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Supplemental 1: 

We started from solving the curl equations of Maxwell's equations by considering 

harmonic time dependence i te   and only one set of self-consistent solutions for a 

TM polarized (Hx=Hz=0, Ey=0) wave. 
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where  is the angular frequency of the wave, 0 and 0 are the vacuum permeability 

and permittivity respectively, and  is the relative permittivity. Applying a condition 

of homogeneous properties along the y direction, we can get: 
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    (2) 

where k0=/c is the free space wave vector. 

Since materials are homogeneous along the z direction in each half space (z>0 and 

z<0 respectively), we can decouple Hy as:  

 

d

m

( )

d

( )

m

( ) , 0,Re( ( )) 0

( ) , 0,Re( ( )) 0

z

z

k x z

y z

k x z

y z

H G x e z k x

H G x e z k x

   


  

 (3) 

where G(x) = Hy(x, z = 0) describes the magnetic field at the interface; and kzd and kzm 

are the decay factors of the SPP in air and in the GNM, respectively. 



Thus, Ex can be rewritten as: 
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 (4) 

At the interface (z=0), by combining Eq. (1) and (2), we get: 
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 (5) 

Also, when z=0, continuity of tangential fields (Hy and Ex) yields that: (from (3) and 

(4)) 
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Solving the second order differential equation group (5) with equation (6), we have: 
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Supplemental 2: 

The basic relationship in the gradient-index material system:

1    

0P E   

The coupling between propagating waves and surface waves can be explained by 

single layer inhomogeneous dipole radiation at the interface. Consider a single dipole 

at the interface of the GNM with the coordinates ( ',0,0)x  illuminated by a normally 

incident x-polarized plane wave:  
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where x’ represents the position vector of the dipole. We set the effective length along 

the z axis as Δz and neglect the y coordinate in the calculation since the system is 

insensitive along the y axis and ky should always be kept as zero. In the GNM, the 

permittivity is not a constant and can be expressed as (x’). As a result, the 

polarizability also should be rewritten as (x’), which indicates the inhomogeneity of 

the GNM. 

Now we write the standard form of the radiation field of the single dipole first: 
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Where θ and φ represent the elevation angle of the x-axis and the azimuth angle in the 

y-z plane, respectively. Here we set (x’, 0, 0) as the origin of the coordinate and   as 

the unit vector along local φ-axis. Thus, the radiation field of a single dipole at the 

interface of the GNM has the form below: 
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In the 2D case, the total radiation field should be given by an infinite row of 

x-polarized dipoles along the x-axis: 
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Then, the spatial spectra of the radiation field equals to: 
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We change the integral order and use the variable transformation: 

2
'

total 0 0

2
'

0 0

'

( , 0) ' ( ') sin( ) ( , ')
4 '

( ') ' sin( ) ( , ')
4

( ') '

x

x x

x

ik r x ik xi t i t

x y

ik x ik xi t ikr i t

ik x

H k k dx E e x z e e r x e dxdy
c r x

x e dx E e z e e r x e dxdy
cr

A x e dx

 

 


   




   





  

  




   




  



 

 



 

Where A represents the spatial frequency spectra of the single dipole. 

According to the ref. 33, A should have the form below:  
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In our case, since pz = 0, |A| should equal a constant when kx changes. Thus, we can 

focus on the formula: 
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We calculate the integral as the function of kx and can then get the relative coefficient 

of the spatial frequency spectra as shown in Figure 1(d).  


