samples in the cluster it goes towards. This metric shows the importance of the edge to the higher 89 

resolution cluster independently of the cluster size. We can then apply a threshold to the in-90 

proportion in order to remove less informative edges. 91 

The final graph can then be visualised. In theory any graph layout algorithm could be used but for 92 

the clustree package we have made use of the two algorithms specifically designed for tree 93 

structures available in the igraph package [13]. These are the Reingold-Tilford tree layout, which 94 

places parent nodes above their children [14], and the Sugiyama layout which places nodes of a 95 

directed acyclic graph in layers while minimising the number of crossing edges [15]. Both of these 96 

algorithms can produce attractive layouts and as such we have not found the need to design a 97 

specific layout algorithm for clustering trees. By default the clustree package uses only a subset of 98 

edges when constructing a layout, specifically the highest in-proportion edges for each node. We 99 

have found that this often leads to more interpretable visualisations, however users can choose to 100 

use all edges if desired. 101 

Whichever layout is used the final visualisation places the cluster nodes in a series of layers where 102 

each layer is a different clustering resolution and edges show the transition of samples through 103 

those resolutions. Edges are coloured according to the number of samples they represent and the 104 

in-proportion metric is used to control the edge transparency, highlighting more important edges. 105 

By default, the size of nodes is adjusted according to the number of samples in the cluster and 106 

their colour indicates the clustering resolution. The clustree package also includes options for 107 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

controlling the aesthetics of nodes based on the attributes of samples in the clusters they 108 

represent as shown in the following examples. 109 

While a clustering tree is conceptually similar to the tree produced through hierarchical clustering 110 

there are some important differences. The most obvious are that a hierarchical clustering tree is 111 

the result of a particular clustering algorithm and shows the relationships between individual 112 

samples while the clustering trees described here are independent of clustering method and show 113 

relationships between clusters. The branches of a hierarchical tree show how the clustering 114 

algorithm has merged samples. In contrast, edges in a clustering tree show how samples move 115 

between clusters as the resolution changes and nodes may have multiple parents. While it is 116 

possible to overlay information about samples on a hierarchical tree this is not commonly done 117 

but is a key feature of the clustree package and how clustering trees could be used in practice. 118 

A demonstration using simulations 119 

To demonstrate what a clustering tree can look like in different situations and how it behaves as a 120 

dataset is over-clustered we present some illustrative examples using simple simulations (see 121 

methods). We present five scenarios: random uniform noise (Simulation A), a single cluster 122 

(Simulation B), two clusters (Simulation C),three clusters (Simulation D) and four clusters 123 

(Simulation E). Each cluster consists of 1000 samples (points) generated from a 100 dimensional 124 

normal distribution and each synthetic dataset has been clustered using 𝑘-means clustering with 125 

𝑘 = 1, . . . ,8. We then use the clustree package to produce clustering trees for each dataset (Figure 126 

2). 127 
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 8 

Figure 2 Five synthetic datasets used to demonstrate clustering trees. For each dataset a scatter 129 
plot of the first two principal components, a default clustering tree and and clustering tree with 130 
nodes coloured by the SC3 stability index from purple (lowest) to yellow (highest) are shown. 131 
The five datasets contain: A) random uniform noise, B) a single cluster, C) two clusters, D) three 132 
clusters and E) four clusters. 133 

Looking at the first two examples (uniform noise (Figure 2A) and a single cluster (Figure 2B)) we 134 

can clearly see how a clustering tree behaves when a clustering algorithm returns more clusters 135 

than are truly present in a dataset. New clusters begin to form from multiple existing clusters and 136 

many samples switch between branches of the tree resulting in low in-proportion edges. Unstable 137 

clusters may also appear then disappear as the resolution increases as seen in Figure 2E. As we 138 

add more structure to the datasets the clustering trees begin to form clear branches and low in-139 

proportion edges tend to be confined to sections of the tree. By looking at which clusters are 140 

stable and where low in-proportion edges arise we can infer which areas of the tree are likely to be 141 

the result of true clusters and which are caused by over-clustering. 142 

The second clustering tree for each dataset shows nodes coloured according to the SC3 stability 143 

index for each cluster. As we would expect in the first two examples no cluster receives a high 144 

stability score. However, while we clearly see two branches in the clustering tree for the two 145 

cluster example (Simulation C) this is not reflected in the SC3 scores. No cluster receives a high 146 

stability score, most likely due to the high number of samples moving between clusters as the 147 

resolution increases. As there are more true clusters in the simulated datasets the SC3 stability 148 

scores become more predictive of the correct resolution to use, however it is important to look at 149 

the stability scores of all clusters at a particular resolution as taking the highest individual cluster 150 

stability score could lead to the incorrect resolution being used, as can be seen in the four cluster 151 

example (Simulation E). These examples show how clustering trees can be used to display 152 

existing clustering metrics in a way that can help to inform parameter choices. 153 

A simple example 154 

To further illustrate how a clustering tree is built, we will work through an example using the 155 

classical iris dataset [16]. This dataset contains measurements of the sepal length, sepal width, 156 

petal length and petal width from 150 iris flowers, 50 from each of three species: Iris setosa, Iris 157 
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 9 

versicolor and Iris virginica. The iris dataset is commonly used as example for both clustering 158 

and classification problems with the Iris setosa samples being significantly different to, and 159 

linearly separable from, the other samples. We have clustered this dataset using 𝑘-means 160 

clustering with 𝑘 = 1, . . . ,5 and produced the clustering tree shown in Figure 3A. 161 

 162 

Figure 3 Clustering trees based on 𝑘-means clustering of the iris dataset. In A, nodes are 163 
coloured according to the value of 𝑘 and sized according to the number of samples they 164 
represent. Edges are coloured according to the number of samples (from blue representing few 165 
to yellow representing many) and the transparency adjusted according to the in-proportion, 166 
with stronger lines showing edges that are more important to the higher resolution cluster. 167 
Cluster labels are randomly assigned by the 𝑘-means algorithm. B shows the same tree with the 168 
node colouring changed to show the mean petal length of the samples in each cluster. 169 

We see that there is one branch of the tree that is clearly distinct (presumably representing Iris 170 

setosa), remaining unchanged regardless of the number of clusters. On the other side we see the 171 

cluster at 𝑘 = 2 cleanly splits into two clusters (presumably Iris versicolor and Iris virginica) at 172 

𝑘 = 3 but as we move to 𝑘 = 4 and 𝑘 = 5 we see clusters being formed from multiple branches 173 

with more low in-proportion edges. As we have seen in the simulated examples, this kind of 174 

pattern can indicate that the data has become over-clustered and we have begun to introduce 175 

artificial groupings. 176 

We can check our assumption that the distinct branch represents the Iris setosa samples and the 177 

other two clusters at 𝑘 = 3 are Iris versicolor and Iris virginica by overlaying some known 178 

information about the samples. In Figure 3B we have coloured the nodes by the mean petal length 179 
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 10 

of the samples they contain. We can now see that clusters in the distinct branch have the shortest 180 

petals, with Cluster 1 at 𝑘 = 3 having an intermediate length and Cluster 3 the longest petals. This 181 

feature is known to separate the samples into the expected species with Iris setosa having the 182 

shortest petals on average, Iris versicolor an intermediate length and Iris virginica the longest. 183 

Although this is a very simple example it highlights some of the benefits of viewing a clustering 184 

tree. We get some indication of the correct clustering resolution by examining the edges and we 185 

can overlay known information to assess the quality of the clustering. For example, if we observed 186 

that all clusters had the same mean petal length it would suggest that the clustering has not been 187 

successful as we know this is an important feature that separates the species. We could potentially 188 

learn more by looking at which samples follow low proportion edges or overlaying a series of 189 

features to try and understand what causes particular clusters to split. 190 

Clustering trees for single-cell RNA-seq data 191 

One field that has begun to make heavy use of clustering techniques is the analysis of single-cell 192 

RNA-sequencing (scRNA-seq) data. Single-cell RNA-sequencing is a recently developed 193 

technology that can measure how genes are expressed in thousands to millions of individual cells 194 

[18]. This technology has been rapidly adopted in fields like developmental biology and 195 

immunology where it is valuable to have information from single cells rather than measurements 196 

that are averaged across the many different cells in a sample using older RNA sequencing 197 

technologies. One of the key uses for scRNA-seq is to discover and interrogate the different cell 198 

types present in a sample of a complex tissue. In this situation, clustering is typically used to 199 

group similar cells based on their gene expression profiles. Differences in gene expression 200 

between groups can then be used to infer the identity or function of those cells [19]. The number 201 

of cell types (clusters) in an scRNA-seq dataset can vary depending on factors such as the tissue 202 

being studied, its developmental or environmental state and the number of cells captured. Often 203 

the number of cells types is not known before the data is generated and some samples can contain 204 
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dozens of clusters. Therefore, deciding which clustering resolution to use is an important 205 

consideration in this application. 206 

As an example of how clustering trees can be used in the scRNA-seq context we consider a 207 

commonly used Peripheral Blood Mononuclear Cell (PBMC) dataset. This dataset was originally 208 

produced by 10x Genomics and contains 2700 peripheral blood monocuclear cells, representing a 209 

range of well-studied immune cell types [20]. We have analysed this dataset using the Seurat 210 

package [21], a commonly used toolkit for scRNA-seq analysis, following the instructions in their 211 

tutorial with the exception of varying the clustering resolution parameter from zero to five (see 212 

methods). Seurat uses a graph-based clustering algorithm and the resolution parameter controls 213 

the partitioning of this graph, with higher values resulting in more clusters. The clustering trees 214 

produced from this analysis are shown in Figure 4. 215 

 216 

Figure 4 Two clustering trees of a dataset of 2700 Peripheral Blood Mononuclear Cells 217 
(PBMCs). A) results from clustering using Seurat with resolution parameters from zero to one. 218 
At a resolution of 0.1 we see the formation of four main branches, one of which continues to split 219 
up to a resolution of 0.4, after which there are only minor changes. B) resolutions from zero to 220 
five. At the highest resolutions we begin to see many low in-proportion edges indicating cluster 221 
instability. Seurat labels clusters according to their size with Cluster 0 being the largest. 222 

The clustering tree covering resolutions zero to one in steps of 0.1 (Figure 4A) shows that four 223 

main branches form at a resolution of just 0.1. One of these branches, starting with Cluster 3 at 224 

resolution 0.1, remains unchanged while the branch starting with Cluster 2 splits only once at a 225 

resolution of 0.4. Most of the branching occurs in the branch starting with Cluster 1 which 226 
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consistently has sub-branches split off to form new clusters as the resolution increases. There are 227 

two regions of stability in this tree; at resolution 0.4-0.5 and resolution 0.7-1.0 where the branch 228 

starting at Cluster 0 splits in two. 229 

Figure 4B shows a clustering tree with a greater range of resolutions, from zero to five in steps of 230 

0.5. By looking across this range we can see what happens when the algorithm is forced to 231 

produce more clusters than are likely to be truly present in this dataset. As over-clustering occurs 232 

we begin to see more low in-proportion edges and new clusters forming from multiple parent 233 

clusters. This suggests that those areas of the tree are unstable and that the new clusters being 234 

formed are unlikely to represent true groups in the dataset. 235 

Known marker genes are commonly used to identify the cell types that specific clusters 236 

correspond to. Overlaying gene expression information onto a clustering tree provides an 237 

alternative view that can help to indicate when clusters containing pure cell populations are 238 

formed. Figure 5 shows the PBMC clustering tree in Figure 4A overlaid with the expression of 239 

some known marker genes. 240 

 241 
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Figure 5 Clustering trees of the PBMC dataset coloured according to the expression of known 242 
markers. The node colours indicate the average of the log2 gene counts of samples in each 243 
cluster. CD19 (A) identifies B cells, CD14 (B) shows a population of monocytes, CD3D (C) is a 244 
marker of T cells and CCR7 (D) shows the split between memory and naive CD4 T cells. 245 

By adding this extra information, we can quickly identify some of the cell types. CD19 (Figure 5A) 246 

is a marker of B cells and is clearly expressed in the most distinct branch of the tree. CD14 (Figure 247 

5B) is a marker of a type of monocyte, which becomes more expressed as we follow one of the 248 

central branches, allowing us to see which resolution identifies a pure population of these cells. 249 

CD3D (Figure 5C) is a general marker of T cells and is expressed in two separate branches, one 250 

which splits into low and high expression of CCR7 (Figure 5D), separating memory and naive 251 

CD4 T cells. By adding expression of known genes to a clustering tree, we can see if more 252 

populations can be identified as the clustering resolution is increased and if clusters are 253 

consistent with known biology. For most of the Seurat tutorial a resolution of 0.6 is used, but the 254 

authors note that by moving to a resolution of 0.8, a split can be achieved between memory and 255 

naive CD4 T cells. This is a split that could be anticipated by looking at the clustering tree with the 256 

addition of prior information. 257 

Discussion and conclusion 258 

Clustering similar samples into groups is a useful technique in many fields, but often analysts are 259 

faced with the tricky problem of deciding which clustering resolution to use. Traditional 260 

approaches to this problem typically consider a single cluster or sample at a time and may rely on 261 

prior knowledge of sample labels. Here we present clustering trees, an alternative visualisation 262 

that shows the relationships between clusterings at multiple resolutions. While clustering trees 263 

cannot directly suggest which clustering resolution to use they can be a useful tool for helping to 264 

make that decision, particularly when combined with other metrics or domain knowledge. 265 

Clustering trees display how clusters are divided as resolution increases, which clusters are clearly 266 

separate and distinct, which are related to each other and how samples change groups as more 267 

clusters are produced. Although clustering trees can appear similar to the trees produced from 268 

hierarchical clustering there are several important differences. Hierarchical clustering considers 269 
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the relationships between individual samples and doesn’t provide an obvious way to form groups. 270 

In contrast, clustering trees are independent of any particular clustering method and show the 271 

relationships between clusters, rather than samples, at different resolutions, any of which could 272 

be used for further analysis. 273 

To illustrate the uses of clustering trees we presented a series of simulations and two examples of 274 

real analyses, one using the classical iris dataset and a second based on a complex scRNA-seq 275 

dataset. Both examples demonstrate how a clustering tree can help inform the decision of which 276 

resolution to use and how overlaying extra information can help to validate those clusters. This is 277 

of particular use to scRNA-seq analysis as these datasets are often large, noisy and contain an 278 

unknown number of cell types or clusters. 279 

Even when determining the number of clusters is not a problem, clustering trees can be a valuable 280 

tool. They provide a compact, information dense, visualisation that can display summarised 281 

information across a range of clusters. By modifying the appearance of cluster nodes based on 282 

attributes of the samples they represent, clusterings can be evaluated and identities of clusters 283 

established. Clustering trees potentially have applications in many fields and in the future could 284 

be adapted to be more flexible, such as by accommodating fuzzy clusterings. There may also be 285 

uses for more general clustering graphs to combine results from multiple sets of parameters or 286 

clustering methods. 287 

Methods 288 

clustree 289 

The clustree software package (v0.2.0) is built for the R statistical programming language 290 

(v3.5.0). It relies on the ggraph package (v1.0.1) [22], which is itself built on the ggplot2 (v2.2.1) 291 

[23] and tidygraph (v1.1.0) [24] packages. Clustering trees are displayed using the Reingold-292 

Tilford tree layout or the Sugiyama layout, both available as part of the igraph package (v1.2.1). 293 

Figure panels shown here were produced using the cowplot package (v0.9.2) [25]. 294 
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Simulations 295 

Simulated datasets were constructed by generating points from statistical distributions. The first 296 

simulation (Simulation A) consists of 1000 points randomly generated from a 100 dimensional 297 

space using a uniform distribution between zero and 10. Simulation B consists of a single 298 

normally distributed cluster of 1000 points in 100 dimensions. The centre of this cluster was 299 

chosen from a normal distribution with mean zero and standard deviation 10. Points were then 300 

generated around this centre from a normal distribution with mean equal to the centre point and 301 

a standard deviation of five. The remaining three simulations were produced by adding additional 302 

clusters. In order to have a known relationship between clusters the centre for the new clusters 303 

was created by manipulating the centres of existing clusters. For Cluster 2 a random 100 304 

dimensional vector was generated from a normal distribution with mean zero and standard 305 

deviation two and added to the centre for Cluster 1. Centre 3 was the average of Centre 1 and 306 

Centre 2 plus a random vector from a normal distribution with mean zero and standard deviation 307 

five. To ensure a similar relationship between clusters 3 and 4 as between clusters 1 and 2, Centre 308 

4 was produced by adding half the vector used to produce Centre 2 to Centre 3 plus another 309 

vector from a normal distribution with mean zero and standard deviation two. Points for each 310 

cluster were generated in the same way as for Cluster 1. Simulation C consists of the points in 311 

clusters 1 and 2, Simulation D consists of clusters 1, 2 and 3, Simulation E consists of clusters 1, 2, 312 

3 and 4. Each simulated dataset was clustered using the “kmeans” function in the stats package 313 

with values of 𝑘 from one to eight, a maximum of 100 iterations and 10 random starting positions. 314 

The clustering tree visualisations were produced using the clustree package with the tree layout. 315 

The simulated datasets and the code use to produce them are available from the repository for 316 

this paper [26]. 317 

Iris dataset 318 

The iris dataset is available as part of R. We clustered this dataset using the “kmeans” function in 319 

the stats package with values of 𝑘 from one to five. Each value of 𝑘 was clustered with a maximum 320 

of 100 iterations and with 10 random starting positions. The clustree package was used to 321 
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visualise the results using the Sugiyama layout. The clustered iris dataset is available as part of 322 

the clustree package. 323 

PBMC dataset 324 

The PBMC dataset was downloaded from the Seurat tutorial page [27] and this tutorial was 325 

followed for most of the analysis using Seurat version 2.3.1. Briefly cells were filtered based on the 326 

number of genes they express and the percentage of counts assigned to mitochondrial genes. The 327 

data was then log-normalised and 1838 variable genes identified. Potential confounding variables 328 

(number of unique molecular identifiers and percentage mitochondrial expression) were 329 

regressed from the dataset before performing principal component analysis on the identified 330 

variable genes. The first 10 principal components were then used to build a graph which was 331 

partitioned into clusters using Louvain modularity optimisation [28] with resolution parameters 332 

in the range zero to five, in steps of 0.1 between zero and one and then in steps of 0.5. Clustree 333 

was then used to visualise the results using the tree layout. 334 

Availability of source code and requirements 335 

Project name: clustree 336 

Project home page: https://github.com/lazappi/clustree 337 

Operating systems(s): Linux, MacOS, Windows 338 

Programming language: R (>= 3.4) 339 

Other requirements: None 340 

License: GPL-3 341 

Any restrictions to use by non-academics: None 342 

RRID: SCR_016293 343 

 344 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/lazappi/clustree


 17 

Availability of data and materials 345 

The clustree package is available from CRAN [29] and is being developed on GitHub [30]. The 346 

code and datasets used for the analysis in this paper are also available from GitHub [26]. The 347 

clustered iris dataset is included as part of clustree and the PBMC dataset can be downloaded 348 

from the Seurat tutorial page [27] or the paper GitHub repository. Snapshots of the code are 349 

available in the GigaScience repository, GigaDB [31]. 350 
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