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Superposition of counter-propagating orthogonal
vector fields — Theory

The realisation of the light field |¥(x, y, 2)) with a spa-
tially varying degree of entanglement E(|V¥),2) was ob-
tained by combining two orthogonal vector beams VB,
and VBs propagating in opposite z-directions. These vec-
tor modes represented by [¥{ ) and [Uyy ) are gener-
ated by setting ayp, = 0 and ayp, = 7/2, respectively,
with £ = ¢; = —f5 and p = p; = p2. The resulting light
field of the superposition can be written as
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Regrouping terms with same polarisation leads to
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which is Eq. (6) of the main text.

A tripartite GHZ-like description

Interestingly, Eq. (S2) can also be written as a tripar-
tite classically entangled GHZ-like state between longi-
tudinal position, polarisation and transverse degrees of
freedom [1]. For this, notice that the exponential terms
in Eq. (S2) can be written as

= ™4 cos(k.z — 7/4),
—ie7h:7) = ™ sin(k,z — n/4). (S3)
If we define Eq. S3 as,

™4 cos(k.z — m/4) = (2|C)
A/ sin(k,z — n/4) = (2]5), (S4)
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where |C) and |S) are two orthogonal state vectors, equa-
tion (S2) now becomes

|0) = [C)|LG)|R) + |S)|LG, )IL). (S5)

In this representation, observation of a particular po-
larisation state can be done by projecting onto the op-
erator |z)(z|. Moreover, a maximally entangled state is
obtained for all z values that satisfies |(z|C)| = [(z|5)|,
namely z =nA/4, n € N.

Non-separability in orthogonal superpositions of
vector fields — Theory

The degree of non-separability of a vector field given
by
¥) = Va-|ur)|R) +vV1—a-|ug)|L),  (S6)
can be computed as [2]
E(|W)) = —la-logy(a) + (1 —a) -logy(1 —a)]. (S7)

Comparing Eqs. (S2) and (S6) and considering that
lur,L) = |LG;'EE> -eCr.zone can see that
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From which, (g = n/4 (= —(;,) and

Va = % [cos(k.z) + sin(k.z)] - (1 +1)], (S9)

that is,
1
a= [cos(k,z) + sin(k,2)]* - 2

= %[1 + sin(2k,2)]. (S10)

Substitution of Eq. (S10) into Eq. (S7) yields

L

E(]¥),2) = 5 1+ sin(2k.z)] log, {;[1 + Sin(2kzz)]} -
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3l
which can be written as Eq (7) of the main text, namely

E(|¥),z)=1-— % [1 4 sin(2k,2)] - logy [1 + sin(2k.z)] —

L [1 —sin(2k,2)] - logy [1 — sin(2k.z)].
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Counter-propagating higher-order vector and scalar
modes

The realisation of spatially varying degree of entan-
glement of the form E(|¥),z) is not only facilitated by
first-order vector modes with £ = 1 and p = 0 but also
by the application of higher-order modes [3] with |¢] > 1
and p > 0. In this case, vector modes |\II$B1> and [Wyp, )
still represent counter-propagating, orthogonal modes,
whereby ¢ = {1 = —{5 and p = p; = po for both vec-
tor modes, as indicated within the theoretical description
above. Further, an appropriate choice of avyp, , ensures
the modes’ orthogonality. If these requirements are ful-
filled, different light fields |¥) can be created. Figure S1
sketches two examples of these fields with (a) £ = 2,
p=0and (b) £ =2, p=1 (ay, =0, ayp, = 7/2
for both cases). Here, different transverse planes of | W)
(normalised intensity + polarisation) are illustrated for
chosen propagation distances z. The respective degree of
entanglement F is visualized by the red curve between (a)
and (b), whereby the arrow shows corresponding values
of k,z+¢ with [0, /2] and [7/2, 7] belonging to first and
second line of (a) and (b). Initial vector modes propagat-
ing in +2- and —z-direction are indicated at the left and
right edge, respectively. Note that, function E(|¥), 2) is
independent of chosen mode numbers ¢ and p, even if
other characteristics as intensity and polarisation of re-
spective light field |¥) change according to ¢ and p.
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Figure S1: Space-variant degree of entanglement by
counter-propagating vector modes of higher order with (a)
¢=2,p=0and (b) £ =2, p=1. Initial modes are shown at
the right and left edge, whereby central images present
different transverse planes (intensity + polarisation) within
|T). Respective degree of entanglement E depending on

k.z + ¢ is depicted by red curve (¢ = —7/4).

In contrast to counter-propagating, orthogonally po-
larised vector modes, scalar modes cannot be used to re-
alise the spatially varying degree of entanglement. Con-

sidering two counter-propagating scalar modes \\Il:“}

[\)

Figure S2: Counter-propagating scalar modes of opposite
helical charge (¢ = £1) and polarisation (|R), |L)): Initial
modes are shown at the right and left edge, whereby central
images present different transverse planes (intensity +
polarisation) within |[¥) = % (|\Ifj'cl> + W 5)) (first row
belongs to k.z € [0, 7/2], second to k.z € [r/2, 7]).
Respective degree of entanglement is spatially constant with
E(|v)) =1V=z.

and [W__ ,) of opposite helicity and circular polarisation,
the resulting light field |¥) is represented by

_ L
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1 ik, z ik, z -
_ ﬁ(ei k22| LGY)|R) + eT%=#| LG 4| L))

= Valug)|R) + V1 — alur)|L).

In this case, the spatial modes are given by
lug) = eF**|LGY) and |uy) = eF**|LG,Y) with
(ur,rlur,L) = 0. Consequently, the factor a = 1/2 is
spatially independent resulting in a constant degree of
entanglement of E(|¥)) = 1 (Vz). The respective light
field for £ = 1, p = 0 and ¢ = 0 is shown in Fig. S2.
Here, in each z-plane a vector mode is realized.
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Spin-orbit interaction

To calculate the spin and orbit components of our
field, we express the total angular momentum in the z-
direction as [4]

5 _ JIm{E"-0,E+e.-E* x B}dR
o [E*-EdR

(S14)

where the terms have their usual meaning. It is easy
to show that this integral is zero for the £ = 41 subspace
for the entire standing wave. We can calculate the spin
and orbital components separately as

S, /Im{E;Ey ~ElE,}dA (S15)

L. x /Im {E04B, + E;0sE,} dA (S16)

where here the x and y subscripts refer to the field
components of the initial superposition but written in



the horizontal and vertical basis, i.e., |¥) = E,& + E,§.
After some algebra one can show that these terms become

E, = % [e*ikzz cos(£g) — eiF=* sin(¢g)] (S17)
and
E, = % [e7 =2 sin(£g) — e™+* cos(£g)] (518)

which after substitution into the above, we find (af-
ter some simple algebra): S, o sin(2k.z) and L, «
—|¢|sin(2k,z). We have a sum that reflects a coupling
between spin and orbit components, with one increasing
as the other decreases: J, o (1 — |¢|)sin(2k,z). For the
¢ = £1 subspace the sum always adds to zero so that the
total angular momentum is conserved through this SO
coupling.
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