Supplementary information for: Entanglement beating in free space through spin-orbit coupling

Eileen Otte,¹ Carmelo Rosales-Guzmán,^{2,*} Bienvenu Ndagano,² Cornelia Denz,¹ and Andrew Forbes²

¹Institute of Applied Physics, University of Muenster, Corrensstr. 2/4, D-48149 Muenster, Germany

² School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa

Superposition of counter-propagating orthogonal vector fields – Theory

The realisation of the light field $|\Psi(x, y, z)\rangle$ with a spatially varying degree of entanglement $E(|\Psi\rangle, z)$ was obtained by combining two orthogonal vector beams $VB₁$ and $VB₂$ propagating in opposite z -directions. These vector modes represented by $|\Psi^{+}_{\rm VB_1}\rangle$ and $|\Psi^{-}_{\rm VB_2}\rangle$ are generated by setting $\alpha_{\text{VB}_1} = 0$ and $\alpha_{\text{VB}_2} = \pi/2$, respectively, with $\ell = \ell_1 = -\ell_2$ and $p = p_1 = p_2$. The resulting light field of the superposition can be written as

$$
\begin{split} |\Psi\rangle &= \frac{1}{\sqrt{2}} \left(|\Psi_{\text{VB}_1}^+ \rangle + |\Psi_{\text{VB}_2}^- \rangle \right) \\ &= \frac{1}{2} \left(|LG_p^{\ell} \rangle |R\rangle + |LG_p^{-\ell} \rangle |L\rangle \right) \cdot \mathrm{e}^{\mathrm{i}k_z z} \\ &+ \frac{1}{2} \left(\mathrm{e}^{\mathrm{i} \frac{\pi}{2}} \left| LG_p^{\ell} \rangle |R\rangle + \mathrm{e}^{-\mathrm{i} \frac{\pi}{2}} \left| LG_p^{-\ell} \rangle |L\rangle \right) \cdot \mathrm{e}^{-\mathrm{i}k_z z} . \end{split} \tag{S1}
$$

Regrouping terms with same polarisation leads to

$$
|\Psi\rangle = \frac{1}{2} \left(e^{ik_z z} + i e^{-ik_z z} \right) |LG_p^{\ell}\rangle |R\rangle
$$

+
$$
\frac{1}{2} \left(e^{ik_z z} - i e^{-ik_z z} \right) |LG_p^{-\ell}\rangle |L\rangle, \qquad (S2)
$$

which is Eq. (6) of the main text.

A tripartite GHZ-like description

Interestingly, Eq. [\(S2\)](#page-0-1) can also be written as a tripartite classically entangled GHZ-like state between longitudinal position, polarisation and transverse degrees of freedom [\[1\]](#page-2-0). For this, notice that the exponential terms in Eq. [\(S2\)](#page-0-1) can be written as

$$
\frac{1}{2} (e^{ik_z z} + i e^{-ik_z z}) = e^{i\pi/4} \cos(k_z z - \pi/4),
$$

$$
\frac{1}{2} (e^{ik_z z} - i e^{-ik_z z}) = e^{3i\pi/4} \sin(k_z z - \pi/4).
$$
 (S3)

If we define Eq. [S3](#page-0-2) as,

$$
e^{i\pi/4}\cos(k_z z - \pi/4) \equiv \langle z|C\rangle
$$

\n
$$
e^{3i\pi/4}\sin(k_z z - \pi/4) \equiv \langle z|S\rangle,
$$
\n(S4)

where $|C\rangle$ and $|S\rangle$ are two orthogonal state vectors, equation [\(S2\)](#page-0-1) now becomes

$$
|\Psi\rangle = |C\rangle |LG_p^{\ell}\rangle |R\rangle + |S\rangle |LG_p^{-\ell}\rangle |L\rangle. \tag{S5}
$$

In this representation, observation of a particular polarisation state can be done by projecting onto the operator $|z\rangle\langle z|$. Moreover, a maximally entangled state is obtained for all z values that satisfies $|\langle z|C \rangle| = |\langle z|S \rangle|$, namely $z = n\lambda/4$, $n \in \mathbb{N}$.

Non-separability in orthogonal superpositions of vector fields – Theory

The degree of non-separability of a vector field given by

$$
|\Psi\rangle = \sqrt{a} \cdot |u_R\rangle |R\rangle + \sqrt{1 - a} \cdot |u_L\rangle |L\rangle, \quad (S6)
$$

can be computed as [\[2\]](#page-2-1)

$$
E(|\Psi\rangle) = -[a \cdot \log_2(a) + (1 - a) \cdot \log_2(1 - a)].
$$
 (S7)

Comparing Eqs. [\(S2\)](#page-0-1) and [\(S6\)](#page-0-3) and considering that $|u_{R,L}\rangle = |LG_{p}^{\pm \ell}\rangle \cdot e^{i\zeta_{R,L}},$ one can see that

$$
\sqrt{a} \cdot e^{i\zeta_R} = \frac{1}{2} \left(e^{ik_z z} + i e^{-ik_z z} \right)
$$

$$
= \frac{1}{2} \left[\cos(k_z z) + \sin(k_z z) \right] \cdot (1 + i). \tag{S8}
$$

From which, $\zeta_R = \pi/4$ (= $-\zeta_L$) and

$$
\sqrt{a} = \left| \frac{1}{2} \left[\cos(k_z z) + \sin(k_z z) \right] \cdot (1 + i) \right|, \quad (S9)
$$

that is,

$$
a = \frac{1}{4} \left[\cos(k_z z) + \sin(k_z z) \right]^2 \cdot 2
$$

= $\frac{1}{2} [1 + \sin(2k_z z)].$ (S10)

Substitution of Eq. [\(S10\)](#page-0-4) into Eq. [\(S7\)](#page-0-5) yields

$$
E(|\Psi\rangle, z) = -\frac{1}{2}[1 + \sin(2k_z z)]\log_2\left\{\frac{1}{2}[1 + \sin(2k_z z)]\right\} - \frac{1}{2}[1 - \sin(2k_z z)])\log_2\left\{\frac{1}{2}[1 - \sin(2k_z z)]\right\},
$$
(S11)

which can be written as Eq (7) of the main text, namely

$$
E(|\Psi\rangle, z) = 1 - \frac{1}{2} [1 + \sin(2k_z z)] \cdot \log_2 [1 + \sin(2k_z z)] -
$$

$$
\frac{1}{2} [1 - \sin(2k_z z)] \cdot \log_2 [1 - \sin(2k_z z)].
$$
 (S12)

[∗] Email: carmelo.rosalesguzman@wits.ac.za

Counter-propagating higher-order vector and scalar modes

The realisation of spatially varying degree of entanglement of the form $E(|\Psi\rangle, z)$ is not only facilitated by first-order vector modes with $\ell = 1$ and $p = 0$ but also by the application of higher-order modes [\[3\]](#page-2-2) with $|\ell| > 1$ and $p > 0$. In this case, vector modes $|\Psi_{\rm VB_1}^+\rangle$ and $|\Psi_{\rm VB_2}^-\rangle$ still represent counter-propagating, orthogonal modes, whereby $\ell = \ell_1 = -\ell_2$ and $p = p_1 = p_2$ for both vector modes, as indicated within the theoretical description above. Further, an appropriate choice of $\alpha_{VB_{1,2}}$ ensures the modes' orthogonality. If these requirements are fulfilled, different light fields $|\Psi\rangle$ can be created. Figure [S1](#page-1-0) sketches two examples of these fields with (a) $\ell = 2$, $p = 0$ and (b) $\ell = 2, p = 1$ ($\alpha_{VB_1} = 0, \alpha_{VB_2} = \pi/2$ for both cases). Here, different transverse planes of $|\Psi\rangle$ (normalised intensity + polarisation) are illustrated for chosen propagation distances z. The respective degree of entanglement E is visualized by the red curve between (a) and (b), whereby the arrow shows corresponding values of $k_z z + \varphi$ with [0, $\pi/2$] and $[\pi/2, \pi]$ belonging to first and second line of (a) and (b). Initial vector modes propagating in $+z$ - and $-z$ -direction are indicated at the left and right edge, respectively. Note that, function $E(|\Psi\rangle, z)$ is independent of chosen mode numbers ℓ and p, even if other characteristics as intensity and polarisation of respective light field $|\Psi\rangle$ change according to ℓ and p.

Figure S1: Space-variant degree of entanglement by counter-propagating vector modes of higher order with (a) $\ell = 2$, $p = 0$ and (b) $\ell = 2$, $p = 1$. Initial modes are shown at the right and left edge, whereby central images present different transverse planes (intensity + polarisation) within $|\Psi\rangle$. Respective degree of entanglement E depending on $k_z z + \varphi$ is depicted by red curve $(\varphi = -\pi/4)$.

In contrast to counter-propagating, orthogonally polarised vector modes, scalar modes cannot be used to realise the spatially varying degree of entanglement. Considering two counter-propagating scalar modes $|\Psi_{\text{sc},1}^{\text{+}}\rangle$

Figure S2: Counter-propagating scalar modes of opposite helical charge $(\ell = \pm 1)$ and polarisation $(|R\rangle, |L\rangle)$: Initial modes are shown at the right and left edge, whereby central images present different transverse planes (intensity + polarisation) within $|\Psi\rangle = \frac{1}{\sqrt{2}} (|\Psi_{\text{sc},1}^{\dagger}\rangle + |\Psi_{\text{sc},2}^{\dagger}\rangle)$ (first row belongs to $k_z z \in [0, \pi/2]$, second to $k_z z \in [\pi/2, \pi]$. Respective degree of entanglement is spatially constant with $E(|\Psi\rangle) = 1 \forall z.$

and $|\Psi_{\text{sc},2}^{-}\rangle$ of opposite helicity and circular polarisation, the resulting light field $|\Psi\rangle$ is represented by

$$
|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|\Psi_{\text{sc},1}^{\text{+}}\rangle + |\Psi_{\text{sc},2}^{\text{-}}\rangle \right)
$$

\n
$$
= \frac{1}{\sqrt{2}} \left(e^{\pm ik_z z} |LG_p^{\ell}\rangle |R\rangle + e^{\mp ik_z z} |LG_p^{-\ell}\rangle |L\rangle \right)
$$

\n
$$
= \sqrt{a}|u_R\rangle |R\rangle + \sqrt{1-a}|u_L\rangle |L\rangle. \tag{S13}
$$

In this case, the spatial modes are given by $|u_R\rangle = e^{\pm i k_z z} |LG_p^{\ell}\rangle$ and $|u_L\rangle = e^{\mp i k_z z} |LG_p^{-\ell}\rangle$ with $\langle u_{L,R} | u_{R,L} \rangle = 0.$ Consequently, the factor $a = 1/2$ is spatially independent resulting in a constant degree of entanglement of $E(|\Psi\rangle) = 1$ ($\forall z$). The respective light field for $\ell = 1$, $p = 0$ and $\varphi = 0$ is shown in Fig. [S2.](#page-1-1) Here, in each z-plane a vector mode is realized.

Spin-orbit interaction

To calculate the spin and orbit components of our field, we express the total angular momentum in the zdirection as [\[4\]](#page-2-3)

$$
J_z = \frac{\int \operatorname{Im} \left\{ E^* \cdot \partial_{\phi} E + e_z \cdot E^* \times E \right\} dR}{\int E^* \cdot E dR}
$$
 (S14)

where the terms have their usual meaning. It is easy to show that this integral is zero for the $\ell = \pm 1$ subspace for the entire standing wave. We can calculate the spin and orbital components separately as

$$
S_z \propto \int \mathrm{Im} \left\{ E_x^* E_y - E_y^* E_x \right\} dA \tag{S15}
$$

$$
L_z \propto \int \text{Im}\left\{ E_x^* \partial_\phi E_x + E_y^* \partial_\phi E_y \right\} dA \tag{S16}
$$

where here the x and y subscripts refer to the field components of the initial superposition but written in the horizontal and vertical basis, i.e., $|\Psi\rangle = E_x \hat{\boldsymbol{x}} + E_y \hat{\boldsymbol{y}}$. After some algebra one can show that these terms become

$$
E_x = \frac{1}{\sqrt{2}} \left[e^{-ik_z z} \cos(\ell \phi) - e^{ik_z z} \sin(\ell \phi) \right]
$$
 (S17)

and

$$
E_y = \frac{1}{\sqrt{2}} \left[e^{-ik_z z} \sin(\ell \phi) - e^{ik_z z} \cos(\ell \phi) \right]
$$
 (S18)

- [1] Balthazar WF, Souza CER, Caetano DP, Galvão EF, Huguenin JAO, and Khoury AZ. Tripartite nonseparability in classical optics. Opt. Lett. 2016; 41: 5797–5800.
- [2] McLaren M, Konrad T, and Forbes A. Measuring the nonseparability of vector vortex beams. Phys. Rev. A 2015; 92: 023833.

which after substitution into the above, we find (after some simple algebra): $S_z \propto \sin(2k_z z)$ and $L_z \propto$ $-|\ell|\sin(2k_zz)$. We have a sum that reflects a coupling between spin and orbit components, with one increasing as the other decreases: $J_z \propto (1 - |\ell|) \sin(2k_z z)$. For the $\ell = \pm 1$ subspace the sum always adds to zero so that the total angular momentum is conserved through this SO coupling.

- [3] Otte E, Alpmann C, and Denz C. Higher-order polarization singularitites in tailored vector beams. J. Opt. 2016; 18:074012.
- [4] Berry MV, Jeffrey MR, and Mansuripur M. Orbital and spin angular momentum in conical diffraction. Journal of Optics A: Pure and Applied Optics 2005; 7: 685.