Supplementary material

	Model of PH	Dosing	Study design	Findings
Hansen et al. 2017 ¹	Rats, PTB	3 mg/kg/day p.o.	7 weeks prevention	Improved RV function, no increase in RV myocardial oxygen consumption, improved RV myocardial external efficiency.
Hansen et al. 2016 ²	Rats, Sugen5416+ hypoxia	3 mg/kg/day p.o.	10 weeks prevention and 6 weeks reversal treatment in established RHF	Improved RV function, reduced RV afterload, and improved right ventricular-pulmonary arterial coupling. Reduced pulmonary arterial occlusive lesions, reduced BNP and ANP, increased capillary density, reduced cardiomyocyte size.
Hillgaard et al. 2016 ³	Rats, PTB	3 mg/kg/day p.o.	7 weeks prevention and 4 weeks reversal treatment in RHF	Improved RV function and contractility.
Vildbrad et al. 2014 ⁴	Rats, PTB and MCT	12 μg/kg for 10 min, 60 μg/kg for 10 min	Acute treatment in established RHF	Improved RV contractility and RV lusitropy in both models. Improved RV function in the MCT model but not in the PTB model. Reduced mean systemic

Table 1: Levosimendan in experimental PH and associated right heart failure (RHF).

				blood pressure.
Wiklund et al. 2012 ⁵	Pigs, hypoxia	6 μg/kg for 10 min, 0.1 μg/kg for 10 min, 0.2 μg/kg for 70 min	Acute treatment in acute PH	Improved RV function. Reduced mPAP and PVR.
Reverman et al. 2011 ⁶	Rats, MCT	3 mg/kg/day p.o.	3 weeks reversal treatment	Reduced pulmonary vascular medial wall thickness and proliferation of pulmonary arterial smooth muscle cells. Reduced RV hypertrophy.
Schwarte et al. 2011 ⁷	Dogs, hypoxia	20.0 μg/kg for 15 min,0.25 μg/kg for the remainingperiod	Acute treatment in acute PH	Improved RV function and contractility. Decreased systemic vascular resistance.
Chew et al. 2011 ⁸	Pigs, endotoxin- induced PH	0.2 μg/kg/min for 6 hours	Acute treatment in acute PH	No improvement in cardiac, renal or liver function. Increased pulmonary capillary wedge pressure. Hyperlactataemia, acidosis and increases in plasma pro-inflammatory cytokines.
Boost et al. 2008 ⁹	Rats, ventilator- induced lung injury	Inhalation of 240 μg, or inhalation of 24 μg, or 24 μg/kg i.v. for 10 min	Acute treatment before lung injury	Improved survival and reduced release of inflammatory mediators.
Missant et	Pigs, PA	120 μg/kg/min for 10 min,	Acute treatment in acute PH	Improved RV contractility, reduced RV afterload,

al. 2007 ¹⁰	constriction	60 μg/kg/min for 45 min		and restored right ventricular arterial coupling.
	+ischemia/reper			Increased coronary blood flow.
	fusion			
Kerbaul et	Piglets, repeated	20 µg/kg for 10 min,	Acute treatment in acute PH	Improved RV contractility, reduced RV afterload,
al. 2007 ¹¹	acute pulmonary	$0.2 \ \mu g/kg/min$ for 20 min		and restored right ventricular arterial coupling.
	embolisms			
Kerbaul et	Dogs, transient	12 µg/kg for 10 min,	Acute treatment in acute PH	Improved RV contractility, reduced RV afterload,
al. 2006 ¹²	PA constriction	0.1 µg/kg/min for 20 min,		and restored right ventricular arterial coupling.
		0.1 µg/kg/min for 30 min		
Leather et	Pigs, controls	40 µg/kg/hour for 10 min,	Acute treatment in healthy	Improved RV function and contractility. No change
al. 2003 ¹³		20 µg/kg/hour for 30 min,	pigs	in right ventricular arterial coupling. Improved RV
		80 μg/kg/hour for 10 min,		lusitropy. No change in right coronary artery flow
		40 µg/kg/hour for 30 min,		and RV oxygen consumption. RV mechanical
		160 μg/kg/hour for 10 min,		efficiency decreased at the highest dose.
		80 µg/kg/hour for 30 min		
De Witt et	Cats,	0.3, 1, or 3 µg injection into	Acute treatment in acute PH	Reduced pulmonary arterial perfusion pressure.
al. 2002 ¹⁴	thromboxane-	the perfused lobar artery		
	induced PAH			

ANP, atrial natriuretic peptide; BNP, B-type natriuretic peptide; MCT, monocrotaline; mPAP, mean pulmonary arterial pressure; PA, pulmonary artery; PAH, pulmonary arterial hypertension; PH, pulmonary hypertension; PTB, pulmonary trunk banding; PVR, pulmonary vascular resistance; RHF, right heart failure; RV, right ventricular.

Table 2	: Le	vosime	ndan	in	PAH
---------	------	--------	------	----	-----

Reference	Study	n	Population	Comparator	Dose	Follow	Findings
	design					up	
Jiang et al.	Single arm,	45	PAH patients	None	0.05-0.1µg/kg/min up to 12.5	7 days	WHO-FC improved by one class,
2017 ¹⁵	prospective		with		mg		improvement in Borg dyspnea scores,
			severe acute RHF,				6-min walk test and NT-proBNP.
			WHO-FC III-IV				
Martyniuk et	Prospective,	9	iPAH and severe	None	24-hour intravenous	12	24 hour: Reduced PVR and PAP.
al. 2012 ¹⁶	single arm		RHF, NYHA		levosimendan infusion	weeks	Increased exercise tolerance. Reduced
			class III and IV				NT-proBNP.
							12 weeks: Preserved improved
							functional status. No changes in the
							achieved hemodynamic parameters. No
							clinically relevant adverse reactions.
Cavusoglu et	Case report	2	Acutely	None	12 μg/kg in 10 min,		Increase in PAP.
al. 2009 ¹⁷			decompensated		0.1µg/kg/min for 60 min,		
			iPAH with		0.2 μg/kg/min until		
			negative		discontinued		

			vasoreactive				
			response				
Kleber et al.	RCT	28	PH patients,	Placebo	Visit 1:	12	Reduced PVR and PAP. Continued
2009 ¹⁸			NYHA class III to		12 µg/kg in 10 min,	weeks	efficacy with repeated dosing. No
			IV		0.1 µg/kg/min for 50 min,		development of tolerance.
					$0.2 \ \mu g/kg/min$ for 23 hours.		
					Visit 2-5:		
					$0.2 \ \mu g/kg/min$ for 6 hours		

CHD, congenital heart disease; iPAH, idiopathic pulmonary arterial hypertension; LHD, left heart disease; NT-proBNP, N-terminal probrain natriuretic peptide; NYHA, New York Heart Association; PAP, pulmonary arterial pressure; PVR, pulmonary vascular resistance; WHO-FC, world health organization functional class.

Reference	Study	n	Population	Inclusion criteria	Compara	Dose	Follow	Findings
	design				tor		-up	
Mishra et al.	RCT	40	Patients	LVEF <50%/60%	Milrinone	10 µg/kg in 10	24	Reduced mPAP and PVR
2016 ¹⁹			undergoing	and PAH (RVSP		min,	hours	index, and improved
			valve	>50 mmHg, or		0.1 µg/kg/min for		biventricular function to the
			replacement	mPAP >40 mmHg		24 hours		same extent as milrinone.
			with PH	or sPAP exceeding				Levosimendan resulted in a
				50% of systemic				greater increase in heart rate,
				systolic pressure).				decrease in systemic vascular
								resistance, and a greater need
								for norepinephrine.
Alibaz-Oner	Single arm,	30	NYHA III-IV,	LVEF <40%	Baseline	0.05 µg/kg/min	72	Improved RV systolic function
et al. 2013 ²⁰	prospective		ischaemic LHF			for 48 hours	hours	indicated by TDI derived
								parameters. No change in RV
								diastolic function. Reduced
								sPAP and BNP. Improved
								NYHA class.

Table 3: Levosimendan in PH caused by left heart failure

Sponga et al.	Single arm,	21	Patients		Baseline	0.1 to 0.2	72	Improved CI. Decreased PAP,
2012 ²¹	prospective		admitted for			µg/kg/min for 48	hours	PCWP, and central venous
			LVAD with RV			hours		pressure.
			dysfunction and					
			RV dilatation					
Russ et al.	Single arm,	25	LHF following		Baseline	12 μg/kg/min for	48	Improved RV and LV
2009 ²²	prospective		acute			10 min,	hours	contractility. Decreased RV
			myocardial			0.1 µg/kg/min for		afterload.
			infarction			50 min,		
						0.05-0.2		
						µg/kg/min for 23		
						hours.		
Yilmaz et al.	RCT	40	NYHA III-IV,	LVEF 35%.	Dobutami	0.1 µg/kg/min for	24	Improved RV function and
2009 ²³			acute LHF	RV dysfunction	ne	6 hours,	hours	decreased sPAP to the same
				with RV fractional		0.2 µg/kg/min for		extent as dobutamine. TAPSE,
				area change 24%.		18 hours		24-h urine output, and
								creatinine improved greater in
								patients with levosimendan

								compared to dobutamine.
Poelzl et al.	Single arm,	18	Acute LHF	LVEF ≤30%,	Baseline	6-12 µg/kg in 10	24	Improved RV and LV
2008 ²⁴	prospective			CI $\leq 2.5 \text{ l/min/m}^2$,		min,	hours	contractility. No change in RV
				RAP $\geq 10 \text{ mmHg}$,		0.075-0.2		afterload. Decreased PCWP
				PCWP ≥15 mmHg		µg/kg/min for 24		and systemic vascular
						h		resistance.
Duygu et al.	RCT	62	NYHA III-IV,	LVEF <40%	Dobutami	6–12 μg/kg in 10	24	Improved RV systolic and
2008 ²⁵			acute LHF due		ne	min,	hours	diastolic function. Dobutamine
			to ischaemic			0.1 µg/kg/min for		did not improve RV function.
			cardiomyopathy			24 hours		Reduced sPAP to a greater
								extent than dobutamine.
Parissis et al.	RCT	54	NYHA III-IV,	LVEF <35%	Placebo	0.1-0.2	48	Improved Doppler
2006 ²⁶			LV systolic			µg/kg/min for 24	hours	echocardiographic markers of
			dysfunction			h		systolic and diastolic RV
								function. Decreased systolic
								PAP. Reduced BNP levels.
								Altered the balance between
								pro- and anti-inflammatory

cytokines in favor of the anti-

inflammatory activation.

	Ukkonen et	Randomized	8	NYHA III-IV,		Placebo	18 µg/kg in 10		Improved LV function.
1	al. 2000 ²⁷	double-		congestive heart			min,		Reduced coronary, pulmonary,
		blind cross-		failure			0.3 µg/kg/min		and systemic vascular
		over							resistance. Increased mean
									myocardial blood flow.
									Neutral on biventricular
									oxygen consumption and LV
									efficiency. Improved RV
									mechanical efficiency.
;	Slawsky et	Double-	146	NYHA III-IV,	LVEF < 30%	Placebo	6 μg/kg bolus	6 hours	Improved LV function.
:	al. 2000 ²⁸	blinded		LV systolic	PCWP > 15 mmHg		initially and at		Decreases PCWP, mRAP, and
		RCT		dysfunction	$CI < 2.5 L/min/m^2$		hourly interval		mPAP. Improved dyspnea and
							0.1-0.4		fatigue.
							µg/kg/min for 6		
							hours		

BNP, B-type natriuretic peptide; CI, cardiac index; LHF, left heart failure; LV, left ventricular; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; PAOP, pulmonary artery occlusion pressure; PAP, pulmonary arterial pressure; PCWP, pulmonary capillary wedge pressure; RAP, right atrial pressure; RCT, randomized clinical trial; RV, right ventricular; TDI, tissue doppler imaging.

Table 4: Levosimendan in PH and congenital heart disease (CHD)

Reference	Design	n	Population	Inclusion	Compara	Dose	Follow	Findings
				criteria	tor		up	
Rafiq et al.	Case	1	End stage cardiac		Baseline	Pulsed i.v.	Until	Reduced hospital admissions, improved
2015 ²⁹	study		failure and PH due to			levosimendan;	death	exercise tolerance, no longer home
			CHD. 30 years old.			Initially 2 vials per		diuresis. Survival 1 year longer than
						month for 6 months,		expected.
						reduced to 1 vial per		
						month for 4 months		
Schwienba	Case	1	14-year-old boy with		Baseline	0.1 μg/kg/min for 24	7	Decreased pulmonary capillary wedge
cher et al.	study		LV dysfunction and			hours	weeks	pressure, increased mPAP and
2013 ³⁰			PH due to CHD,					transpulmonary pressure gradient, CI
			referred for heart-					remained stable.
			lung					
			transplantation.					
Ebade et	RCT	5	Children with cardiac	sPAP	Dobutami	15 μg/kg in 10 min,	20	Both levosimendan and dobutamine
al. 2013 ³¹		0	septal defects	exceeding	ne	$0.1-0.2 \mu g/kg/min$ for	hours	reduced PAP but mPAP was lower with

			assigned for surgical	50% of		24 hours		levosimendan compared with
			correction.	systemic				dobutamine. Both levosimendan and
			Mean age 17.5	systolic				dobutamine improved CI but mean CI
			months.	pressure				was higher with levosimendan
								compared with dobutamine.
Lechner et	Case	1	Patient with TGA		Baseline	0.05 µg/kg/min	24	Improved LV function, reduced left
al. 2007 ³²	report		who underwent			increased to	hours	atrial pressure, reduced sPAP,
			arterial switch			0.1 µg/kg/min for 24		normalized serum lactate level,
			operation.			hours		increased mixed venous saturation.
			Postoperative LCOS					
			and sPAP 50 mmHg,					
			but no RV failure.					
			Age 32 weeks.					
Turanlahti	Single	1	Children with CHD		Baseline	12 µg/kg in 10 min	4 hours	Pharmacokinetic profile in children with
et al. 2004 ³³	arm,	3	in the preoperative					CHD is similar to that in adults LHF.
	prospecti		setting without					No significant changes in
	ve, open		LCOS. Age 3					hemodynamics. There were no serious
	label,		months-7 years.					adverse events or unexpected adverse

	phase II						drug reactions during the study.
Luther et	Case	1	9-months-old child	Baseline	0.1 μg/kg/min for 24	7	Improved LV function, increased CI,
al. 2004 ³⁴	report		with LV dysfunction and PH due to CHD.		hours	months	decreased pulmonary vascular resistance, and reduced the frequency and extent of the PH crises.
Braun et al. 2004 ³⁵	Case report	1	2-month-old babywith CHD.Postoperative acuteLHF, PH, and right-left-shunt.	Baseline	24 μg/kg bolus, 0.2 μg/kg/min for 48 hours	6 days	Improvement of LV function. Reduction of PVR, no right-left-shunt,

CHD, congenital heart disease; CI, cardiac index; LCOS, low cardiac output syndrome; LHF, left heart failure; LV, left ventricular; PH, pulmonary hypertension; PAP, pulmonary arterial pressure; TGA, transposition of the great arteries.

References:

1. Hansen MS, Andersen A, Tolbod L, Hansson N, Nielsen R, Vonk-Noordegraaf A, Nielsen-Kudsk, JE. Levosimendan improves cardiac function and myocardial efficiency in rats with right ventricular failure. *Pulmonary circulation*. Forthcoming 2017.

2. Hansen MS, Andersen A, Holmboe S, et al. Levosimendan prevents and reverts pressure-overload induced right ventricular failure. *European heart journal*. 2016; 37: 625.

3. Hillgaard TK, Andersen A, Andersen S, et al. Levosimendan Prevents Pressure-Overload-induced Right Ventricular Failure. *Journal of cardiovascular pharmacology*. 2016; 67: 275-82.

4. Vildbrad MD, Andersen A, Holmboe S, Ringgaard S, Nielsen JM and Nielsen-Kudsk JE. Acute effects of levosimendan in experimental models of right ventricular hypertrophy and failure. *Pulmonary circulation*. 2014; 4: 511-9.

5. Wiklund A, Kylhammar D and Radegran G. Levosimendan attenuates hypoxia-induced pulmonary hypertension in a porcine model. *Journal of cardiovascular pharmacology*. 2012; 59: 441-9.

Revermann M, Schloss M, Mieth A, et al. Levosimendan attenuates pulmonary vascular remodeling. *Intensive care medicine*.
 2011; 37: 1368-77.

7. Schwarte LA, Schwartges I, Thomas K, Schober P and Picker O. The effects of levosimendan and glibenclamide on circulatory and metabolic variables in a canine model of acute hypoxia. *Intensive care medicine*. 2011; 37: 701-10.

8. Chew MS, Hawthorne WJ, Bendall J, et al. No beneficial effects of levosimendan in acute porcine endotoxaemia. *Acta anaesthesiologica Scandinavica*. 2011; 55: 851-61.

9. Boost KA, Hoegl S, Dolfen A, et al. Inhaled levosimendan reduces mortality and release of proinflammatory mediators in a rat model of experimental ventilator-induced lung injury. *Critical care medicine*. 2008; 36: 1873-9.

10. Missant C, Rex S, Segers P and Wouters PF. Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. *Critical care medicine*. 2007; 35: 707-15.

11. Kerbaul F, Gariboldi V, Giorgi R, et al. Effects of levosimendan on acute pulmonary embolism-induced right ventricular failure. *Critical care medicine*. 2007; 35: 1948-54.

12. Kerbaul F, Rondelet B, Demester JP, et al. Effects of levosimendan versus dobutamine on pressure load-induced right ventricular failure. *Critical care medicine*. 2006; 34: 2814-9.

13. Leather HA, Ver Eycken K, Segers P, Herijgers P, Vandermeersch E and Wouters PF. Effects of levosimendan on right ventricular function and ventriculovascular coupling in open chest pigs. *Critical care medicine*. 2003; 31: 2339-43.

14. De Witt BJ, Ibrahim IN, Bayer E, et al. An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. *Anesthesia and analgesia*. 2002; 94: 1427-33, table of contents.

15. Jiang R, Zhao QH, Wu WH, et al. Efficacy and safety of a calcium sensitizer, levosimendan, in patients with right heart failure due to pulmonary hypertension. *The clinical respiratory journal*. 2017.

16. Martyniuk TV, Arkhipova OA, Kobal EA, Danilov NM and Chazova IE. [Possibilities of using levosimendan in patients with idiopathic pulmonary hypertension]. *Terapevticheskii arkhiv.* 2012; 84: 83-8.

17. Cavusoglu Y, Beyaztas A, Beyaztas S, Tek M, Birdane A and Ata Eskischir N. Levosimendan is not effective in reducing pulmonary pressures and improving clinical symptoms in patients with acutely decompensated idiopathic pulmonary arterial hypertension. *European Journal of Heart Failure, Supplement.* 2009; 8: ii177.

18. Kleber F, Bollmann T, Borst M, et al. Repetitive dosing of intravenous levosimendan improves pulmonary hemodynamics in patients with pulmonary hypertension: results of a pilot study. *Journal of clinical pharmacology* 49: 109-15 (2009).

 Mishra A, Kumar B, Dutta V, Arya VK and Mishra AK. Comparative Effect of Levosimendan and Milrinone in Cardiac Surgery Patients With Pulmonary Hypertension and Left Ventricular Dysfunction. *Journal of cardiothoracic and vascular anesthesia*.
 2016; 30: 639-46.

20. Alibaz-Oner F, Gurbuz O, Oner E, Yurdakul S and Erguney M. Impact of levosimendan on right ventricular functions by using novel tissue Doppler derived indices in patients with ischaemic left ventricular failure. *Kardiologia polska* 71: 1036-41 (2013).

21. Sponga S, Ivanitskaia E, Potapov E, Krabatsch T, Hetzer R and Lehmkuhl H. Preoperative treatment with levosimendan in candidates for mechanical circulatory support. *ASAIO journal (American Society for Artificial Internal Organs : 1992)*. 2012; 58: 6-11.

22. Russ MA, Prondzinsky R, Carter JM, et al. Right ventricular function in myocardial infarction complicated by cardiogenic shock: Improvement with levosimendan. *Critical care medicine*. 2009; 37: 3017-23.

23. Yilmaz M, Yontar C, Erdem A, et al. Comparative effects of levosimendan and dobutamine on right ventricular function in patients with biventricular heart failure. *Heart and vessels* 24: 16-21 (2009).

24. Poelzl G, Zwick RH, Grander W, et al. Safety and effectiveness of levosimendan in patients with predominant right heart failure. *Herz.* 2008; 33: 368-73.

17

25. Duygu H, Ozerkan F, Zoghi M, et al. Effect of levosimendan on right ventricular systolic and diastolic functions in patients with ischaemic heart failure. *International Journal of Clinical Practice*. 2008; 62: 228-33.

26. Parissis J, Paraskevaidis I, Bistola V, et al. Effects of levosimendan on right ventricular function in patients with advanced heart failure. *The American journal of cardiology* 98: 1489-92 (2006).

27. Ukkonen H, Saraste M, Akkila J, et al. Myocardial efficiency during levosimendan infusion in congestive heart failure. *Clinical pharmacology and therapeutics* 68: 522-31 (2000).

28. Slawsky M, Colucci W, Gottlieb S, et al. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Study Investigators. *Circulation* 102: 2222-7 (2000).

29. Rafiq I and Freeman LJ. Pulsed levosimendan therapy in the management of chronic end stage cardiac failure in 'adult congenital heart disease'. *International journal of cardiology*. 2015; 195: 283-4.

30. Schwienbacher M, Schweigmann U, Neu N, et al. Heart Transplantation in a 14-Year-Old Boy in the Presence of Severe Out-of-Proportion Pulmonary Hypertension due to Restrictive Left Heart Disease: A Case Report. *Case reports in cardiology*. 2013; 2013: 418565.

31. Ebade A, Khalil M and Mohamed A. Levosimendan is superior to dobutamine as an inodilator in the treatment of pulmonary hypertension for children undergoing cardiac surgery. *Journal of anesthesia* 27: 334-9 (2013).

32. Lechner E, Moosbauer W, Pinter M, Mair R and Tulzer G. Use of levosimendan, a new inodilator, for postoperative myocardial stunning in a premature neonate. *Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies*. 2007; 8: 61-3.

18

33. Turanlahti M, Boldt T, Palkama T, Antila S, Lehtonen L and Pesonen E. Pharmacokinetics of levosimendan in pediatric patients evaluated for cardiac surgery. *Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies*. 2004; 5: 457-62.

34. Luther YC, Schulze-Neick I, Stiller B, et al. Levosimendan - Long-term inodilation in an infant with myocardial infarction. *Zeitschrift fur Kardiologie*. 2004; 93: 234-9.

Braun JP, Schneider M, Kastrup M and Liu J. Treatment of acute heart failure in an infant after cardiac surgery using
levosimendan. *European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery*.
2004; 26: 228-30.