Solution-based Low Temperature Synthesis of Germanium Nanorods and Nanowires

Patrik Pertl • Michael S. Seifner • Christopher Herzig • Andreas Limbeck • Masiar Sistani • Alois Lugstein •Sven Barth*

Figure S1: Ge-Ga phase diagram according to Olesinski *et al.* Reprinted with permission of Springer.¹

Figure S2: Ge NRs grown at 170 °C for 12h. The Ga particle has been dissolved in 2 % HF solution prior to the imaging. The NRs show a considerable density of defects such as stacking faults and twins.

Figure S3: Overview showing the Ga content determined by EDX analysis of a number of Ge NRs prepared at 210 °C for 6h. An average value can be determined to be 2.36 ± 0.25 at. %

Figure S5: Dark field TEM image if a Ga-seeded Ge NW demonstrating a diameter reduction due to the limited Ga content and incorporation of the Ga in the Ge crystal.

LA-ICP-MS Measurement Description:

For quantification liquid standard solutions were used. To introduce theses liquid solutions via the laser ablation system a previously reported technique of dried droplets was used. Therefore microgrooves with 50 μ m diameter and a few mm length were produced using the same laser system as to introduce the sample into the ICP-MS. These microgrooves were filled with liquid standard solutions. During the measurement the cavity was ablated with a laser spot size of 100 μ m to ensure complete ablation of the dried residues. For data treatment only elemental ratios were used resulting in a linear correlation of the elemental concentration ratios (Ga/Ge) with signal intensity.

Laser ablation system	NWR213, New Wave Research	ICP-MS	iCAP Q, Thermo Scientific
Type of laser	Nd:YAG 213 nm	RF power [W]	1450
Ablation mode	Raster (lines)	Carrier gas flow rate [L min ⁻¹]	0.6
Beam diameter [µm]	50* / 100	Plasma gas flow rate [L min ⁻¹]	14
Fluence [J cm ⁻²]	2,4* / 18,9	Auxiliary gas flow rate [L min ⁻¹]	0.8
Frequency [Hz]	20	Acquisition time [ms]	10
Scan speed [µm s ⁻¹]	150	Cones	Ni
He gas flow [L min ⁻¹]	0.65	Measured isotopes	⁶⁹ Ga, ⁷¹ Ga, ⁷⁶ Ge

*Parameters used for preparation of the microgrooves

<u>References</u>

1. R. W. Olesinski and G. J. Abbaschian, *Bulletin of Alloy Phase Diagrams*, 1985, **6**, 258-262.