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Superposition of counter-propagating orthogonal
vector fields – Theory

The realisation of the light field |Ψ(x, y, z)〉 with a spa-
tially varying degree of entanglement E(|Ψ〉, z) was ob-
tained by combining two orthogonal vector beams VB1

and VB2 propagating in opposite z-directions. These vec-
tor modes represented by |Ψ+

VB1
〉 and |Ψ−

VB2
〉 are gener-

ated by setting αVB1
= 0 and αVB2

= π/2, respectively,
with ` = `1 = −`2 and p = p1 = p2. The resulting light
field of the superposition can be written as

|Ψ〉 =
1√
2

(
|Ψ+

VB1
〉+ |Ψ−

VB2
〉
)

=
1

2

(
|LG`p〉 |R〉+ |LG−`

p 〉 |L〉
)
· eikzz

+
1

2

(
ei
π
2 |LG`p〉 |R〉+ e−iπ2 |LG−`

p 〉 |L〉
)
· e−ikzz.

(S1)

Regrouping terms with same polarisation leads to

|Ψ〉 =
1

2

(
eikzz + i e−ikzz

)
|LG`p〉|R〉

+
1

2

(
eikzz − i e−ikzz

)
|LG−`

p 〉|L〉, (S2)

which is Eq. (6) of the main text.

A tripartite GHZ-like description

Interestingly, Eq. (S2) can also be written as a tripar-
tite classically entangled GHZ-like state between longi-
tudinal position, polarisation and transverse degrees of
freedom [1]. For this, notice that the exponential terms
in Eq. (S2) can be written as

1

2

(
eikzz + i e−ikzz

)
= eiπ/4 cos(kzz − π/4),

1

2

(
eikzz − i e−ikzz

)
= e3iπ/4 sin(kzz − π/4). (S3)

If we define Eq. S3 as,

eiπ/4 cos(kzz − π/4) ≡ 〈z|C〉
e3iπ/4 sin(kzz − π/4) ≡ 〈z|S〉, (S4)
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where |C〉 and |S〉 are two orthogonal state vectors, equa-
tion (S2) now becomes

|Ψ〉 = |C〉|LG`p〉|R〉+ |S〉|LG−`
p 〉|L〉. (S5)

In this representation, observation of a particular po-
larisation state can be done by projecting onto the op-
erator |z〉〈z|. Moreover, a maximally entangled state is
obtained for all z values that satisfies |〈z|C〉| = |〈z|S〉|,
namely z = nλ/4, n ∈ N.

Non-separability in orthogonal superpositions of
vector fields – Theory

The degree of non-separability of a vector field given
by

|Ψ〉 =
√
a · |uR〉|R〉+

√
1− a · |uL〉|L〉, (S6)

can be computed as [2]

E(|Ψ〉) = − [a · log2(a) + (1− a) · log2(1− a)] . (S7)

Comparing Eqs. (S2) and (S6) and considering that
|uR,L〉 = |LG±`

p 〉 · eiζR,L , one can see that

√
a · eiζR =

1

2

(
eikzz + i e−ikzz

)
=

1

2
[cos(kzz) + sin(kzz)] · (1 + i). (S8)

From which, ζR = π/4 (= −ζL) and

√
a =

∣∣∣∣12 [cos(kzz) + sin(kzz)] · (1 + i)

∣∣∣∣, (S9)

that is,

a =
1

4
[cos(kzz) + sin(kzz)]

2 · 2

=
1

2
[1 + sin(2kzz)]. (S10)

Substitution of Eq. (S10) into Eq. (S7) yields

E(|Ψ〉, z) = −1

2
[1 + sin(2kzz)] log2

{
1

2
[1 + sin(2kzz)]

}
−

1

2
[1− sin(2kzz)]) log2

{
1

2
[1− sin(2kzz)]

}
, (S11)

which can be written as Eq (7) of the main text, namely

E(|Ψ〉, z) = 1− 1

2
[1 + sin(2kzz)] · log2 [1 + sin(2kzz)]−

1

2
[1− sin(2kzz)] · log2 [1− sin(2kzz)] . (S12)
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Counter-propagating higher-order vector and scalar
modes

The realisation of spatially varying degree of entan-
glement of the form E(|Ψ〉, z) is not only facilitated by
first-order vector modes with ` = 1 and p = 0 but also
by the application of higher-order modes [3] with |`| > 1
and p > 0. In this case, vector modes |Ψ+

VB1
〉 and |Ψ−

VB2
〉

still represent counter-propagating, orthogonal modes,
whereby ` = `1 = −`2 and p = p1 = p2 for both vec-
tor modes, as indicated within the theoretical description
above. Further, an appropriate choice of αVB1,2

ensures
the modes’ orthogonality. If these requirements are ful-
filled, different light fields |Ψ〉 can be created. Figure S1
sketches two examples of these fields with (a) ` = 2,
p = 0 and (b) ` = 2, p = 1 (αVB1 = 0, αVB2 = π/2
for both cases). Here, different transverse planes of |Ψ〉
(normalised intensity + polarisation) are illustrated for
chosen propagation distances z. The respective degree of
entanglement E is visualized by the red curve between (a)
and (b), whereby the arrow shows corresponding values
of kzz+ϕ with [0, π/2] and [π/2, π] belonging to first and
second line of (a) and (b). Initial vector modes propagat-
ing in +z- and −z-direction are indicated at the left and
right edge, respectively. Note that, function E(|Ψ〉, z) is
independent of chosen mode numbers ` and p, even if
other characteristics as intensity and polarisation of re-
spective light field |Ψ〉 change according to ` and p.
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Figure S1: Space-variant degree of entanglement by
counter-propagating vector modes of higher order with (a)
` = 2, p = 0 and (b) ` = 2, p = 1. Initial modes are shown at
the right and left edge, whereby central images present
different transverse planes (intensity + polarisation) within
|Ψ〉. Respective degree of entanglement E depending on
kzz + ϕ is depicted by red curve (ϕ = −π/4).

In contrast to counter-propagating, orthogonally po-
larised vector modes, scalar modes cannot be used to re-
alise the spatially varying degree of entanglement. Con-
sidering two counter-propagating scalar modes |Ψ+

sc,1〉
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Figure S2: Counter-propagating scalar modes of opposite
helical charge (` = ±1) and polarisation (|R〉, |L〉): Initial
modes are shown at the right and left edge, whereby central
images present different transverse planes (intensity +
polarisation) within |Ψ〉 = 1√

2

(
|Ψ+

sc,1〉+ |Ψ−sc,2〉
)

(first row

belongs to kzz ∈ [0, π/2], second to kzz ∈ [π/2, π]).
Respective degree of entanglement is spatially constant with
E(|Ψ〉) = 1∀z.

and |Ψ−
sc,2〉 of opposite helicity and circular polarisation,

the resulting light field |Ψ〉 is represented by

|Ψ〉= 1√
2

(
|Ψ+

sc,1〉+ |Ψ−
sc,2〉

)
=

1√
2

(
e±ikzz|LG`p〉|R〉+ e∓ikzz|LG−`

p 〉|L〉
)

=
√
a|uR〉|R〉+

√
1− a|uL〉|L〉. (S13)

In this case, the spatial modes are given by
|uR〉 = e±ikzz|LG`p〉 and |uL〉 = e∓ikzz|LG−`

p 〉 with
〈uL,R|uR,L〉 = 0. Consequently, the factor a = 1/2 is
spatially independent resulting in a constant degree of
entanglement of E(|Ψ〉) = 1 (∀z). The respective light
field for ` = 1, p = 0 and ϕ = 0 is shown in Fig. S2.
Here, in each z-plane a vector mode is realized.

Spin-orbit interaction

To calculate the spin and orbit components of our
field, we express the total angular momentum in the z-
direction as [4]

Jz =

∫
Im {E∗ · ∂φE + ez ·E∗ ×E} dR∫

E∗ ·EdR
(S14)

where the terms have their usual meaning. It is easy
to show that this integral is zero for the ` = ±1 subspace
for the entire standing wave. We can calculate the spin
and orbital components separately as

Sz ∝
∫

Im
{
E∗
xEy − E∗

yEx
}
dA (S15)

Lz ∝
∫

Im
{
E∗
x∂φEx + E∗

y∂φEy
}
dA (S16)

where here the x and y subscripts refer to the field
components of the initial superposition but written in
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the horizontal and vertical basis, i.e., |Ψ〉 = Exx̂ + Eyŷ.
After some algebra one can show that these terms become

Ex =
1√
2

[
e−ikzz cos(`φ)− eikzz sin(`φ)

]
(S17)

and

Ey =
1√
2

[
e−ikzz sin(`φ)− eikzz cos(`φ)

]
(S18)

which after substitution into the above, we find (af-
ter some simple algebra): Sz ∝ sin(2kzz) and Lz ∝
−|`| sin(2kzz). We have a sum that reflects a coupling
between spin and orbit components, with one increasing
as the other decreases: Jz ∝ (1 − |`|) sin(2kzz). For the
` = ±1 subspace the sum always adds to zero so that the
total angular momentum is conserved through this SO
coupling.
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