

advances.sciencemag.org/cgi/content/full/4/7/eaat0979/DC1

Supplementary Materials for

Human β-defensin 2 kills *Candida albicans* through phosphatidylinositol 4,5-bisphosphate–mediated membrane permeabilization

Michael Jarva, Thanh Kha Phan, Fung T. Lay, Sofia Caria, Marc Kvansakul*, Mark D. Hulett*

*Corresponding author. Email: m.kvansakul@latrobe.edu.au (M.K.); m.hulett@latrobe.edu.au (M.D.H.)

Published 25 July 2018, *Sci. Adv.* **4**, eaat0979 (2018) DOI: 10.1126/sciadv.aat0979

This PDF file includes:

Fig. S1. SEC-SAXS analysis of HBD-2.

Fig. S2. The three-dimensional structure of HBD-2 is important for its antifungal activity and liposome permeabilization.

Table S1. SAXS data collection and scattering-derived parameters.

Fig. S1. SEC-SAXS analysis of HBD-2. (A) In-line size exclusion SAXS chromatogram of HBD-2. The dark dots represent the frames used for averaging the scattering profiles based on R_g (dots). (B) Log-log representation of HBD-2 scattering profile extracted from fractionated peaks obtained from in-line SEC-SAXS. (C) Oligomerization analyses of HBD-2 based on Guinier range. (D) Guinier plot of HBD-2 with Guinier range highlighted with dots.

Fig. S2. The three-dimensional structure of HBD-2 is important for its antifungal activity and liposome permeabilization. (**A**) ESI-Q-TOF mass spectrum of reduced and alkylated HBD-2 (HBD-2(R&A)) sample with masses (M) and number of conjugated iodoacetamide (IAA) explicitly indicated. (**B**) Fungal cell permeabilization by HBD-2(R&A) in comparison to HBD-2. *C. albicans* was treated with defensins at indicated concentrations for 30 min, followed by PI staining prior to flow cytometry analysis. (**C**) Liposome lysis with 50 μM HBD-2 or HBD-2(R&A) using calcein-encapsulated PC only or PC:PIP₂ liposomes. Lyposome lysis was normalized against triton X-100 treatment. Data in (**B**) and (**C**) represent mean±SEM of three independent experiments.

	HBD-2
Data collection parameters	
Instrument	SAXS/WAXS beamline, Australian Synchrotron
Beam geometry (µm)	250 x 450
Fractional sample flow rate	0.5
Wavelength (keV)	12
Flux (ph.s ⁻¹)	6 x 10 ¹²
$q \operatorname{range}(\operatorname{\mathring{A}}^{-1})$	0.011-0.65
Exposure time (s)	1 (detector integration)
Temperature (K)	299.15
Structural parameters †	
I(0) (from Guinier) (cm ⁻¹)	$0.013 \pm 4.85 \text{ x } 10-5$
$R_{\rm g}$ (from Guinier) (Å)	11.00 ± 0.36
Molecular-mass determination	
Partial specific volume (cm ³ g ⁻¹)	0.739
Contrast ($\Delta \rho \times 10^{10} \text{ cm}^{-2}$) §	2.897
Molecular mass M_r [from $I(0)$] (kDa) §	5.68
Calculated monomeric M_r from sequence (kDa)	4.33
Software employed	
Primary data reduction	SAXS/WAXS beamline software
Data processing	PRIMUS
Theoretical scattering calculations	CRYSOL
Three-dimensional graphics representation	PyMOL
Graphics representation	EXCEL

 Table S1. SAXS data collection and scattering-derived parameters.

[†] Reported for peaks (Fig. S1) § Determined with MULCh (Whitten et al., 2008)