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1. Coding metasurface and far electric fields 

To derive the relation between the coding pattern and far-field pattern, we first consider a simple case 

of 1-bit coding metasurface that is located on the xoy plane in the Cartesian coordinate system, as 

shown in Supplementary Fig. S1. Then the electric current density is assumed to be uniform inside 

each coding particle and can be expressed as 

𝐽(𝑥, 𝑦) = {
(�̂�𝐽𝑥 + �̂�𝐽𝑦)𝑒𝑖𝜑0 ,                 For Coding 0

(�̂�𝐽𝑥 + �̂�𝐽𝑦)𝑒𝑖(𝜑0+𝜋),          For Coding 1
 

 

Supplementary Fig. S1. A coding metasurface located on the xoy plane in the Cartesian coordinate systems. 

From the electromagnetic wave theory, the scattered electric field �̂�𝑠(�̅�) in the far region can 

be expressed by the integral of the electric current density over the entire coding metasurface with 

size Lx×Ly as 

�̂�𝑠(�̅�) =
𝑖𝜔𝜇0

4𝜋
∫ 𝑑𝑥′ ∫ 𝑑𝑦′𝐿𝑦/2

−𝐿𝑦/2

𝐿𝑥/2

−𝐿𝑥/2

𝑒𝑖𝑘𝑅

𝑅
𝐽(𝑥′, 𝑦′)                 (2) 

in which (𝑥′, 𝑦′) is the location of each coding particle on the xoy plane, and the distance between 

each coding particle to the observation point is denoted as𝑅 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2. 

By substituting 𝑧 = 𝑟𝑐𝑜𝑠𝜃, 𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, and 𝑧′ = 0 into R and keeping the 

first item of its Taylor series expansion, we have 

𝑅 = (𝑟2 − 2𝑟𝑥′𝑠𝑖𝑛θ𝑐𝑜𝑠𝜑 − 2𝑟𝑦′𝑠𝑖𝑛θ𝑠𝑖𝑛𝜑 + 𝑥′2
+ 𝑦′2

)
1

2                



≈ 𝑟 − 𝑥′𝑠𝑖𝑛θ𝑐𝑜𝑠𝜑 − 𝑦′𝑠𝑖𝑛θ𝑠𝑖𝑛𝜑                               (2) 

 

Considering 𝑟 ≫ 𝑥′𝑠𝑖𝑛θ𝑐𝑜𝑠𝜑 − 𝑦′𝑠𝑖𝑛θ𝑠𝑖𝑛𝜑, the item R in the denominator of the integral can be 

moved out of the integration. Substituting Eq. (2) into (1), the scattered electric field is finally written 

as 

Ê𝑠(𝑟, 𝜃, 𝜑) =
𝑖𝜔𝜇0

4𝜋𝑟
𝑒𝑖𝑘𝑟 ∫ ∫ Ĵ(𝑥′, 𝑦′)𝑒−𝑖(𝑘𝑥′𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑+𝑘𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)𝑑𝑥′𝑑𝑦′
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=
𝑖𝜔𝜇0

4𝜋𝑟
𝑒𝑖𝑘𝑟𝑃(𝑘𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑘𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) 

in which 𝑃(𝑘𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑘𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) is the two-dimensional (2D) Fourier transform of the coding 

pattern of the metasurface. 

 

2. Extraction of 2D polar far-field pattern 

In the above section, we show that the far-field pattern is just the Fourier transform of the coding 

pattern. Here, we briefly introduce the processes to obtain the image of far-field pattern. Fig. 1d 

illustrates the four processes to get the image of far-field pattern in the polar coordinate system. First, 

the coding pattern is operated with the Fast Fourier Transform (FFT), which will generate the FFT 

image. However, the coordinate of the FFT image is in (u, v), in which u and v are expressed as 

𝑢 =
2𝜋

𝜆
𝑑𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑                          (1) 

𝑣 =
2𝜋

𝜆
𝑑𝑥𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑                          (2) 

in which λ and dx represent the free-space wavelength and the period of coding element, and θ and φ 

are the elevation and azimuthal angles in the spherical coordinate system, as shown in 

Supplementary Fig. S1. Since the maximum and minimum values of u and v are –π and π, 

respectively, the coordinate transformation from (u, v) to (θ, φ) is not a bijection (one-to-one 

correspondence). For the coding element in this work, 
2𝜋

𝜆
𝑑𝑥 equals 

7𝜋

15
, indicating that any value 

outside the circle with radius 
7𝜋

15
 (marked by the red circular area in Fig. 1d) will not be mapped to 

the spherical coordinate system. By transforming the coordinate inside the circular area using Eq. (1) 



and (2), we obtain the 2D far-field pattern, as plotted in Fig. 1d (lower right), in which the horizontal 

and vertical axes represent the θ and φ coordinates, respectively.  

Next, we further transform the data in the θ-φ Cartesian coordinate system to polar coordinate 

system, resulting in the image shown in the upper right in Fig. 1d, in which the radial and axial 

directions represent the θ and φ coordinates, respectively. Note that the area outside the circle is set 

to zero. We remark that the image of far-field pattern plotted in the 2D polar coordinate system is 

used to calculate the physical entropy of an encoded metasurface. 

3. More results of non-periodic coding metasurfaces 

Three Jerusalem-cross coding patterns and three circular-ring coding patterns are studied, in which 

the area of “0” coding particles increases gradually, as shown in Supplementary Fig. S2a-c(i) and 

Fig. S3a-c(i), respectively. The corresponding 2D polar and 3D far-field patterns are demonstrated in 

Fig. S2a-c(ii-iii) and Fig. S3a-c(ii-iii). The detailed geometrical and physical information entropies 

are given in Table 1. 



 

 

Supplementary Fig. S2. Differently-sized Jerusalem-cross coding metasurfaces and their far-field patterns. (a) 

Width of “0” particles w=4 (or 28 mm). (b) Width of “0” particles w=8 (or 56 mm). (c) Width of “0” particles w=12 

(or 84 mm). (i) Coding patterns. (ii) 2D polar far-field patterns. (iii) 3D far-field patterns. Here, all three 

metasurfaces share the same size as 64×64 coding particles, which is equivalent to 448×448 mm2. 

 



 

Supplementary Fig. S3. Differently-sized circular-ring coding metasurfaces and their far-field patterns. (a) Width 

of “0” particles w=5 (or 35 mm). (b) Width of “0” particles w=12 (or 84 mm). (c) Width of “0” particles w=15 (or 

105 mm). (i) Coding patterns. (ii) 2D polar far-field patterns. (iii) 3D far-field patterns. 

 

4. Generation of random coding metasurfaces 

The generation of random coding metasurfaces is learnt from the gas molecule model. 

Supplementary Fig. S4 gives a simple illustration of the entropy defined by the second law of 

thermodynamics. In the initial state shown in Supplementary Fig. S4a, two different types of gas 

molecules (marked by red and blue balls) with equal quantity are separated from each other in a closed 



glass box. As time goes by, these two types of gas molecules gradually mix with each other due to 

the existence of Brownian movement of molecules, as can be observed in Supplementary Fig. S4b. 

The entropy of an isolated system, like the closed glass box, is used as a measure to predict how the 

dissipative process has progressed, which tends to increase over time and approaches a maximum 

value at equilibrium. The larger the entropy of a system, the more random of molecular chaos is. 

Interestingly, this diffusion process is irreversible in nature, which determines that the entropy of any 

isolated systems is theoretically irreducible. The random coding patterns have similar behaviors to 

the gas molecules. 

 

Supplementary Fig. S4. The illustration of the entropy defined by the second law of thermodynamics. (a) The 

initial state. (b) The steady state. 

 

To mimic the diffusion process of gas molecules, the model of cellular automata machine is 

adopted to generate random coding metasurfaces in a controlled manner. Supplementary Fig. S5 

illustrates twelve random coding metasurfaces generated at the 1st, 3rd, 10th, 20th, 30th, 40th, 50th , 60th, 

70th, 80th, 90th, and 99th iterations.  

 



 

 

Supplementary Fig. S5. The random coding metasurfaces generated by the model of cellular automata machine at 

the 1st, 3rd, 10th, 20th, 30th, 40th, 50th , 60th, 70th, 80th, 90th, and 99th iterations (from the left to the right, and from the 

upper to the bottom orders). Each coding digit in the images includes 2×2 identical coding particles. 


