Supplementary Information for

Excitation and propagation of surface plasmon polaritons on a non-structured surface with a permittivity gradient

Xi Wang¹, Yang Deng¹, Qitong Li¹, Yijing Huang¹, Zilun Gong^{1,2}, Kyle Tom^{1,3} and Jie Yao^{1,3}
¹Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
²Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
³Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

yaojie@berkeley.edu

Supplemental 1:

We started from solving the curl equations of Maxwell's equations by considering harmonic time dependence $e^{-i\omega t}$ and only one set of self-consistent solutions for a TM polarized ($H_x=H_z=0, E_y=0$) wave.

$$\begin{cases} \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = i\omega\mu_0 H_y \\ \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} = -i\omega\varepsilon_0\varepsilon E_x \\ \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = -i\omega\varepsilon_0\varepsilon E_z \end{cases}$$
(1)

where ω is the angular frequency of the wave, μ_0 and ε_0 are the vacuum permeability and permittivity respectively, and ε is the relative permittivity. Applying a condition of homogeneous properties along the *y* direction, we can get:

$$\begin{cases} \left[\frac{\partial^2}{\partial z^2} + \varepsilon(x) \frac{\partial}{\partial x} \left(\frac{1}{\varepsilon(x)} \frac{\partial}{\partial x} \right) + k_0^2 \varepsilon(x) \right] H_y = 0 \\ E_x = -i \frac{1}{\omega \varepsilon_0 \varepsilon} \frac{\partial H_y}{\partial z} \\ E_z = i \frac{1}{\omega \varepsilon_0 \varepsilon} \frac{\partial H_y}{\partial x} \end{cases}$$
(2)

where $k_0 = \omega/c$ is the free space wave vector.

Since materials are homogeneous along the *z* direction in each half space (*z*>0 and *z*<0 respectively), we can decouple H_y as:

$$\begin{cases} H_{y} = G(x)e^{-k_{zd}(x)z}, z > 0, \operatorname{Re}(k_{zd}(x)) > 0\\ H_{y} = G(x)e^{k_{zm}(x)z}, z < 0, \operatorname{Re}(k_{zm}(x)) > 0 \end{cases}$$
(3)

where $G(x) = H_y(x, z = 0)$ describes the magnetic field at the interface; and k_{zd} and k_{zm} are the decay factors of the SPP in air and in the GNM, respectively.

Thus, E_x can be rewritten as:

$$E_{x} = -i\frac{1}{\omega\varepsilon_{0}\varepsilon}\frac{\partial H_{y}}{\partial z} = \begin{cases} i\frac{k_{zd}(x)}{\omega\varepsilon_{0}\varepsilon_{d}}G(x)e^{-k_{zd}(x)z}, z > 0\\ -i\frac{k_{zm}(x)}{\omega\varepsilon_{0}\varepsilon_{m}(x)}G(x)e^{k_{zm}(x)z}, z < 0 \end{cases}$$
(4)

At the interface (z=0), by combining Eq. (1) and (2), we get:

$$\begin{cases} \frac{\partial^2 G(x)}{\partial x^2} - \frac{\varepsilon_{\rm m}'(x)}{\varepsilon_{\rm m}(x)} \frac{\partial G(x)}{\partial x} + (k_0^2 \varepsilon_{\rm m}(x) + k_{z{\rm m}}^2(x))G(x) = 0\\ \frac{\partial^2 G(x)}{\partial x^2} + (k_0^2 \varepsilon_{\rm d} + k_{z{\rm d}}^2(x))G(x) = 0 \rightarrow k_{z{\rm d}}^2(x) = -(k_0^2 \varepsilon_{\rm d} + \frac{G''(x)}{G(x)}) \end{cases}$$
(5)

Also, when z=0, continuity of tangential fields (H_y and E_x) yields that: (from (3) and

(4))

$$\frac{k_{zd}(x)}{k_{zm}(x)} = \frac{-\varepsilon_{d}}{\varepsilon_{m}(x)} \longrightarrow k_{zm}(x) = -\frac{k_{zd}(x)\varepsilon_{m}(x)}{\varepsilon_{d}}$$
(6)

Solving the second order differential equation group (5) with equation (6), we have:

$$G''(x) + \frac{\varepsilon_{\rm m}'(x)\varepsilon_{\rm d}^2}{\varepsilon_{\rm m}(x)[\varepsilon_{\rm m}^2(x) - \varepsilon_{\rm d}^2]}G'(x) + k_0^2 \frac{\varepsilon_{\rm m}(x)\varepsilon_{\rm d}}{\varepsilon_{\rm m}(x) + \varepsilon_{\rm d}}G(x) = 0$$
(7)

Supplemental 2:

The basic relationship in the gradient-index material system:

$$\varepsilon = 1 + \chi$$
$$P = \varepsilon_0 \chi E$$

The coupling between propagating waves and surface waves can be explained by single layer inhomogeneous dipole radiation at the interface. Consider a single dipole at the interface of the GNM with the coordinates (x', 0, 0) illuminated by a normally incident *x*-polarized plane wave:

$$dp(x',t) = e^{-i\omega t} \varepsilon_0 \chi(x') E_0 dv' = E_0 e^{-i\omega t} \varepsilon_0 \chi(x') dx' dy' dz' = E_0 e^{-i\omega t} \varepsilon_0 \chi(x') \Delta z dx'$$

where x' represents the position vector of the dipole. We set the effective length along the z axis as Δz and neglect the y coordinate in the calculation since the system is insensitive along the y axis and k_y should always be kept as zero. In the GNM, the permittivity is not a constant and can be expressed as $\varepsilon(x')$. As a result, the polarizability also should be rewritten as $\chi(x')$, which indicates the inhomogeneity of the GNM.

Now we write the standard form of the radiation field of the single dipole first:

$$H(r,t,x') = \frac{-\omega^2}{4\pi c |r-x'|} dp(x',t) \sin(\theta) e^{ik|r-x'|} e^{-i\omega t} \varphi(r,x')$$

Where θ and φ represent the elevation angle of the *x*-axis and the azimuth angle in the *y*-*z* plane, respectively. Here we set (*x*', 0, 0) as the origin of the coordinate and φ as the unit vector along local φ -axis. Thus, the radiation field of a single dipole at the interface of the GNM has the form below:

$$H(r,t,x') = \frac{-\omega^2}{4\pi c |r-x'|} E_0 e^{-i\omega t} \varepsilon_0 \chi(x') \Delta z dx' \cdot \sin(\theta) e^{ik|r-x'|} e^{-i\omega t} \varphi(r,x')$$

In the 2D case, the total radiation field should be given by an infinite row of *x*-polarized dipoles along the *x*-axis:

$$H(r,t,x') = \int \frac{-\omega^2}{4\pi c |r-x'|} E_0 e^{-i\omega t} \varepsilon_0 \chi(x') \Delta z \cdot \sin(\theta) e^{ik|r-x'|} e^{-i\omega t} \varphi(r,x') dx'$$

Then, the spatial spectra of the radiation field equals to:

$$H_{\text{total}}(k_x, k_y = 0) = \int H_{\text{total}}(r, t) e^{-ik_x x} dx dy$$

= $\int e^{-ik_x x} dx dy \int \frac{-\omega^2}{4\pi c |r - x'|} E_0 e^{-i\omega t} \varepsilon_0 \chi(x') \Delta z \cdot \sin(\theta) e^{ik|r - x'|} e^{-i\omega t} \varphi(r, x') dx'$

We change the integral order and use the variable transformation:

$$\begin{split} H_{\text{total}}(k_x, k_y &= 0) = \int dx' \int \frac{-\omega^2}{4\pi c \left| r - x' \right|} E_0 e^{-i\omega t} \varepsilon_0 \chi(x') \Delta z \cdot \sin(\theta) e^{ik\left| r - x' \right|} e^{-i\omega t} \varphi(r, x') e^{-ik_x x} dx dy \\ &= \int \chi(x') e^{-ik_x x'} dx' \int \frac{-\omega^2}{4\pi c r} E_0 e^{-i\omega t} \varepsilon_0 \Delta z \cdot \sin(\theta) e^{ikr} e^{-i\omega t} \varphi(r, x') e^{-ik_x x} dx dy \\ &= A \int \chi(x') e^{-ik_x x'} dx' \end{split}$$

Where *A* represents the spatial frequency spectra of the single dipole.

According to the ref. ³³, *A* should have the form below:

$$H_{y}(k_{x},z) \propto [p_{z} \frac{k_{x}}{k_{z}} - p_{x}]e^{ik_{z}z}, z > 0$$

In our case, since $p_z = 0$, |A| should equal a constant when k_x changes. Thus, we can focus on the formula:

$$\int \chi(x') e^{-ik_x x'} dx'$$

We calculate the integral as the function of k_x and can then get the relative coefficient of the spatial frequency spectra as shown in Figure 1(d).