

Supporting Information

© 2018 The Authors. Published by Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

Genome Mining-Mediated Discovery of a New Avermipeptin Analogue in *Streptomyces actuosus* ATCC 25421

Weiying Liu,^[a] Fengxian Sun,^[b] and Yang Hu*^[a]

open_201800130_sm_miscellaneous_information.pdf

Table of Contents

Component of chromosome	Property	
Genome size	8,145,579 bp	
GC content	72.53%	
Gene Average Length (bp)	958	
Number of Contigs	1	
rRNAs	18	
tRNAs	70	
sRNAs	16	
Protein-coding genes	7,536	

Table S1 Features of *S. actuosus* ATCC 25421 chromosome.

Cluster	Туре	From	То	Most similar known	MIBIG BGC-ID
				biosynthetic gene	
				cluster (percent of	
				similarity, %)	
1	PKS-NRPS	35338	113331	Antimycin (86)	BGC0000958_c
					1
2	β-lactam	117855	139684	Spinosad (8)	BGC0000148_c1
3	Other	158144	182801	Herboxidiene (2)	BGC0001065_c1
4	Other	373066	398132	Nocathiacin (4)	BGC0000609_c1
5	Melanin	608692	619063	Melanin (71)	BGC0000908_c1
6	Terpene	683296	708900	Carotenoid (63)	BGC0000633_c1
7	Other	963361	977997	Macrotetrolide (33)	BGC0000244_c1
8	Other	118802	121042	Kirromycin (3)	BGC0001070_c1
		4	4		
9	Saccharide	164002	166188	-	-
		3	4		
10	Other	175536	176861	Calicheamicin (2)	BGC0000033_c1
		0	1		
11	Ectoine	182689	183729	Ectoine (100)	BGC0000853_c1
		3	7		
12	Other	220837	224257	Nataxazole (7)	BGC0001213_c1
		9	0		
13	Indole	245752	247862	Lactonamycin (5)	BGC0000238_c1
		5	8		
14	PKS	248334	253660	Rabelomycin (41)	BGC0000262_c1
		0	4		
15	Fatty acid	259742	261842	Tetracenomycin (16)	BGC0000275_c1
		3	4		
16	Other	269117	270690	Salinilactam (8)	BGC0000142_c1
		0	6		
17	Saccharide	282051	284565	-	-
		8	9		
18	Saccharide-Melanin-	296333	305321	RK-682 (45)	BGC0000140_c1
	Butyrolactone-fatty	1	4		
	acid-PKS				
19	Siderophore	311542	312719	Desferrioxamine B	BGC0000940_c1
		7	9	(100)	_
20	Other	348122	349821	Echosides (11)	BGC0000340 c1
		4	2		
21	Other	385096	385939	Streptolydigin (5)	BGC0001046 c1
		3	2	, , , , , , , , , , , , , , , , , , , ,	· · · -
22	Fatty	418530	423009	Simocyclinone (6)	BGC0001072 c1
	acid-Butyrolactone	2	6		

Table S2 Secondary metabolites in *S. actuosus* ATCC 25421.

23	PKS	433723 1	437974 6	Spore pigment (83)	BGC0000271_c1
24	Arylpolyene	443642 3	447758 3	Lomaiviticin (3)	BGC0000240_c1
25	Other	484535 2	486302 5	Coelimycin (8)	BGC0000038_c1
26	Thiopeptide	490367 5	494150 3	Nosiheptide (80)	BGC0000610_c1
27	NRPS	530879 2	539369 9	Telomycin (17)	BGC0001406_c1
28	Other	543904 2	545814 0	Meilingmycin (2)	BGC0000093_c1
29	Terpene	556221 9	558331 6	Albaflavenone (100)	BGC0000660_c1
30	Fatty acid	567189 3	569367 7	Fluostatin (3)	BGC0000223_c1
31	Other	637619 7	638671 4	JBIR-34, JBIR-35 (12)	BGC0000376_c1
32	Bacteriocin	643780 6	644914 9	-	-
33	Terpene-Butyrolacton e	645962 8	648608 5	γ-butyrolactone (100)	BGC0000850_c1
34	Saccharide	659396 4	662836 0	-	-
35	Bacteriocin-PKS-Side rophore	663518 0	674296 7	A-503083 (7)	BGC0000288_c1
36	Other	678973 8	680692 7	Kanamycin (20)	BGC0000704_c1
37	Other	680700 5	681718 4	Kanamycin (3)	BGC0000703_c1
38	Other	681719 1	682399 8	Kanamycin (1)	BGC0000703_c1
39	Fatty acid	687284 4	689379 1	-	-
40	Other	693443 2	695071 8	Kinamycin (5)	BGC0000236_c1
41	Other	700193 9	700819 8	GE81112 (7)	BGC0000360_c1
42	Terpene	705418 8	708094 1	Hopene (92)	BGC0000663_c1
43	Saccharide	712084 7	715598 3	-	-
44	Other	723036 9	724172 1	Lysolipin (4)	BGC0000242_c1

45	Other	758417	759275	Oxazolomycin (6)	BGC0001106_c1
		4	2		
46	Lantipeptide	763467	766463	Informatipeptin (85)	BGC0000518_c1
		8	0		
47	Lassopeptide	790789	793057	-	-
		0	7		
48	NRPS	797412	802148	Leinamycin (2)	BGC0001101_c1
		7	1		
49	Other	807167	807745	9-methylstreptimidone	BGC0000171_c1
		5	1	(9)	

Gene	Size ^[a]	Protein homologue ^[b] and origin	Identity,	Proposed
			%	function
aveA		ABC transporter ATP-binding protein		transporter
complement	635	[Streptomyces sp. Ag82_G6-1]	72	
(7648041-7649948)		WP_097222466.1		
aveB		ABC transporter ATP-binding protein		transporter
complement	577	[Streptomyces sp. CdTB01]	78	
(7650014-7651747)		WP_058921347.1		
aveS		SapB/AmfS family lantipeptide		precursor
complement	38	[Streptomyces sp. 142MFCol3.1]	100	peptide
(7651849-7651965)		WP_028798592.1		
aveT		lantipeptide synthetase [Streptomyces		lantipeptide
complement	860	sp. Ru71] WP_103782009.1	85	synthetase
(7652048-7654630)				

Table S3 Deduced functions of ORFs in the actuospeptin biosynthetic gene cluster.

^[a]Numbers are in amino acids. ^[b]NCBI accession numbers are given in parentheses.

Organism	MIC (µg/mL)
Staphylococcus aureus subsp. aureus	0.0016
ATCC43300	
Enterococcus faecalis ATCC29212	0.0032
Bacillus subtilis ATCC6633	0.0032

Table S4 Minimum inhibitory concentrations (MICs) of avermipeptin B.

Figure S1. COG-based functional classification of genes located on *S. actuosus* ATCC 25421 genome. Genes might be classified into more than one category.

GO Functional Classification (ATCC25421)

Figure S2. GO-based functional classification of genes located on S.

actuosus ATCC 25421 genome. Genes might be classified into more than

one category.

KEGG Pathway Classification (ATCC25421)

Figure S3. KEGG-based functional classification of genes located on *S. actuosus* ATCC 25421 genome. Genes might be classified into more than one category.

Figure S4. Distribution of secondary metabolite gene clusters in *S. actuosus* **ATCC 25421**. The degree of similarity with known gene clusters from other microorganisms was shown with different color of the bars.

S. lividans TK24/pSET152-ave.

Experimental Section

Genome sequencing and assembly

The S. actuosus ATCC 25421 genome was sequenced using a PacBio RS II platform and Illumina HiSeq 4000 platform at the Beijing Genomics Institute (BGI, Shenzhen, China). Four SMRT cells Zero-Mode Waveguide arrays of sequencing, were used by the PacBio platform to generate the subreads set. PacBio subreads (length < 1 kb) were removed. The program Pbdagcon (https://github.com/PacificBiosciences/pbdagcon) was used for selfcorrection. Draft genomic unitigs, which are uncontested groups of fragments, were assembled using the Celera Assembler against a highquality corrected circular consensus sequence subreads set. To improve the accuracy of the genome sequences, GATK (https://www.broadinstitute.org/gatk/) and SOAP tool packages (SOAP2, SOAPsnp, SOAPindel) were used to make single-base corrections. To trace the presence of any plasmid, the filtered Illumina reads were mapped usina SOAP to the bacterial plasmid database (http://www.ebi.ac.uk/genomes/plasmid.html, last accessed July 8, 2016).

Genome component prediction

Gene prediction was performed on the *S. actuosus* ATCC 25421 genome assembly by glimmer3 (<u>http://www.cbcb.umd.edu/software/glimmer/</u>) with Hidden Markov models. tRNA, rRNA and sRNAs recognition made use of tRNAscan-SE (Lowe and Eddy, 1997).

Gene annotation and protein classification

The best hit abstracted using Blast alignment tool for function annotation. Seven databases which are KEGG (Kyoto Encyclopedia of Genes and Genomes), COG (Clusters of Orthologous Groups), NR (Non-Redundant Protein Database databases), Swiss-Prot, and GO (Gene Ontology), TrEMBL, EggNOG are used for general function annotation.

Cloning of the *act* gene cluster into the expression vector pSET152

PCR method was used for amplification of the eryth gene cluster from the genome of *S. actuosus* ATCC 25421 by using the primers P1/P2 (P1: 5'-CATATGCCCCGGACG GTCACACGCGTCAACAATGGG-3'; P2; 5-TCTAGAGGCGTCGGCGAGGCGTT CCAGACTGGCGCG-3'). Then, the recovered fragments were cloned to pMD-18T simple vector and confirmed by DNA sequenceing. The recombinant plasmid was digested with the restriction enzymes *Ndel* and *Xbal*, and then ligated into the vector pSET152 under the control of a promoter *PermE** to give a recombinant plasmid pSET152-ave. The recombinant plasmid pSET152-ave was transformed in competent *E. coli* DH5a cells for amplification and verified by restriction enzymes *Ndel* and *Xbal* and DNA sequencing.

E. coli-Streptomyces conjugation

The recombinant plasmid pSET152-act was transformed by electroporation into *E. coli* ET12567/pUZ8002 according to a standard protocol. The pSET152-ave was introduced into *S. lividans* TK24 by *E. coli-Streptomyces* conjugation as described previously^[1].

Production and Isolation of type III lantibiotics

S. *lividans* TK24 and S. *lividans* TK24/pSET152-ave were cultivated on ISP2 agar plates (4 g yeast extracts, 10 g malt extract, 4 g D -glucose, 18 g agar, and 1000 ml water) containing apramycin (25 mg/ml) at 28°C. The plates were incubated for 10 d at 28 °C. The agar ~ 1 cm² from each plate was extracted with acetonitrile (500 μ l) and centrifugated (14000 rpm, 5 min), the solution was collected for further experiments.

HPLC-ESI-MS/MS analysis of microbial extracts

Lantibiotic-containing samples were analyzed by HPLC-ESI-MS/MS experiments according to the methods described previously^[2].

Isolation and extraction of avermipeptin B

Isolation and extraction of avermipeptin B from *S. lividans* TK24/pSET152-ave were performed according to the methods described previously ^[2].

Assay of antibacterial activity

Avermipeptin B was dissolved in DMSO to produce a stock solution (1000 μ g/mL), which was serially diluted into Mueller-Hinton broth (50 μ L) in a 96-well microtiter plate. For the test of *Staphylococcus aureus*, *Bacillus subtilis* and *Enterococcus faecali*, the final concentration was ranging from 0.0256 to 0 μ g /mL. After the compounds were diluted, 50 μ l aliquots of the test strains (about 5×10⁻⁵ CFU/mL) were added to the appropriate wells of the microtiter plate. After incubation at 37°C 150 rpm for 18-24 h, the MIC was determined as the lowest concentration of compound that inhibits visible bacterial growth. All assays were repeated for 3 times.

References

- [1] T. Kieser, M. J. Bibb, M. J. Buttner, K. F. Chater, D. A. Hopwood, 2000, 3.
- [2] G. H. Völler, J. M. Krawczyk, A. Pesic, B. Krawczyk, J. Nachtigall, R. D. Süssmuth, 2012, 13, 1174-1183.