Calculation of B1 and Coil-Receive-Profile corrected metabolite concentrations normalized to tissue water.

Metabolite signal intensities were corrected for T1 and T2 relaxation assuming previously published relaxation times at 3 T [44]. Further, B1 inhomogeneity were taken into account by division with $\sin^5(\alpha)$, where α , the real flip angle at the position of the voxel [45] , was calculated from the B1 maps. A receive profile of the coil RP_{coil} (including other constants related to signal amplification and postprocessing) can be determined by

$$RP_{Coil} = \frac{S}{C \cdot V_{mrsi}} \tag{1}$$

where S represents the measured signal of a substance at concentration C following a 90° pulse and V_{mrsi} the MRSI voxel size. RP_{coil} can be represented by a matrix with the dimension of the spectroscopic image. The metabolite concentration C_{met} can be calculated by

$$C_{met} = \frac{S_{met}}{\sin^5 \alpha \cdot RP_{coil} \cdot V_{mrei}} \tag{2}$$

with S_{met} representing the relaxation corrected metabolite signals.

RP_{coil} at the slice of the ¹H MRSI data can be obtained from the FID MRSI data of water with

$$RP_{Coil} = \frac{S_{wat}}{\sin(0.22\,\alpha) \cdot C_{wat} \cdot V_{mrsi}} \tag{3}$$

 S_{wat} represents the relaxation corrected water intensity while the term $sin(0.022\alpha)$ takes into account the effect of B1 inhomogeneity and the 2° flip angle. Due to the small flip angle and the short delay between excitation and acquisition, no relaxation corrections are required for water. The concentration C_{wat} in the voxel can be estimated with:

$$C_{wat} = (0.73 GM_{fraction} + 0.64 WM_{fraction} + CSF_{fraction}) \cdot 55 mol/l$$
(4)

assuming 73% water in the GM fraction ($GM_{fraction}$), 64% water in the WM fraction ($WM_{fraction}$) and 100 % water in the CSF fraction ($CSF_{fraction}$). The RP_{coil} matrix obtained for water was adjusted to to the matrix for PRESS CSI by interpolation and then used in equation (2) to calculate C_{met} . Finally, the absolute concentrations referred to tissue water (C_{metwat}) were calculated by

$$C_{metwat} = \frac{C_{met}}{GM_{fraction} + WM_{fraction}} \tag{5}$$