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Supplementary Figure 1: Clustering of top-scoring genes in the context of human DLPFC around
genomic locations that had been previously described as imprinted gene clusters in other contexts.



Known imprinted genes
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Supplementary Figure 2: Known imprinted genes ranked by the gene score (dark blue bars).
“Known imprinted” refers to prior studies on imprinting in the context of any tissue and develop-
mental stage. The length of the black bars indicates the fraction of individuals passing the test of
nearly unbiased expression.
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Supplementary Figure 3: Distribution and inter-dependence of explanatory variables. The diagonal
graphs of the plot-matrix show the marginal distribution of six variables (Age, Institution,...) while
the off-diagonal graphs show pairwise joint distributions. For instance, the upper left graph shows
that, in the whole cohort, individuals’ Age ranges between ca. 15 and 105 years and most individuals
around 75 years; the bottom and right neighbor of this graph both show (albeit in different rep-
resentation) the joint distribution of Age and Institution, from which can be seen that individuals
from Pittsburg tended to be younger than those from the two other institutions.
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Supplementary Figure 4: The quasi-log transformed read count ratio @) and age for imprinted genes.
See Fig. 5 for the corresponding plots without quasi-log transformation and note that statistical
inference was done based on the quasi log transformed data and not only age but several other
explanatory variables (Table 1).
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Supplementary Figure 5: Three model structures: two fized (upper left and right) and a mized
(lower middle) effects multiple regression model. In all three model structures the read count
ratio Y,—for several genes g—depends somehow on three explanatory variables X; like Age or
PMI (Table 1). For each gene g the probabilistic dependence is mediated by fixed B4, 524, 834
or random byg, bs, regression coeflicients. fized II is a constrained version of the fized I model
structure such that 3,4, = Bj4, = ... = B;, which means that the effect of X; on Y does not vary
across genes in fized II. The mized model differs from fized I in the way coefficients across genes
vary for a given explanatory variable X;. In the fized I model structure there is no connection
among Bjg,, Bjgs, .., which means that the way Y;, the read count ratio for gene g depends on
variable X is completely separate from how the read count ratio for any other gene ¢’ (i.e. Yy)
depends on X;. Consequently, the gene-specific substructures of fized I contain no information on
each other. This limitation is overcome with the mized model structure because a set of coeflicients
across genes—e.g. the set {bg,}4)—is modeled as a random sample from a normal distribution with
parameters iz and some o3 > 0. Thus g and o3 constitute information on the effect that is shared
across all genes so that genes “borrow strength from each other”. When 012» = 0 in the mizxed model
then all parameters {b;4}, for X; are fixed at p; = f;, which is characteristic to the fized II model
structure. In the mized model structure this is seen for X7, which therefore has the same effect on
Y, for every gene g. In this example all explanatory variables are continuous in both models. Any
categorical explanatory variable (factor) X; with K levels would lead to K — 1 fixed or random
coeflicients 8,4, ..., Bjc_1g O bj g, ..., bj_,4 for any gene g, respectively. Moreover, if the effect of
that categorical X; is random then it is possible to have a continuous X;, with a random intercept
and slope with respect to X;. In fact the mized model structure (lower middle) is equivalent to
another one (not shown), where “Gene” is a random factor Xgene with random slope for the effects
of X5 and X3.
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Supplementary Figure 6: Fitting various fixed regression models, named logi.S, logi2.S, wnlm.S,
wnlm.Q (Table 2), on the read count ratio data for the PEG3 gene. Results for models unlm.S,
unlm.Q, unlm.R, wnlm.R are omitted for clarity and redundancy. In particular, unlm.Q gave as
good fit as wnlm.Q. Upper left: Fitted curves (black lines) and sampling probabilities (magenta-
white-cyan color gradient) of a version of the four models that is simple in the sense that Age is
the only explanatory variable. Simple regression is used for this illustration only. For inference and
all other plots in this figure multiple regression was performed, where Age is only one of several
explanatory variables (Table 1). Upper right (Normality of residuals): analysis of the normality of
the standardized residuals of fits suggests wnlm.Q is the best fitting model. Lower left (Homogeneity
of error variance): Similar conclusion can be made by inspecting how the standardized deviance
residuals depends on the fitted value. Goodness of fit is indicated by the lack of such dependence.
Black curve: LOESS data smoother. Lower right (Influence of outliers): Influence of each individual
on the fit quantified by Cook’s distance (y-axis). This is plotted against a function of leverage, which
quantifies a subcomponent of influence that is restricted to explanatory variables (i.e. individuals
with extreme age, PMI,...). In ideal case all da¥a points are expected to influence the fit to the
same degree and thus have short Cook’s distance.



S: read count ratio; Q: transformed S

std.deviance.resid

Supplementary Figure 7: Fitting various fixed regression models
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KCNKO9 gene. See the legend of Fig. 6 for further details.
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Supplementary Figure 8: Fitting various mixed regression models, named logi.S, logi2.S, wnlm.S,
wnlm.Q (Table 2), on the read count ratio data for all imprinted genes jointly. Results for models
unlm.S, unlm.Q, unlm.R, wnlm.R are omitted for clarity. The plots suggest that unlm.Q and
wnlm.Q fit the data the best. See the legend of Fig. 6 for further details. For its faster convergence
(not shown) unlm.Q was selected as the favored model for statistical inference.



Estimate and 99 % ClI for Bjg. Fixed effects, unim.Q
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Supplementary Figure 9: Estimated coefficients 3;, and 99% confidence intervals for gene g (y-axis)
and fixed effect j (panel headers) under the fized I model structure (Fig. 5). Below gene UBE3A
the label fixed IT indicates the gene-independent estimate under the fized II model (Fig. 5). Positive
and negative coefficient indicates direct positivejgnd negative dependence of the given gene’s read
count ratio on age, respectively. Compare with Fig. 5 and 10.



Predicted random coefficient bj;. Mixed model unim.Q
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Supplementary Figure 10: Predicted random coefficients bgy; for gene g (y-axis) and random effect j
(panel headers) under the mized model structure (Fig. 5). Positive and negative coefficient indicates
direct positive and negative dependence of the given gene’s read count ratio on age, respectively,
while zero coefficient suggests independence of age. Compare with Fig. 5 and 9.
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Supplementary Figure 11: Top: Distribution of gene score as defined as 1 — ECDF(0.9) (threshold
0.9) or as 1 — ECDF(0.7) (threshold 0.7). Bottom: The same gene scores are shown as in the top
graph with the additional information that points corresponing to the same genes are connected by
straight lines. This demonstrates that gene rank is roughly consistent between the two thresholds.
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Supplementary Figure 12: Distribution of read count ratio in Control, Schizophrenic (SCZ) and
Affective spectrum disorder (AFF) individuals for randomly selected not imprinted genes.
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2 Supplementary Tables

explanatory variable

levels

Age
Institution
Gender
PMI

Dx

RIN

RNA _batch
Ancestry.1

Ancestry.b

[MSSM], Penn, Pitt
[Female], Male

[Control], SCZ, AFF

[Al, B,C,D,E, F,G,H,0

Supplementary Table 1: Left column: explanatory variables of read count ratio. Right column:
levels of each factor-valued (i.e. categorical) variable. Square brackets [...] surround the baseline
level against which other levels are contrasted. Abbreviations: PMI: post-mortem interval; Dx:
disease status; AFF: affective spectrum disorder; SCZ: schizophrenia; RIN: RNA integrity num-
ber; Ancestry.k: the k-th eigenvalue from the decomposition of genotypes indicating population

structure.

model family

abbrev. response var.

unweighted normal [inear unlm S,Q, or R
weighted normal linear wnlm S,Q,or R
logistic logi S
logistic, %x down-scaled link fun. logi2 S

Supplementary Table 2: Fitted regression model families, in which the response variable is the read
count ratio with or without some transformation: S—untransformed, ()—quasi-log-transformed,
and R—rank-transformed read count ratio. Diagnostic plots (Fig. 8) and monitoring convergence
suggested that the unlm.) combination allows the best fit for several linear predictors tested.
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data subset odd ranked genes even ranked genes
predictor term | AAIC p-value AAIC p-value
(1| Gene) | —61.2 5.7x 107 | —59.2 1.5x 10713
(1|Dx) 2.0 1.0 2.0 1.0
(1] Dx : Gene) 1.9 0.71 0.0 0.16
Age 0.0 0.16 2.0 0.86
(Age|Gene) | —11.8 5.8 x 1074 5.1 0.43
Ancestry.1 —-04 0.12 1.8 0.66
(Ancestry.1|Gene) | —40.1 1.3x107% | —185 29x107°
Ancestry.3 1.7 0.59 1.6 0.54
(Ancestry.3|Gene) | —13.3 2.9 x 107* 6.0 0.55
(1| Gender) 2.0 1.0 0.7 0.25
(1|Gender : Gene) | —2.2 4.0 x 1072 0.1 0.17

Supplementary Table 3: Results based on mixed models fitted on two subsets of the data: the first
subset corresponds to odd ranked genes, while the second to even ranked genes (see odd and columns
in Fig. 4, Fig. 5, and Fig. 4). A few findings are notable. First, these results are less significant
in general than those obtained from the full data set (Table 1), which follows from the reduction
both in the number of data points and in the number of genes. Second, the term (Age | Gene) is
significant for odd ranked genes but not for even ranked genes. This agrees with the qualitative
pattern seen in Fig. 4, where the genes in the odd columns show a pronounced variability with
respect to age dependence but genes in even columns do not. The differences between the two
subsets are also explained in part by the fact that there happen to be more missing data for even
ranked genes.
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