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SUMMARY

Poly(ADP-ribose) is synthesized by PARP enzymes
during the repair of stochastic DNA breaks. Surpris-
ingly, however, we show that most if not all endoge-
nous poly(ADP-ribose) is detected in normal S phase
cells at sites of DNA replication. This S phase
poly(ADP-ribose) does not result from damaged or
misincorporated nucleotides or from DNA replication
stress. Rather, perturbation of the DNA replication
proteins LIG1 or FEN1 increases S phase poly(ADP-
ribose) more than 10-fold, implicating unligated
Okazaki fragments as the source of S phase PARP
activity. Indeed, S phase PARP activity is ablated
by suppressing Okazaki fragment formation with
emetine, a DNA replication inhibitor that selec-
tively inhibits lagging strand synthesis. Importantly,
PARP activation during DNA replication recruits
the single-strand break repair protein XRCC1, and
human cells lacking PARP activity and/or XRCC1
are hypersensitive to FEN1 perturbation. Collec-
tively, our data indicate that PARP1 is a sensor of
unligated Okazaki fragments during DNA replication
and facilitates their repair.

INTRODUCTION

ADP-ribosyl transferases (ADPRTs) comprise a superfamily of

enzymes that post-translationally modify themselves and/or

other proteins with mono- or poly(ADP-ribose) (Amé et al.,

2004; Hottiger et al., 2010). The archetypal member of this

family is poly(ADP-ribose) polymerase-1 (PARP1, also known

as ADPRT1), an abundant nuclear enzyme that regulates multi-

ple cellular processes, including transcription, chromatin re-

modeling, and DNA damage signaling. With respect to DNA

damage signaling, PARP1 binds to and is activated by both

DNA single-strand breaks (SSBs) and DNA double-strand

breaks (DSBs), serving as a rapid and sensitive cellular sensor
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of DNA breakage (Benjamin and Gill, 1980; Ikejima et al., 1990).

In addition to PARP1, PARP2 and PARP3 are also activated by

binding to DNA strand breaks (Amé et al., 1999; Grundy et al.,

2016; Langelier et al., 2014; Rulten et al., 2011). However, to

date, only PARP1 and PARP2 activity has been detected in

cells, perhaps because PARP3 modifies proteins primarily

with mono(ADP-ribose), whereas PARP1 and PARP2 frequently

modify proteins with poly(ADP-ribose). PARP1 accounts for

more than 80% of poly(ADP-ribose) synthesis, with PARP2 ac-

counting for the remainder (Amé et al., 1999; Hanzlikova

et al., 2017).

A number of roles for PARP signaling at sites of DNA damage

have been identified following exogenous genotoxic stress. For

example, ADP-ribosylation can facilitate chromatin relaxation at

DNA breaks, either directly via ADP-ribose-mediated charge

repulsion or indirectly by recruitment of chromatin modifiers

such as ALC1 and aprataxin and PNKP-like factor (APLF)

(Ahel et al., 2009; Mehrotra et al., 2011; Poirier et al., 1982;

Singh et al., 2017; Timinszky et al., 2009). In addition, poly(-

ADP-ribose) synthesis at sites of DNA replication fork stalling

or damage induced by DNA replication inhibitors can regulate

Chk1 protein kinase, Mre11 nuclease, and RECQ helicase ac-

tivities, regulating replication fork resection, degradation, and

restart (Berti et al., 2013; Bryant et al., 2009; Ding et al.,

2016; Min et al., 2013; Ray Chaudhuri et al., 2012; Sugimura

et al., 2008; Yang et al., 2004). Among the commonest DNA

damage structures induced by genotoxins that activate

PARP1 and PARP2 are SSBs, which arise both from direct

attack of the sugar phosphate backbone by reactive oxygen

species or topoisomerase enzymes and indirectly as obligate

intermediates of several different DNA excision repair pro-

cesses (Caldecott, 2008). PARP signaling at SSBs recruits pro-

teins that facilitate SSB repair (SSBR), the most studied of

which is X-ray repair cross-complementing protein 1

(XRCC1). XRCC1 is a scaffold protein that accelerates SSBR

by recruiting, and in some cases stabilizing and/or stimulating,

the enzymes with which it interacts (Caldecott et al., 1994;

1995; Loizou et al., 2004; Whitehouse et al., 2001). PARP1

and/or PARP2 signaling recruits XRCC1 protein complexes

via a direct interaction between poly(ADP-ribose) and a

BRCA1 C-terminal (BRCT) domain in XRCC1 (Breslin et al.,
, July 19, 2018 ª 2018 The Authors. Published by Elsevier Inc. 319
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2015; Caldecott et al., 1996; El-Khamisy et al., 2003; Hanzli-

kova et al., 2017; Masson et al., 1998; Okano et al., 2003).

Given the multiple roles and importance of PARP1 and PARP2

following exogenous genotoxic stress, it is important to identify

which sources of poly(ADP-ribose) synthesis predominate in un-

perturbed cells and the functional significance of this signaling.

That PARP1 and PARP2 fulfil important roles in DNAmetabolism

in unperturbed cells is suggested by several observations. First,

mice lacking both Parp1�/� and Parp2�/� exhibit embryonic

lethality and fail to develop beyond embryonic day 7.0 (E7.0–

E8.0), most likely because of problems arising during the rapid

cycles of DNA replication within the epiblast during gastrulation

(Ménissier-de Murcia et al., 2003). Second, small-molecule

inhibitors of PARP enzymes invoke synthetic lethality in cells in

which homologous recombination (HR)-mediated repair is atten-

uated, a feature that has been exploited in the clinic to selectively

kill BRCA1- and BRCA2-mutated cancer cells (Bryant et al.,

2005; Farmer et al., 2005). It has been suggested that HR pro-

teins are necessary in the presence of PARP inhibitors to repair

and/or regulate stalled or damaged replication forks, but the

endogenous DNA lesions and/or structures that are trapped by

PARP inhibitors to trigger DNA replication fork damage are

unclear. A major problem in identifying sites of endogenous

PARP activity has been the difficulty to detect endogenous sites

of poly(ADP-ribose) synthesis in the absence of exogenous gen-

otoxic stress. Here we have circumvented this problem by em-

ploying short incubations with an inhibitor of poly(ADP-ribose)

glycohydrolase (PARG), the enzyme primarily responsible for

poly(ADP-ribose) catabolism (Davidovic et al., 2001; Lin et al.,

1997; Slade et al., 2011). Strikingly, we show that most, if not

all, poly(ADP-ribose) synthesis detectable in normal unperturbed

cells is triggered during normal S phase by unligated Okazaki

fragment intermediates of DNA replication. Our data thus identify

a new role for PARP1 and suggest that unligated Okazaki frag-

ments are a major threat to genome integrity and stability.

RESULTS

PARP Activity Is Detected Primarily during S Phase at
Sites of DNA Replication
We reasoned that the difficulty in identifying sites of endogenous

poly(ADP-ribose) synthesis in the absence of exogenous DNA

damage isbecause it is rapidlydegradedbyPARG.Consequently,

we attempted to detect endogenous poly(ADP-ribose) in cells

followingshort incubation (15–60min)withapotentPARG inhibitor

(PARGi) (James et al., 2016). This approach was successful,

revealing detectable levels of poly(ADP-ribose) in U2OS cells, hu-

man diploid RPE-1 cells, and a range of other cell lines (Figures 1A

and S1A). Strikingly, most, if not all, of the poly(ADP-ribose) de-

tected by this approachwas present in S phase and located close

to or at sites of DNA replication, as indicated by co-immunostain-

ing with anti-proliferating cell nuclear antigen (PCNA) antibody

(Figure 1A and 1B). To examinewhich PARP enzymewas respon-

sible for S phase ADP-ribosylation, we employed RPE-1 cells in

which PARP1, PARP2, or PARP3 was deleted (Hanzlikova et al.,

2017). The S phase poly(ADP-ribose) was synthesized primarily

by PARP1 because PARP1�/� RPE-1 cells lacked detectable

levels of S phase polymer (Figures 1B, 1C, and S1B).
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S Phase Poly(ADP-Ribose) Is Not the Result of DNA
Damage or Replication Stress
The appearance of ADP-ribosylation specifically in S phase

was surprising because DNA damage arises stochastically

throughout the cell cycle as a result of reactive endogenous elec-

trophilic molecules and because of the intrinsic instability of DNA

(Lindahl, 1993). Indeed, poly(ADP-ribose) triggered by the alky-

lating agent methyl methanesulfonate (MMS) was detected in

G1, S, andG2 phase nuclei (Figure 2A). Additionally, cells lacking

the scaffold protein XRCC1, which accelerates the repair of

endogenous stochastic SSBs, exhibited elevated poly(ADP-

ribose) throughout the cell cycle (Figure 2B). Together, these

data suggest that the majority of detectable poly(ADP-ribose)

in normal unperturbed human cells results not from stochastic

DNA damage but from a source that is tightly associated with

DNA replication.

To explain these results, we next considered the possibility

that PARP1 was activated by one or more DNA lesions associ-

ated specifically with S phase. For example, nucleotides con-

taining damaged or non-canonical DNA bases, such as uracil,

can be incorporated during DNA replication, resulting in the

elevated formation of SSBs in S phase during their excision by

DNA base excision repair (BER) (Bjørås et al., 2017; Otterlei

et al., 1999). However, this type of DNA base damage was not

the source of S phase poly(ADP-ribose) because depletion of

the APE1 endonuclease that excises abasic sites during base

excision repair failed to reduce S phase poly(ADP-ribose) levels

in human HAP1 cells (Figures 2C and S2A). Although these cells

possess a small amount of remaining apurinic/apyrimidinic (AP)

endonuclease activity (Figure 2C, left), this did not account for

the persistence of S phase poly(ADP-ribose) because MMS-

induced poly(ADP-ribose) was greatly reduced in the APE1-

depleted cells (HAP1 APE1KD) (Figures 2C, right, and S2A).

Another possible source of S phase poly(ADP-ribose) we consid-

ered was DNA breaks arising during the excision repair of mis-

matched nucleotides. However, this was not the case because

MLH1/MSH3 mutant DNA mismatch repair-deficient HCT116

cells (Koi et al., 1994) exhibited levels of S phase poly(ADP-

ribose) similar to their repair-proficient counterparts (Figures

2D and S2B). Next we examined the possibility that S phase

poly(ADP-ribose) arose during the excision repair of ribonucleo-

tides. Ribonucleotides are misincorporated during DNA replica-

tion approximately every 5–10 kb and are excised by ribonucle-

otide excision repair, a process initiated by the endonuclease

RNase H2 (Reijns et al., 2012; Rydberg and Game, 2002; Sparks

et al., 2012). However, we failed to detect any difference be-

tween wild-type and Rnaseh2b�/� mouse embryonic fibroblasts

in levels of S phase poly(ADP-ribose), suggesting that ribonucle-

otide excision repair is not the source of S phase poly(ADP-

ribose) (Figures 2E and S2C). This did not reflect the presence

of residual RNase H2 activity because these cells lack all such

activity (Reijns et al., 2012; Figure S2C, right).

We also examined the possibility that S phase ADP-ribosyla-

tion is triggered by replication stress because PARP1 has been

reported to bind and be activated by stalled, reversed, and

collapsed DNA replication forks (Berti et al., 2013; Bryant et al.,

2009; Min et al., 2013; Ray Chaudhuri et al., 2012; Sugimura

et al., 2008; Yang et al., 2004). However, the S phase



A

B

C

Figure 1. Endogenous Poly(ADP-Ribose) Is Detected Primarily during S Phase at Sites of DNA Replication

(A) ADP-ribose and PCNA (indicative of S phase) immunostaining in detergent-pre-extracted U2OS cells after 30 min incubation with DMSO vehicle or PARG

inhibitor (PARGi). Scale bars, 20 mm.

(B) ADP-ribose and PCNA immunostaining in wild-type, PARP1�/�, and PARP1�/�/PARP2�/� RPE-1 cells after 15 min incubation with DMSO vehicle or PARG

inhibitor. Representative confocal images are shown. Scale bars, 5 mm.

(C) Western blotting of the indicated proteins in wild-type (WT), PARP1�/�, PARP2�/�, PARP3�/�, and PARP1�/�/PARP2�/� RPE-1 cell lines (left) and quanti-

fication of ADP-ribose levels in these cell lines after 15 min incubation with DMSO vehicle or PARG inhibitor in PCNA-negative (non-S phase) and PCNA-positive

(S phase) cells (average of n = 4 with SEM). Representative ScanR images are shown in Figure S1B.
poly(ADP-ribose) detected in our experiments did not result from

these sources because it was not associated with gH2AX focus

formation (Figure 2F), a general marker of DNA replication stress,

including fork reversal (Limoli et al., 2002; Mirzoeva and Petrini,

2003; Ward and Chen, 2001; Berti et al., 2013; Ray Chaudhuri

et al., 2012). In addition, treatment for 2 hr with hydroxyurea

(HU) to induce DNA replication fork stress did not increase the

level of S phase poly(ADP-ribose) despite increasing the level

of S phase gH2AX (Figure 2F; see also Figure 4B). Collectively,
these data suggest that S phase poly(ADP-ribose) arises neither

from DNA lesions incorporated during DNA replication nor from

DNA replication stress.

S Phase Poly(ADP-Ribose) Is Increased by Perturbing
Enzymes Involved in Okazaki Fragment Maturation
Next we considered the possibility that S phase poly(ADP-

ribose) synthesis occurs during DNA replication at one or more

canonical DNA replication intermediates. To test this, we first
Molecular Cell 71, 319–331, July 19, 2018 321



A

C

B

D

F

E

PARGI

DMSO

(legend on next page)

322 Molecular Cell 71, 319–331, July 19, 2018



employed 46BR human fibroblasts from a patient harboring

mutated DNA ligase I (LIG1), the enzyme that ligates Okazaki

fragments during DNA replication (Barnes et al., 1992; Hender-

son et al., 1985; Levin et al., 1997; 2000; Lönn et al., 1989; Prigent

et al., 1994). Strikingly, 46BR cells exhibited S phase poly(ADP-

ribose) levels that were �14-fold higher than in normal human

fibroblasts (1BR) when poly(ADP-ribose) degradation was

prevented by PARG inhibition (Figure 3A). Moreover, elevated

S phase poly(ADP-ribose) was detectable in 46BR cells even

in the absence of PARG inhibition. These results were not

restricted to LIG1 mutation because similar results were

observed when we depleted LIG1 using small interfering RNAs

(siRNAs) (Figure S3A). Importantly, we did not detect an increase

in poly(ADP-ribose) levels in LIG1-defective cells that did not

stain positive for PCNA or 5-ethynyl-2’-deoxyuridine (EdU) (Fig-

ures 3A and S3A), indicating that the increased poly(ADP-ribose)

was S phase-specific and consistent with it resulting from

the increased unligated Okazaki fragments that are present

in LIG1-defective cells (Barnes et al., 1992; Henderson et al.,

1985; Levin et al., 2000; 1997; Lönn et al., 1989; Prigent et al.,

1994). To test this possibility further, we examined poly(ADP-

ribose) levels in RPE-1 cells in which we transiently inhibited

FEN1, the nuclease that excises 50 flaps duringOkazaki fragment

processing prior to their ligation by LIG1 (Goulian et al., 1990;

Harrington and Lieber, 1994; Ishimi et al., 1988; Robins et al.,

1994; Waga et al., 1994). Indeed, similar to LIG1 perturbation,

incubation with FEN1 inhibitor (FEN1i) (Exell et al., 2016) in

the presence of PARG inhibitor increased the level of S phase

poly(ADP-ribose) �12-fold relative to the level of S phase

poly(ADP-ribose) detected in the presence of PARG inhibitor

alone (Figures 3B and S5). Again, the elevated poly(ADP-ribose)

was observed only in S phase and localized extensively with

PCNA (Figures 3B and 3C). The S phase poly(ADP-ribose)

induced by the FEN1 inhibitor was primarily dependent on

PARP1, although complete ablation in some cells required the

additional deletion of PARP2 (Figures 3B and 3C). The effect of

the FEN1 inhibitor on levels of S phase poly(ADP-ribose) was

not a non-specific reflection of increased DNA replication stress

because, similar to the PARG inhibitor, there was no obvious

effect of the inhibitor on either DNA replication rate or on

gH2AX focus formation under the conditions employed (Figures
Figure 2. S Phase Poly(ADP-Ribose) Does Not Result from DNA Lesion

(A) Representative ScanR images (left) and quantitation (right) of ADP-ribose in R

either PARG inhibitor or MMS. Cell cycle populations were gated according to EdU

n = 3 with SEM).

(B) Representative ScanR images and quantitation of ADP-ribose in wild-type an

(C) AP endonuclease protein (bottom left) and activity (top left) in cell extracts from

with APE1 siRNA (denoted APE1KD) to further decrease APE1 levels and activity

APE1KD cells and in cells incubated for 20 min with either PARG inhibitor or MM

intensity in all nuclei normalized to the wild-type sample, quantified in ImageJ.

(D) Quantification of ADP-ribose in MMR-deficient (MSH3 andMLH1mutant) HCT

HCT116+Ch3 (MLH1-complemented) and HCT116+Ch3+5 (MLH1- and MSH3-

populations were gated according to PCNA (S phase) intensity (average of n = 3wi

(E) Quantification of ADP-ribose in PCNA-negative (non-S phase) and PCNA-po

(MEFs) after incubation for 60 min with or without PARG inhibitor (average of n =

(F) Representative confocal images of ADP-ribose and gH2AX immunostaining in

hydroxyurea (HU) for 2 hr and with or without PARG inhibitor for the final 20 min, a

from each image.
S3B and S3C). Rather, these data implicate S phase poly(ADP-

ribose) as a molecular indicator of unligated Okazaki fragments.

PARP Activity during S Phase Is Prevented by
Suppressing Okazaki Fragment Formation
To confirm that Okazaki fragments were the source of S phase

poly(ADP-ribose), we employed the DNA replication inhibitor

emetine. Emetine is an inhibitor of DNA replication that prevents

the formation of Okazaki fragments, uncoupling leading and lag-

ging strand DNA replication (Burhans et al., 1991). The ability of

this drug to inhibit lagging strand synthesis has been exploited

previously to map eukaryotic replication origins because it en-

ables the selective pulse-labeling of nascent leading strands

that can be used as sequence-specific probes (Aladjem et al.,

1998; Aladjem and Wahl, 1997; Burhans et al., 1991; Handeli

et al., 1989; Kitsberg et al., 1993). Strikingly, short incubation

with emetine (EME) completely blocked the appearance of

S phase poly(ADP-ribose) in both RPE-1 cells (Figure 4A) and

U2OS cells (Figures 4B). Moreover, emetine ablated most of

the S phase poly(ADP-ribose) triggered by the FEN1 inhibitor,

confirming that this drug prevented PARP activation at sites of

unligated Okazaki fragments (Figure 4A). This result did not

reflect a non-specific effect of emetine on PARP activity because

emetine did not block poly(ADP-ribose) synthesis at sites of sto-

chastic DNA damage induced by MMS (Figure S4). Nor did this

result reflect a non-specific effect of emetine on DNA replication

because the DNA replication inhibitor hydroxyurea did not

reduce the level of S phase poly(ADP-ribose) despite inhibiting

DNA synthesis to a greater extent than emetine, as measured

by EdU incorporation (Figure 4C).

S Phase Poly(ADP-Ribose) Results in Recruitment of the
SSBR Scaffold Protein XRCC1
The data described above implicate PARP1 and PARP2 as sen-

sors of incompletely processed Okazaki fragments. Why are

these enzymes activated during unperturbed S phase in which

the canonical pathway for processing Okazaki fragments is pre-

sent? Because replication of the human genome requires the

synthesis and ligation of 30–50 million Okazaki fragments, we

considered the possibility that a sub-fraction of these fragments

escapes canonical processing by FEN1 and/or LIG1.We posited
s or Replication Fork Stress

PE-1 cells incubated for 20 min with 10 mM EdU in the absence or presence of

positivity (S phase) and DNA content (G1 and G2) by DAPI staining (average of

d XRCC1�/� RPE-1 cells as in (A) (average of n = 3 with SEM).

wild-type and APE1 gene-targeted human HAP1 cells additionally transfected

. Right: ADP-ribose immunostaining in pre-extracted untreated wild-type and

S. Scale bars, 20 mm. The numbers in the corners are the mean ADP-ribose

116 cells and their chromosome-complemented MMR-proficient counterparts

complemented) after 60 min incubation with or without PARG inhibitor. Cell

th SEM). Representative immunofluorescence images are shown in Figure S2B.

sitive (S phase) Rnaseh2b+/+ and Rnaseh2b�/� mouse embryonic fibroblasts

3 with SEM). Representative ScanR images are shown in Figure S2C.

untreated RPE-1 cells and in RPE-1 cells following incubation with or without

s indicated. Scale bars, 20 mm. Insets, right: a representative and magnified cell
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Figure 3. Perturbation of the DNA Replication Proteins LIG1 and FEN1 Increases S Phase Poly(ADP-Ribose)

(A) Representative ScanR images (left, PCNA-positive cells only) and quantitation of ADP-ribose (right) in 1BR- and LIG1-deficient 46BR primary fibroblasts

following incubation with DMSO vehicle or PARG inhibitor for 20 min. For quantitation, PCNA-negative (non-S phase) and PCNA-positive (S phase) cells were

gated according to nuclear PCNA intensity. Note the break and change in scale in the y axis required to display the very high ADP-ribose level in S phase 46BR

cells (average of n = 3 with SEM).

(B) Representative ScanR images (left, PCNA-positive cells only) and quantification of ADP-ribose (right) as above in wild-type, PARP1�/�, and PARP1�/�/
PARP2�/� RPE-1 cell lines. Cells were treated with DMSO vehicle or FEN1 inhibitor (FEN1i) for 30 min, with PARG inhibitor added or not during the last 15 min, as

indicated. Note the break and change in scale in the y axis required to display the very high ADP-ribose level in FEN1 inhibitor/PARG inhibitor-treated RPE-1 cells

(average of n = 3 with SEM). See also Figure S5.

(C) Representative confocal images of S phase (PCNA-positive) cells from the experiment in (B), illustrating the localization of poly(ADP-ribose) with PCNA at DNA

replication sites. Scale bars, 5 mm.
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Figure 4. Suppression of Okazaki Fragment Formation with Emetine Prevents S Phase ADP-Ribosylation

(A) Indirect immunofluorescence imaging of ADP-ribose and EdU in wild-type RPE-1 cells incubated or not with emetine (EME) and/or FEN1 inhibitor for 45min as

indicated, with or without PARG inhibitor added during the final 20 min. EdU was added to all samples during the last 20 min to detect DNA synthesis. Scale

bar, 20 mm.

(B) Representative ScanR images (left) and quantification (right) of mean ADP-ribose levels in pre-extracted U2OS interphase cells treated or not for 2 hr with

hydroxyurea or for 1 hr with emetine, as indicated (average of n = 3with SEM). PARG inhibitor was added or not, as indicated, during the final 30min. Note that the

ADP-ribose quantifications are the mean levels across all interphase cells (not just S phase cells).

(C) EdU labeling in U2OS cells treated or not with hydroxyurea for 2 hr or emetine for 1 hr. Cells were incubated with 10 mM EdU for the final 20 min. Scale

bar, 20 mm.

Molecular Cell 71, 319–331, July 19, 2018 325



Figure 5. S Phase PARP Activity Recruits the DNA Repair Protein XRCC1 and Protects Cells from the Effect of the FEN1 Inhibitor

(A) Representative confocal images of XRCC1 immunostaining in U2OS cells after incubation for 30min in the presence of DMSO vehicle or PARG inhibitor. Cells

were fixed immediately to detect total XRCC1 or were pre-extracted with Triton X-100 before fixation to detect chromatin-bound XRCC1. Magnified images of

two representative cells are shown (right). Scale bars, 20 mm.

(B) Representative confocal images of XRCC1 and PCNA immunostaining in PCNA-positive (S phase) wild-type, PARP1�/�, PARP1�/�/PARP2�/�, and
XRCC1�/�RPE-1 cells after incubation in the presence or absence of PARG inhibitor for 15min (top), as indicated, or in wild-type RPE-1 cells following incubation

in the presence of FEN1 inhibitor for 30 min (bottom). Scale bars, 5 mm.

(C) Clonogenic survival of wild-type, PARP1�/�, PARP1�/�/PARP2�/�, and XRCC1�/� RPE-1 cells following incubation in the presence of the indicated con-

centrations of FEN1 inhibitor. Data are themean ± SEM of three independent experiments. The inset shows an independent set (n = 3) of experiments in which the

above cell lines and, additionally, XRCC1�/�/PARP1�/� cells were incubated with 10 mM FEN1 inhibitor.
that S phase poly(ADP-ribose) might signal the presence of

these incomplete DNA replication intermediates and facilitate

recruitment of the SSBR machinery to complete their ligation.

In agreement with this idea, we detected the presence of the

SSBR scaffold protein XRCC1 in foci that were resistant to deter-

gent extraction in a sub-population of U2OS cells, consistent

with its presence in DNA replication foci, when poly(ADP-ribose)
326 Molecular Cell 71, 319–331, July 19, 2018
degradation was prevented (Figure 5A). Similar results were

observed in RPE-1 cells, which we additionally co-stained

with PCNA to identify sites of DNA replication (Figure 5B). The

presence of XRCC1 in DNA replication foci was reduced by

deletion of PARP1 and ablated by additional deletion of PARP2

(Figure 5B), consistent with the overlapping role of these two

enzymes in facilitating XRCC1 recruitment (Hanzlikova et al.,



2017). Notably, XRCC1 recruitment was detected even in the

absence of PARG inhibitor when FEN1 was inhibited to increase

the level of unligated Okazaki fragments (Figure 5B, bottom).

Loss of PARP1, PARP2, and/or XRCC1 Results in
Hypersensitivity to the FEN1 Inhibitor
Finally, to examine the importance of XRCC1-dependent SSBR

for cellular tolerance to unprocessed Okazaki fragments, we

compared wild-type RPE-1 cells and cells lacking PARP1,

PARP2, and/or XRCC1 for hypersensitivity to FEN1 inhibition.

Indeed, XRCC1�/�, PARP1�/�, and PARP1�/�/PARP2�/�

RPE-1 cells were each more sensitive to FEN1 inhibitor than

wild-typeRPE-1 cells (Figure 5C).Notably,XRCC1�/�/PARP1�/�

RPE-1 cells in which both proteins were absent were no more

sensitive than either single mutant cell line, confirming that these

proteins function in the same pathway (Figure 5C, inset). Impor-

tantly, the hypersensitivity of PARP1
�/�

and XRCC1�/� cells did

not reflect a role for PARP1 and XRCC1 in the repair of stochastic

DNA damage induced by the FEN1 inhibitor. This is because the

elevated poly(ADP-ribose) signal in XRCC1�/� cells outside of S

phase, which is indicative of stochastic DNA damage, was not

further increased by the FEN1 inhibitor (Figure S5).

In summary, we show here that extensive poly(ADP-ribose)

synthesis is a feature of normal unperturbed S phase and

signals the presence of unligated Okazaki fragments. We

propose that the synthesis of S phase poly(ADP-ribose) results

in the recruitment of PARP-dependent SSBR, which, we

conclude, is a non-canonical pathway for Okazaki fragment

maturation.

DISCUSSION

The use of a highly selective PARG inhibitor in this work has un-

covered high levels of poly(ADP-ribose) during normal S phase at

sites of DNA replication. This observation was applicable to

a range of different cell lines, suggesting that the synthesis of

poly(ADP-ribose) is a common feature of normal S phase. The

absence of detectable poly(ADP-ribose) in cells that have not

been incubated with the PARG inhibitor likely reflects the high

catalytic activity of this enzyme and possibly also its recruitment

into the replisome by interaction with PCNA (Kaufmann et al.,

2017; Mortusewicz et al., 2011). Our data are consistent with a

previous report in which poly(ADP-ribose) was detected in

S phase cells by suppressing PARG activity with siRNA (Ray

Chaudhuri et al., 2015). However, the latter study employed con-

ditions under which PARG activity was suppressed for �24 hr,

which itself induces DNA replication fork damage (Gravells

et al., 2017; Illuzzi et al., 2014; Ray Chaudhuri et al., 2015). In

contrast, the short-term (15–60 min) suppression of PARG activ-

ity employed in our experiments does not induce replication fork

damage (James et al., 2016), an observation confirmed in our ex-

periments by the absence of gH2AX induction or anymajor effect

on DNA replication rate. We thus conclude that the S phase pol-

y(ADP-ribose) detected in this work reflects genuine sites of

PARP1 activity during normal S phase rather than additional sites

induced by the PARG inhibitor.

Interestingly, in SSBR-defective XRCC1�/� cells, incubation

with the PARG inhibitor additionally uncovered the presence of
poly(ADP-ribose) outside of S phase at stochastic SSBs in G1

and G2. However, this poly(ADP-ribose) is different from that

observed in S phase because it was not detected in SSBR-pro-

ficient wild-type cells. This suggests that the source of PARP ac-

tivity in S phase is not stochastic DNA damage but, rather, is a

DNA structure that arises specifically during DNA replication.

Although there are several types of S phase-specific DNA lesions

that could trigger poly(ADP-ribose) synthesis during their exci-

sion repair, we were unable to alter S phase poly(ADP-ribose)

by depleting or deleting the enzymes required for their removal.

Similarly, although PARP1 and/or PARP2 are also activated at

stalled or damaged replication forks, the S phase poly(ADP-

ribose) detected here was not triggered by such structures

because it was not associated with gH2AX and because the

deliberate induction of replication fork stress by short-term

incubation with hydroxyurea did not induce additional S phase

poly(ADP-ribose). In contrast, however, perturbation of the

Okazaki fragment processing enzymes FEN1 or LIG1 triggered

large increases in S phase poly(ADP-ribose) levels, strongly

implicating unligated Okazaki fragments as a potent source of

S phase poly(ADP-ribose) synthesis. Although FEN1 and LIG1

are also implicated in long-patch DNA base excision repair

(Klungland and Lindahl, 1997; Levin et al., 2000; Prasad et al.,

2000) this role cannot account for their effect on S phase

poly(ADP-ribose). This is because the perturbation of FEN1

and LIG1 in our experiments increased poly(ADP-ribose) levels

only during S phase, whereas long-patch base excision repair

is also operative outside of S phase (Akbari et al., 2009; Kleppa

et al., 2012; Woodrick et al., 2017). In addition, long-patch base

excision repair is largely dependent on AP endonuclease

activity, which, we demonstrated, does not influence the level

of S phase poly(ADP-ribose). Nevertheless, to confirm that

unligated Okazaki fragments were the source of S phase

poly(ADP-ribose), we employed emetine, an inhibitor of DNA

replication that, when employed for short periods, selectively

inhibits the synthesis of Okazaki fragments (Burhans et al.,

1991). Similar to hydroxyurea, emetine uncouples leading strand

and lagging strand replication and greatly reduces the overall

rate of DNA synthesis. Critically, however, although the residual

nascent DNA in hydroxyurea-treated cells is enriched for short

Okazaki-like DNA fragments (Laipis and Levine, 1973; Magnus-

son, 1973a; 1973b; Martin et al., 1977; Radford et al., 1982),

the residual nascent DNA in emetine-treated cells results only

from leading strand replication (Burhans et al., 1991). Consistent

with this, emetine almost completely prevented the appearance

of poly(ADP-ribose) in S phase, even in cells in which polymer

levels were elevated by incubation with the FEN1 inhibitor. This

contrasted markedly with hydroxyurea, which, despite reducing

total DNA synthesis to a similar level as emetine, did not alter the

level of S phase poly(ADP-ribose).

Why do cells require PARP1 to detect unligated Okazaki

fragments? Although the canonical pathway for lagging DNA

replication is highly coordinated, it is possible that this pathway

is unable to process all of the 30–50 million Okazaki fragments

that arise during each human S phase and, thus, that other

mechanisms are required to detect and repair these structures.

Consistent with this idea, it has been estimated that 15%–30%

of human DNA polymerase d molecules dissociate before
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encountering a downstream Okazaki fragment (Hedglin et al.,

2016). In addition, single-strand gaps in nascent DNA can arise

by replicative bypass of lesions or other obstructions in DNA

template strands (Langston and O’Donnell, 2006; Marians,

2018), suggesting that S phase poly(ADP-ribose) synthesis

might be triggered by gaps in either the leading or lagging

nascent strands. Our finding that XRCC1 was recruited at sites

of DNA replication by stimulating poly(ADP-ribose) synthesis

with the FEN1 inhibitor is consistent with a role for PARP-depen-

dent SSBR in processing unligated Okazaki fragments, as is

our observation that deletion of PARP1, PARP2, and/or XRCC1

results in hypersensitivity to this inhibitor. Similarly, this idea is

consistent with the established sensitivity of LIG1-mutated

46BR cells to the PARP inhibitor (Lehmann et al., 1988; Teo

et al., 1983) and with the dependence of chicken DT40 cells

lacking LIG1 on the XRCC1 protein partner LIG3 for viability

(Arakawa and Iliakis, 2015). Finally, it is worth noting that

treatment of human cells with the PARP inhibitor 3-aminobenza-

mide was reported more than 30 years ago to result in the

accumulation of 10-kb nascent DNA fragments, consistent

with a requirement of PARP1 activity for the maturation of a

subset of nascent DNA replication intermediates (Lönn and

Lönn, 1985).

Finally, our data have important implications concerning the

impact of unligated Okazaki fragments. For example, it has

been suggested that the lethality invoked by complete loss of

XRCC1 or PARP activity in mouse embryos undergoing rapid

cell divisions during gastrulation could reflect unrepaired sto-

chastic SSBs that impede DNA replication (Ménissier-de Murcia

et al., 2003; Tebbs et al., 1999). Although this argument is attrac-

tive, our data suggest that, in addition to stochastic SSBs, unli-

gated Okazaki fragments are a likely contributing factor to the

lethality observed in embryos lacking PARP-dependent SSBR.

Similarly, a role for PARP activity in the repair of Okazaki frag-

ments may have relevance to the established hypersensitivity

of HR-defective cancer cells to PARP inhibition (Bryant et al.,

2005; Farmer et al., 2005). Although PARP inhibitors are now ex-

ploited clinically to treat BRCA1- and BRCA2-mutated cancers,

the nature of the DNA structures on which PARP enzymes are

‘‘trapped’’ by these inhibitors is unclear. Our data implicate unli-

gated Okazaki fragments as one such structure. We suggest that

unligated Okazaki fragments that are trapped by the PARP inhib-

itor require HR-mediated repair for their removal, either directly

as single-strand gaps or following their conversion into DSBs

by nucleases or DNA replication fork collapse, as has been

demonstrated in E. coli (Kouzminova and Kuzminov, 2012; Kuz-

minov, 2001). That unligated Okazaki fragments can also trigger

HR-mediated repair in human cells is consistent with the

observation that LIG1-mutated 46BR cells exhibit elevated levels

of baseline sister chromatid exchange (Henderson et al., 1985)

and with the observation that the FEN1 inhibitor induces

RAD51 focus formation or cell death in BRCA2-proficient and

-deficient cells, respectively (Ward et al., 2017).

In summary, we show here that poly(ADP-ribose) is detected

primarily at sites of DNA replication in normal human S phase,

and we implicate PARP-dependent SSBR machinery as a

novel ‘‘backup’’ pathway for processing unligated Okazaki

fragments.
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Amé, J.C., Rolli, V., Schreiber, V., Niedergang, C., Apiou, F., Decker, P., Muller,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-XRCC1 Millipore Cat# ABC738

Mouse monoclonal anti-PARP1 Serotec Cat# MCA1522G

Rabbit polyclonal anti-PARP2 Active Motif Cat# 39743

Rabbit polyclonal anti-PARP3 a gift from F. Dantzer 4699

Rabbit polyclonal anti-poly(ADP-ribose) Trevigen Cat# 4336

Rabbit Fc-fused anti-pan-ADP-ribose binding reagent Millipore Cat# MABE1016

Rabbit polyclonal anti-APE1 Invitrogen Cat# PA517233

Rabbit polyclonal anti-mouse RNase H2 complex a gift from A. Jackson, Reijns et al., 2012 62

Mouse monoclonal anti-gH2AX Millipore Cat# 05-636

Mouse monoclonal anti-PCNA Santa Cruz Cat# sc-56

Rat polyclonal anti-a-tubulin Abcam Cat# ab6160

HRP-conjugated goat anti-rabbit Bio-Rad Cat# 170-6515

HRP-conjugated goat anti-mouse Bio-Rad Cat# 170-6516

HRP-conjugated rabbit anti-rat Abcam Cat# ab6734

Biological Samples

1BR human fibroblasts GDSC cell bank

46BR human fibroblasts Henderson et al., 1985

Chemicals, Peptides, and Recombinant Proteins

PARG inhibitor Tocris PDD 0017273; 5952

PARG inhibitor a gift from D. James, James et al., 2016 PDD 00017272

FEN1 inhibitor This paper Exell et al., 2016

Methyl methansulfonate (MMS) Sigma-Aldrich Cat# 129925

Hydroxyurea Sigma-Aldrich Cat# H8627

Emetine Sigma-Aldrich Cat# E2375

Camptothecin (CPT) Sigma-Aldrich Cat# C9911

Critical Commercial Assays

Click-iT EdU Alexa Fluor 488 Imaging Kit Invitrogen Cat# C10337

Deposited Data

Original imaging data This paper

Experimental Models: Cell Lines

Human: hTERT RPE-1 ATCC CRL-4000

Human: PARP1�/� Hanzlikova et al., 2017

Human: PARP2�/� Hanzlikova et al., 2017

Human: PARP3�/� Hanzlikova et al., 2017

Human: PARP1�/�/PARP2�/� Hanzlikova et al., 2017

Human: XRCC1�/� Hoch et al., 2017

Human: XRCC1�/�/PARP1�/� Hoch et al., 2017

Human: U2OS ATCC HTB-96

Human: HeLa ATCC CCL-2

Mouse: Rnaseh2b+/+ Reijns et al., 2012

Mouse: Rnaseh2b�/� Reijns et al., 2012

Human: HAP1 parental control Horizon C631

Human: APE1 knockout cell line 2bp deletion Horizon HZGHC005289c003

Human: HCT116 Koi et al., 1994

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human: HCT116+Ch3 Koi et al., 1994

Human: HCT116+Ch3+5 Koi et al., 1994

Oligonucleotides

siNT (non-targeting siRNA) Dharmacon ON-TARGETplus

siAPE1 Dharmacon SMARTpool

siLIG1 Dharmacon SMARTpool

siLIG1 (#1): GGCAUGAUCCUGAAGCAGA Dharmacon N/A

siPARP1 Dharmacon SMARTpool

RiboG oligo: 50-(6-FAM)-TAGCATCGATCAGTCCTC(rG)GAGG

TCTAGCATCGTTAGTCA-(TAMRA)-30
Midland Certified Reagent Company N/A

AP oligo: 50-(6-FAM)-TAGCATCGATCAGTCCTC(APsite)GAG

GTCTAGCATCGTTAGTCA-(TAMRA)-30
Midland Certified Reagent Company N/A

Complementary oligo: 50-TGACTAACGATGCTAGACCTCTGA

GGACTGATCGATGCTA-30
Midland Certified Reagent Company N/A

Competitor oligo: 50-AAAGATCACAAGCATAAAGAGACAGG-30 Midland Certified Reagent Company N/A

Software and Algorithms

ScanR Analysis Software Olympus

ImageJ NIH

PharosFX Molecular Imager System Bio-Rad
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to KeithW. Caldecott (k.w.caldecott@sussex.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Chemicals
PARG inhibitor was purchased from Tocris (PDD 0017273; 5952) or was as a gift from Dominic James (PDD 00017272) (similar data

were obtained with both). FEN1 inhibitor was synthesized as described previously [compound 24 in (Tumey et al., 2005)]. Both

inhibitors were dissolved in dimethyl sulfoxide (DMSO) to a working concentration of 10 mM. Methyl methansulfonate (MMS) was

dissolved directly into culture medium, 2 M hydroxyurea (HU) solution was prepared in water and 2 mM emetine in PBS. 10 mM

camptothecin stock was in DMSO. Final concentrations were as follows: 10 mM PARG inhibitor, 10 mM FEN1 inhibitor, 0.2 mg/ml

MMS, 2 mM hydroxyurea, 2 mM emetine and 10 mM CPT.

Cell culture
Human wild-type, PARP1�/�, PARP2�/�, PARP3�/�, PARP1�/�/PARP2�/�, XRCC1�/� and XRCC1�/�/PARP1�/� hTERT RPE-1 cell

lines have been described previously (Hanzlikova et al., 2017; Hoch et al., 2017). Cells were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM/F12) supplemented with 10% fetal calf serum (FCS) and 0.01 mg/ml hygromycin. Human U2OS cells, HeLa and

mouse embryonic fibroblasts (MEFs) fromwild-type or Rnaseh2b�/�mice were grown in DMEM containing 10% FCS, 2mM L-gluta-

mine, and the antibiotics penicillin (100 U/ml) and streptomycin (100 mg/ml) (Pen/Strep). Wild-type and APE1 gene-targeted (2 bp

deletion) human HAP1 cells were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) with 10% FCS and the antibiotics

Pen/Strep. MLH1/MSH3-deficient HCT116 cells harboring MLH1 and MSH3 mutations on chromosome 3 and 5, respectively,

and derivatives in which wild-type MLH1 (HCT116+Ch3) or both MLH1 and MSH3 (HCT116+Ch3+5) were introduced by chromo-

some transfer (Koi et al., 1994) were grown in McCoy’s 5a with L-glutamine, 10% FCS and Pen/Strep. Primary human fibroblasts,

1BR and (LIG1)-deficient 46BR cells were cultured in Minimum Essential Media (MEM) supplemented with 15% FCS, 2 mM L-gluta-

mine, and the antibiotics Pen/Strep.

METHOD DETAILS

siRNA and transfection
Non-targeting siRNA (ON-TARGETplus) and SMARTpool siRNA against APE1, LIG1, or PARP1, or the single LIG1 siRNA (#1) were

reverse-transfected into the cells using Lipofectamine� RNAiMAX (Invitrogen) according to the manufacturer’s instructions. All

experiments were carried out 72 hr post-transfection.
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APE1 and RNase H2 in vitro assays
The substrate for the in vitro RNase H2 assay was prepared by annealing equimolar amounts of RiboG oligo and Complementary

oligo (Midland Certified Reagent Company) in 10 mM Tris pH 8.0, 200 mM NaCl, 1 mM EDTA. The substrate for the in vitro APE1

assay was prepared by annealing equimolar AP oligo and Complementary oligo in 10 mM Tris pH 7.5, 200 mM NaCl, 1 mM

EDTA. Oligonucleotides were incubated at 95�C for 3 min and allowed to slowly cool to RT. Cells were trypsinised, washed in

PBS, resuspended in lysis buffer [25 mM Tris, pH 7.5, 10 mM EDTA, 10 mM EGTA, 100 mM NaCl, 1% Triton X-100, cOmplete pro-

tease inhibitors (Roche)], and incubated on ice for 15 min. Lysates were centrifuged at 16.800 g for 20 min at 4�C. 50 nM substrates

were incubated with 0.5, 1 or 2 mg of cell extract in RNase H2 reaction buffer (50 mM Tris, pH 7.5, 60 mM KCl, 10 mMMgCl2, 0.01%

BSA, 0.01% Triton X-100, 1 mM Competitor oligo) or 1 mg of cell extract in APE1 reaction buffer (20 mM Tris, pH 7.5, 100 mM KCl,

10 mM MgCl2, 0.5 mM DTT, 0.25% polyvinyl alcohol, 1 mM Competitor oligo) to measure RNase H2 or APE1 activity, respectively.

50 mL reactions were incubated at 37�C for 60min for RNase H2 assay or 30min for APE1 assay. Reactions were terminated by addi-

tion of 50 mL of quenching buffer (90% formamide, 35 mM EDTA, 300 mM NaOH, 0.006% Orange G). 10 mL of each reaction was

loaded on 20% denaturing polyacrylamide gel and analyzed by PharosFX Molecular Imager System (Bio-Rad).

SDS-PAGE and western blotting
Cells were collected and lysed in SDS sample buffer (2% SDS, 10% glycerol, 50 mM Tric-Cl, pH 6.8), denatured for 10 min at 95�C,
and sonicated for 30 s using Bioruptor� Pico (Diagenode). Protein concentrations were determined using the BCA assay (Pierce).

DTT and bromophenol blue were added to samples which were subjected to SDS-PAGE, proteins transferred onto nitrocellulose

membrane and detected by relevant specific antibodies combined with horseradish peroxidase-conjugated secondary antibodies.

Peroxidase activity was detected by ECL reagent (GE Healthcare) and Amersham Hyperfilm ECL (GE Healthcare).

Immunofluorescence and microscopy
Cells cultured on glass coverslips were fixed with 4% formaldehyde in PBS for 10 min at room temperature (RT) and subsequently

permeabilized by a 5 min incubation in ice-cold methanol/acetone solution (1:1). Where required (mainly in experiments involving

PCNA labeling), before fixation, cells were pre-extracted for 2 min on ice in 0.2% Triton X-100. After blocking the cells with 10% fetal

calf serum, slides were incubated with the primary antibody (60 min, RT), followed by washing (33 5min in PBS) and then incubation

with the appropriate fluorescently labeled secondary antibody (60 min, RT). Coverslips were washed (33 5 min in PBS), stained with

DAPI (1 mg/ml in water, 2 min) and mounted using VECTASHIELD (Vector Laboratories). EdU labeling was performed using Click-iT

EdU Alexa Fluor 488 Imaging Kit according to the manufacturer’s instructions. High-resolution pictures were acquired by imaging

with a Leica SP8 confocal microscope or a Leica DM6000 fluorescence microscope. Automated wide-field image acquisition was

done using Olympus ScanR high-content screening station equipped with a motorized stage and 40x objective. Nuclei were iden-

tified based on the DAPI signal and EdU or PCNA positive cells were gated and quantified using ScanR Analysis Software. At least

1,000 nuclei for interphase cells were counted per condition in three or four independent experiments. Data are represented as

mean ± SEM.

Clonogenic survival assays
Clonogenic survival was determined by colony formation assays. Wild-type human hTERT RPE-1 cells and gene-edited derivatives

were plated in 10 mm dishes and 4 hr later treated with indicated concentrations of FEN1 inhibitor. Cells were incubated with drug-

containing media for 10-14 days and then fixed in 100% ethanol and stained with 0.05% crystal violet solution. The surviving fraction

at each dose was calculated by dividing the average number of colonies in treated dishes by the average number in untreated dishes.
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Figure S1. S phase poly(ADP-ribose) is present in multiple cell types and is synthesized primarily by PARP1 

(related to Figure 1).

(A) Indirect immunofluorescence imaging of ADP-ribose and PCNA (to identify S phase cells) in RPE-1, 1BR and

HeLa cells after incubation for 30 min with DMSO vehicle or PARGi. Scale bar, 20 µm.

(B) Representative ScanR images from the experiment in Figure 1C. ADP-ribose and PCNA levels in wild type

(WT), PARP1-/-, PARP2-/-, PARP3-/- and PARP1-/-/PARP2-/- RPE-1 clonal cell lines following incubation for 15 min

with DMSO vehicle or with PARGi.
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Figure S2. ADP-ribosylation in base excision, DNA mismatch and ribonucleotide excision repair-defective 

cell lines (related to Figure 2).  

(A) Indirect immunofluorescence imaging of ADP-ribose and EdU in wild type (WT) human HAP1 cells, and in APE1

gene-targeted HAP1 cells additionally transfected with APE1 siRNA (APE1KD). Cells were incubated for 20 min with

10 µM EdU in the absence or presence of either PARGi or MMS, as indicated. Scale bar, 20 µm. Numbers in the

corners are mean ADP-ribose intensity in EdU positive nuclei normalized to WT sample, quantified in ImageJ.

(B) Representative images from the data quantified in Figure 2D of levels of ADP-ribose and PCNA

immunostaining in MSH3/MLH1-deficient HCT116 cells and in their Chr3 complemented (MLH1) or CHr3 & Chr5

complemented (MLH1 & MLH3) derivatives, following incubation for 60 min with PARGi. Scale bar, 20 µm.

(C) Representative ScanR images from the experiment in Figure 2E showing ADP-ribose levels in PCNA-positive

Rnaseh2b+/+ and Rnaseh2b-/- MEFs following incubation with PARGi for 60 min (left). RNase H2 immunoblotting

(bottom right) and cell extract activity assays (top right) confirming the absence of residual Rnaseh2 in Rnaseh2b-/-

MEFs. Note that the band migrating as 18-mer product in reactions containing Rnaseh2-deficient extracts is

contaminant present in the substrate preparation (see lane 1).
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Figure S3. S phase poly(ADP-ribose) levels are increased in LIG1-depleted cells (related to Figure 3).

(A) Representative ScanR images (left) and quantification (right) of ADP-ribose in RPE-1 cells transfected with the

indicated siRNAs. 72 hr after transfection, cells were incubated for 20 min with 10 µM EdU in the absence or

presence of PARGi. For representative images only the EdU positive cells are shown, for quantification the EdU-

negative (non-S phase) and EdU-positive (S phase) cells were gated according to nuclear EdU intensity. Data are

from a single experiment.

(B) ScanR quantification of EdU positive vs. negative RPE-1 after 20 min incubation with DMSO vehicle, FEN1i or

PARGi together with EdU (average of n=3 with SEM, left). Mean intensity of EdU in similarly treated EdU positive

cells (average of n=3 with SEM, right).

(C) Indirect immunofluorescence imaging of ADP-ribose and gH2AX in RPE-1 cells after incubation for 30 min with

DMSO vehicle, CPT, FENi or PARGi. Scale bar, 20 µm.
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Figure S4. Suppression of Okazaki fragment formation with emetine prevents S phase ADP-ribosylation

(related to Figure 4).

U2OS cells were incubated or not with emetine (EME) for 45 min as indicated, with PARGi or MMS added during

the final 20 min. The cells were then pre-extracted, fixed and stained with ADP-ribose antibody. Scale bar, 20 µm.
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Figure S5. Elevated poly(ADP-ribosyl)ation in XRCC1-/- cells outside of S phase (related to Figure 5). 

Representative ScanR images and quantification of ADP-ribose by ScanR imaging in wild type (WT) and XRCC1-/-

RPE-1 clonal cell lines. Cells were treated with DMSO vehicle or FEN1i for 30 min, with PARGi added or not during

the last 15 min, as indicated. Note the break and change in scale in the Y-axis required to display the very high

ADP-ribose levels induced in XRCC1-/- RPE-1 cells (average of n=3 with SEM).
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