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1 Choosing a cleaning threshold
Given a distribution of coverage covg (k-mer counts or link counts) and a user specified false
negative rate (FNR) (default is FNR = 1

1000 ), we fit the following model to pick a threshold T ,
such that fewer than FNR of elements with coverage T are due to error. Elements with coverage
less than T are assumed to be due to error.

We assume k-mers that occur three or fewer times are due to error and fit a Gamma-Poisson
mixture distribution to the erroneous coverage (errcovg). We then find the lowest level of coverage
T such that errcovg(T )/covg(T ) < FNR. Specifically, we model the probability of seeing an
erroneous k-mer with coverage x, p(x), as a Poisson distribution with mean drawn from a gamma
distribution:

p(x|α, β) =
∫

βα

Γαµ
α−1e−βµ.

e−µµx

x! dµ (1)

= βα

Γ(α)
1
x!

∫
µα+x−1e−µ(1+β)dµ (2)

= βα

Γ(α)
1
x!

Γ(α+ x)
(1 + β)(α+x) (3)

(3) derived from (1) using the identity for the Gamma Function Γ(t) =
∫
xt−1e−xdx and

setting x = µ(1 + β), t = α+ x, which gives:

Γ(α+ x) =
∫

(µ(1 + β))α+x−1e−µ(1+β)d(µ(1 + β)) (4)

Γ(α+ x) =
∫
µα+x−1(1 + β)α+x−1e−µ(1+β)d(µ(1 + β)) (5)

Γ(α+ x)
(1 + β)α+x =

∫
µα+x−1e−µ(1+β)dµ (6)

Since observed coverage of errors is conditional on having seen a k-mer we assume p(k|k >
0, µ) ∼ p(k − 1|k > 0, µ

e−µ−1 − 1). Assume k-mer with coverage ≤ 3 are due to error. Use this to
estimate α̂ using (3):
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p(1)/p(0) =
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Γ(α) (8)

p(2)/p(1) = Γ(α+ 2)(1 + β)
2Γ(α+ 1) (9)

p(2)/p(1)
p(1)/p(0) =

(
Γ(α+2)(1+β)

2Γ(α+1)

)
(

Γ(α+1)(1+β)
Γ(α)

) (10)

= Γ(α+ 2)Γ(α)
2Γ(α+ 1)2 (11)

Using covg(x) = Number of k-mers with coverage x, estimate α̂ by finding value that minimises
the absolute difference between distribution and coverage data.

α̂ = min
α

∣∣∣∣p(2)/p(1)
p(1)/p(0) −

covg(3)/covg(2)
covg(2)/covg(1)

∣∣∣∣ (12)

α̂ = min
α

∣∣∣∣Γ(α+ 2)Γ(α)
2Γ(α+ 1)2 − covg(3)× covg(1)

covg(2)2

∣∣∣∣ (13)

Now find β̂ using α̂:

p(1)/p(0) = covg(2)/covg(1)
Γ(α̂+ 1)(1 + β̂)

Γ(α̂) = covg(2)/covg(1)

β̂ = covg(2)Γ(α̂)
covg(1)Γ(α̂+ 1) − 1

Finally:

p(0|α̂, β̂).c0 = covg(1)

c0 = covg(1)
(β̂/(1 + β̂))α̂

= covg(1).(β̂/(1 + β̂))−α̂

Expected number of erroneous k-mers with coverage x is given by:

errcovg(x) = c0 × p(x− 1|α̂, β̂) (14)
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2 Theoretical proofs
In this section we prove some properties of linked de Bruijn graphs. We make the assumption
that the graph is constructed from input sequences without reading errors or coverage gaps and
that reads satisfy Ukkonen’s condition wherein the read length L is at least one base longer than
the longest interleaved or triple repeat (Ukkonen et al., 1992, Bresler et al., 2013).

2.1 Notation

CTATA

GTATA

ATAGC ATAGA

AGTAT

ACTCT

GAGTA

AGCTA

Figure 1: A portion of a de Bruijn graph with k = 5.

The Linked de Bruijn graph is defined as LG(k) = (V,E,L) where k is the de Bruijn graph
parameter, and V and E are defined as in a de Bruijn graph. Vertices V is the set of k-mer-keys.
A k-mer is represented by a 〈vertex, orientation〉-tuple called an oriented-vertex. Oriented-vertex
v′ is vertex v ∈ V with an orientation – either forwards −→v or backwards ←−v. v̂′ is the opposite
orientation of v′. E is the set of directed edges between oriented-vertices. L(v′) is a set of valid
paths through the graph (links) that start at oriented vertex v′ ∈ V ′.

Traversal means moving through oriented vertices and along edges between vertices, using link
information. v′a  v′b  v′c means we start walking at vertex v′a reach vertex v′v then continue
traversal to reach vertex v′c, each with an unambiguous route. In other words if we start at v′a
there is only one valid path to follow and it reaches v′b and so on to v′c. v′v 6 v′y means we
cannot traverse unambiguously to vertex v′y if we start at v′x. We can therefore make the following
statements:

v′x  v′y  v′z =⇒ (v′x  v′y) ∧ (v′x  v′z) (15)
v′x  v′y 6=⇒ v′y  v′x (16)

In Supplementary Figure 1, we can see that it is possible to traverse unambiguously from
k-mer AGCTA to GAGTA (−−−−−−→AGCTA  

←−−−−−−
GAGTA) but not in the reverse direction (−−−−−−→GAGTA 6 

←−−−−−−
AGCTA). This is because we hit a fork (bifurcation) in the graph that cannot be resolved.

An oriented vertex in the graph represents a k-mer which occurs in one or more locations in the
input sequences. For a given position in the input sequence sx, we make the following definitions:

1. V (sx) is the oriented vertex representing the k-mer starting at position sx in the input
sequence; this is a many-to-one mapping.

2. V̂ (sx) is V (sx) in the opposite orientation.

3. S(v′x) is the set of sequence positions represented by oriented vertex v′x.

2.2 Repeats
A repeated substring is a substring that occurs more than once in the input genome. Repeated sub-
strings may be overlapping and may occur reverse-complemented. A maximal repeated substring
is a substring such that adding a single character to the head or tail would decrease the number
of occurrences of it. A dynamic programming solution can find the set of maximal repeated sub-
strings (including reverse-complements) for any string in time O(N2) and memory O(N). As an

3



example, for the string ababababa the set of maximal repeated substrings is {abababa, ababa, aba, a}
with occurrence counts {2, 3, 4, 5} respectively.

We can paint repeats onto the input genome by exhaustively finding all maximal substrings
that appear at one or more other positions in the input sequence. Repeats must be of length ≥ k,
where k is the parameter of the de Bruijn graph. Graph construction is then equivalent to gluing
all repeats together (see Supplementary Figure 2).

a1 a2

b1

sx sy sz

a3

b2

sw

vw

sEnd

vEnd

a)

b)

c) d)

Figure 2: Repeats in an input sequence. a) input sequence, repeats highlighted, points sw, sx, sy
and sz labelled b) repeats labelled c) graph structure with links added (dashed lines) d) general
structure of all repeats in the graph

All repeats now take the general form shown in 2.(d) – at the start the graph collapses down
from two or more vertices and at the end forks into two or more vertices. Between the start and
end of the repeat the sequences that carry the repeat do not separate. We can now see that every
fork in the graph is the ending of a repeat, and conversely that every repeat ends at a fork. If
we are traversing a path through the graph and hit a fork, either we started in the repeat or we
passed the start of the repeat that ends at this fork.

REPS(sw) = ∅ REPV (V (sw)) = ∅
REPS(sx) = (a1, b1) REPV (V (sx)) = (a1, a2, a3, b1, b2)
REPS(sy) = ∅ REPV (V (sy)) = ∅
REPS(sz) = (b2) REPV (V (sz)) = (b1, b2)

Figure 3: Repeat sets of points sw, sx, sy and sz in Supplementary Figure 2

We define:

1. REPS(sx) as the set of repeats that sequence position sx is contained in.

2. REPV (v′x) as the union of REPS(X) for all positions X in the sequence where the k-mer
associated with vertex v′x appears:

REPV (v′x) =
⋃

s∈S(v′x)

REPS(s) (17)

An example is shown in Supplementary Figure 3. Note that vertex orientation has no effect
on the set of repeats a vertex is in:

4



REPV (v′x) = REPV (v̂′x) (18)

Entering repeats presents no issue in assembly. Leaving repeats requires some information
about current location(s) in the underlying sequence. This information must be stored before you
enter a repeat. Picture starting graph traversal from the middle of the red repeat in Supplementary
Figure 2.(c): once you reach the end of the red repeat, you cannot make a decision about where
to go. If you were to start at v′w, you can see that just before you enter each repeat, you pick up
an annotation which enables you to resolve it.

Starting traversal from within a repeat is equivalent to walking multiple places in the input
sequence at once, and only tracing the consensus sequence of the repeats (stopping at the end of
the repeat).

2.3 Sequence Traversal
Assuming a Linked de Bruijn Graph constructed with complete information (no sequencing error,
coverage gaps and all repeats contain by at least one read), we can prove the following rules about
traversal:

Proposition 2.1 (Sequence Traversal). Let sx, sy be points on the same input sequence, where
sy follows sx. Traversal from the vertex representing sx to the vertex representing sy is possible
⇐⇒ the set of maximal substrings of sx is a subset of sy i.e.

V (sx) V (sy) ⇐⇒ REPS(sx) ⊆ REPS(sy) (19)

Proof. In order to traverse from one vertex to another we must not leave any of the repeats we
were originally within, as doing so would mean we hit a fork we could not resolve, therefore:

V (sx) V (sy) =⇒ REPS(sx) ⊆ REPS(sy) (20)

If we enter repeats that start after sx then we we pick up annotations just before they start
which are used to resolve them. The only graph features that will stop traversal between two
connected vertices are forks representing the end of repeats that we started within. These cannot
be resolved unambiguously. Therefore if we do not leave repeats we started in, we can traverse
connected vertices:

REPS(sx) ⊆ REPS(sy) =⇒ V (sx) V (sy) (21)

We can see that Proposition (2.1) follows from equations (20) and (21).

Proposition 2.2 (Sequence Transitivity). Let sx, sy, sz be points that appear in that order on
the same input sequence. If we can start at V (sx) and reach V (sy) and start at V (sy) and reach
V (sz), then if we start at V (sx) we can reach V (sz) i.e.

(V (sx) V (sy)) ∧ (V (sy) V (sz)) =⇒ V (sx) V (sz) (22)

Proof.

V (sx) V (sy) =⇒ REPS(sx) ⊆ REPS(sy) using (2.1) (23)
V (sy) V (sz) =⇒ REPS(sy) ⊆ REPS(sz) using (2.1) (24)

Thus by (23) and (24) =⇒ REPS(sx) ⊆ REPS(sz)
=⇒ V (sx) V (sz)
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2.4 Vertex Traversal
We define REPENDV (v′x) to be the set of last oriented-vertices of repeats that vertex v′x is in
(see example in Supplementary Figure 4). The last vertex of a repeat is dependent on vertex
orientation: REPENDV (v′x) is not necessarily equal to REPENDV (v̂′x).

vcvbva vd ve

Figure 4: Illustration of REPENDV (−→vx) function: REPENDV (−→vc) = (−→vd,−→ve);
REPENDV (←−vc) = (←−va,←−vb)

REPENDV (v′x) is a set of vertices that mark forks in the graph. The set of all fork vertices
in the graph is: ⋃

v∈V
(REPENDV (−→v ) ∪REPENDV (←−v )) (25)

where V is the collection of all vertices in the graph.
If you start traversal in a repeat it is not possible to leave it. That means if you start traversal

at some vertex v′x, you cannot traverse unambiguously past any vertex in REPENDV (v′x).

Proposition 2.3 (Vertex Traversal). Let v′1 and v′m be vertices with orientations and {v′1, . . . , v′n}
be a connected path through the graph. We can traverse starting at vertex v′1 and reach vertex v′n
⇐⇒ if none of the vertices v′1...v′n−1 are the last vertex of a member of REPV (v′1) i.e.

v′1  v′n ⇐⇒ v′i 6∈ REPENDV (v′1) ∀i ∈ {1, 2, . . . , n− 1} (26)

Proof. By the same logic as Proposition (2.1). The only graph features that will stop traversal
between two connected vertices are forks representing the end of repeats that we started within.
If we can traverse from vertex v′1 to vertex v′n then repeats that started in v′1 do not end before
v′n:

v′1  v′n =⇒ v′i 6∈ REPENDV (v′1) ∀i ∈ {1, 2, . . . , n− 1} (27)

If a repeat that we started in does not end before v′n, then the only forks we encounter are
from repeats that start and end between v′1 and v′n. For these repeats we have an opportunity to
pick up annotations that will resolve them, therefore traversal will succeed:

v′i 6∈ REPENDV (v′1) ∀i ∈ {1, 2, . . . , n− 1} =⇒ v′1  v′n (28)

We cannot traverse past the last vertex of a repeat that we were already in when we started
traversal of the graph. If we hit a vertex that is in REPENDV (v′x), it marks a fork in the
graph that we cannot resolve. We can see that Proposition (2.3) follows from equations (27) and
(28).

2.5 Lossless property
If we construct an annotated graph from a single sequence that starts and ends with a unique
k-mer, following from Proposition (2.3), we are able to recover it in its entirety from the graph.

In addition to assuming error free coverage, we also assume that chromosomes start and end
with unique k-mers. An undesired edge effect can appear if sequences end with k-mers that appear
elsewhere in the graph, resulting in loops at the start or end of the graph representation of the
sequences with in-degree greater than out-degree (see Supplementary Figure 5). You can force
this to be true by explicitly adding a unique k-mer to the start/end of sequences. In the case of
high coverage genome assembly this edge case is rare.
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a) b)

Figure 5: a) graph of sequence that ends with a repeat (in red) b) adding a unique sequence to
the end of the input ensures infinite loops do not exist.

To extract exactly one contig from such a Linked de Bruijn graph we extract contigs and
remove contained contigs (contigs that are substring, or reverse complemented substrings of other
contigs).
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3 Pipeline commands
Below, we provide the command listings used to produce assemblies on single-end data and paired-
end data. Parameters and typical settings are indicated with a ${...[=X]} sigil (e.g. ${threads=8})
and remain fixed throughout the pipeline. Inputs/outputs are indicated with angle brackets with
suggested file extensions (e.g. <build.ctx>).

3.1 McCortex pipeline
Assembly with McCortex consists of several steps encompassing initial construction of the de
Bruijn graph (build), removal of sequencing errors (clean), addition of missed edges for k − 1
overlaps (i.e. from reads that overlap by exactly k−1 bases) (inferedges), link construction from
single- and paired-end reads (thread), link-informed contig emission (contigs), and contained
contig removal (rmsubstr). The following pipeline listing demonstrates the use of these tools in
sequence. Note that for read error correction and contig deduplication, we use existing tools bfc
(Li, 2015) and cd-hit-est (Fu et al., 2012).

# Error-correct reads
> bfc -s 3g -t16 <fastq_end_1.fq.gz> | gzip -1 > <corrected_1.fq.gz>
> bfc -s 3g -t16 <fastq_end_2.fq.gz> | gzip -1 > <corrected_2.fq.gz>

# Build a raw graph from fastq data with kmer size ${kmer_size},
# sample name ${sample_name}, and using maximum memory ${mem} (in gigabytes).
> mccortex63 build -m ${mem}G -k ${kmer_size} -s ${sample_name} \

-2 <corrected_1.fq.gz>:<corrected_2.fq.gz> <build.ctx>

# Remove sequencing errors using the Gamma-Poisson method.
> mccortex63 clean -m ${mem}G -o <clean.ctx> <build.ctx>

# Add edges between kmers that share k-1 bases. These are edges that may
# have not been observed in the input data, but can be assumed to exist.
# This is important for ensuring proper graph connectivity for read threading.
> mccortex63 inferedges -m ${mem}G -o <infer.ctx> <clean.ctx>

# Pop bubbles in the graph
> mccortex63 popbubbles -f -m ${mem}G -o <popped.ctx> <infer.ctx>

# Thread single-ended reads through the graph to make links.
# If threading a different dataset (e.g. PacBio data) through this sample,
# this can be supplied in place of the original input fastq files.
> mccortex63 thread -m ${mem}G -t ${threads=8} \

-1 <corrected_1.fq.gz> -1 <corrected_2.fq.gz> \
-o <links_se.ctp.gz> <popped.ctx>

# Thread paired-end reads through the graph, with the help of connectivity
# information from the single-end links.
> mccortex63 thread -m ${mem}G -t ${threads=8} \

-2 <corrected_1.fq.gz>:<corrected_2.fq.gz> \
-p <links_se.ctp.gz> -o <links_pe.ctp.gz> <popped.ctx>

# Emit contigs using random seeds from around the graph.
> mccortex63 contigs -m ${mem}G -p <links_pe.ctp.gz> \

-o <contigs.fa> <popped.ctx>

# Remove redundant sequences from the contigs set with a
# sequence identity threshold of 95%
> cd-hit-est -M 4000 -c 0.95 -i <contigs.fa> -o <dedup.fa>
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3.2 SGA pipeline
As we compare our workflow to SGA often in this manuscript, we have provided the program
listing for our SGA-based pipelines. We used SGA version 0.10.15 for all analyses. Our pipeline is
taken from the sga-ecoli-miseq.sh example script provided by the SGA software distribution,
with the notable omission of the contig scaffolding step. For all analyses in this manuscript, only
minor variations of this pipeline are required (in practice, we only modify the overlap value and
the paired-end mode if we are working with single-end data).

# Preprocess data to remove ambiguous basecalls
> sga preprocess --pe-mode 1 -o <output.fq> \

<fastq_end_1.fq.gz> <fastq_end_2.fq.gz>

# Index reads
> sga index -a ropebwt -t ${threads=8} --no-reverse <output.fq>

# Perform error correction
> sga correct -k ${CK=41} --discard --learn -t ${threads} \

-o <correct.fq> <output.fq>

# Index corrected reads
> sga index -a ropebwt -t ${threads=8} <correct.fq>

# Remove duplicates and reads with likely errors
> sga filter -x ${COV_FILTER=2} -t ${threads=8} --homopolymer-check \

--low-complexity-check <correct.fq>

# Construct string graph
> sga overlap -m ${TAU_MIN=${OL}-5} -e ${EPSILON=0} ${threads=8} \

<filter.fa>

# Assemble contigs
> sga assemble -m ${OL=47} -g ${MAX_GAP_DIFF=0} -r ${R=10} \

-o ${assemble} <overlap>
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3.3 SPAdes pipeline
Here we provide the command used for performing assemblies with SPAdes. In all analyses using
SPAdes, we used version 3.11.1 of the software.

> spades.py -k ${kmer_size} --careful \
-1 <fastq_end1.fq.gz> -2 <fastq_end2.fq.gz> \
-o <output directory>

3.4 Velvet pipeline
For all assemblies using Velvet, we used the latest source code available from the Git repository
(https://github.com/dzerbino/velvet, short commit hash: 9adf09f). We ran Velvet in two
modes: pure de novo assembly (i.e. using paired-end reads only), and reference-guided (using the
Columbus module). In the latter case, our pipeline was:

> velveth <output directory> ${kmer_size} -shortPaired -fastq \
-separate <fastq_end1.fq.gz> <fastq_end2.fq.gz>

> velvetg <output directory> -exp_cov 200 -ins_length_long 400 \
-scaffolding no

For reference-guided assembly, we used the following pipeline:

> bwa mem <reference sequence> <fastq_end1.fq.gz> <fastq_end2.fq.gz> \
> <output.sam>

> velveth <output directory> ${kmer_size} \
-reference -fasta <reference sequence> \
-shortPaired -sam <output.sam>

> velvetg <output directory> -exp_cov 200 -ins_length_long 400 \
-scaffolding no
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4 Number of links

●

●

●

●

●

●

●

●

k

no
. o

f k
m

er
s 

w
ith

 li
nk

s 
(lo

g)

21 31 41 51 61 71 81 91

1

10

100

1000

10000
● perfect

stochastic
error
corrected

Figure 6: Number of k-mers with links as a function of k-mer size. Assembling 1 Mbp of sequence
(human GRCh37 chr22:28,000,000-28,999,999) with three simulated 100X read data sets: (i) error
free 100 bp reads, one read starting at every base (“perfect”); (ii) error free stochastic coverage,
uniformly distributed read starts (“stochastic”); (iii) an error rate of 0.5% and stochastic uniformly
distributed coverage (“error”); (iv) the “error” reads error-corrected with bfc (Li, 2015). Each
graph has ∼ 1 million k-mers.
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5 Variant calling in K. pneumoniae
We investigated the utility of links to call large variants (insertions or deletions greater than 100 bp
in length). We obtained Illumina data (MiSeq 2× 151 bp, 93X coverage; HiSeq 2× 301 bp, 42X)
and PacBio RSII data (NCBI reference GCF_001870165.1_ASM187016v1) from a single haploid
K. pneumoniae isolate, CAV1016. We constructed a dBG of the canonical reference sequence
(NCBI reference GCF_000016305.1_ASM1630v1, unisim5.3Mbp) and the Illumina data for the
study isolate at k = 31, omitting the PacBio data from graph construction for later use as
validation. We then constructed an LdBG by using only the single-end reads from the study
isolate for link construction. We implemented a sub program to find bubbles (graph motifs where
paths diverge from a k-mer and rejoin at a later k-mer) and applied it first to the dBG, then
to the LdBG, allowing events up to 200 kb in length. We removed events less than or equal
to 100 bp in length, as well as duplicate events (arising from navigating the graph in both the
forward and reverse direction). The reference and alternate alleles were validated by aligning each
to the canonical reference and CAV1016 PacBio draft reference sequence, respectively. All alleles
matched their respective sequences with 100% identity (0 mismatches, 0 gaps). Results are shown
in Supplementary Table 1.

The filtered dBG and LdBG call sets contained 55 and 59 variants respectively. The variants
exclusive to the LdBG call set consist of four insertions of lengths 134, 246, 7, 952 and 11, 946 bp
(the corresponding rows in Supplementary Table 1 are highlighted). The dBG call set contained
no exclusive variants.
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Table 1: Large variant calls in K. pneumoniae, without and with links
without link information with link information

contig pos type length (ref)
(bp)

length (alt)
(bp) type length (ref)

(bp)
length (alt)

(bp)

1 NC_009648.1 149901 ins 607 718 ins 607 718
2 NC_009648.1 591423 ins 317 1026 ins 317 1026
3 NC_009648.1 633960 del 8229 978 del 8229 978
4 NC_009648.1 666931 del 11764 11542 del 11764 11542
5 NC_009648.1 1158143 del 442 183 del 442 183
6 NC_009648.1 1163700 ins 176 1120 ins 176 1120
7 NC_009648.1 1405671 ins 637 5583 ins 637 5583
8 NC_009648.1 1494996 del 3967 1583 del 3967 1583
9 NC_009648.1 1541795 del 59808 1085 del 59808 1085
10 NC_009648.1 1542062 del 59541 818 del 59541 818
11 NC_009648.1 1558825 ins 548 656 ins 548 656
12 NC_009648.1 1564450 del 25853 20416 del 25853 20416
13 NC_009648.1 1597175 del 3162 1853 del 3162 1853
14 NC_009648.1 1617354 del 10408 446 del 10408 446
15 NC_009648.1 1714605 del 179 64 del 179 64
16 NC_009648.1 1809300 ins 289 9000 ins 289 9000
17 NC_009648.1 1894900 - - - ins 1312 9264
18 NC_009648.1 1955922 del 2663 294 del 2663 294
19 NC_009648.1 1964316 del 3149 1525 del 3149 1525
20 NC_009648.1 1974462 del 4990 1283 del 4990 1283
21 NC_009648.1 1974510 del 5012 1305 del 5012 1305
22 NC_009648.1 2015329 del 782 453 del 782 453
23 NC_009648.1 2037377 del 1345 709 del 1345 709
24 NC_009648.1 2237525 del 1857 198 del 1857 198
25 NC_009648.1 2308668 - - - ins 354 488
26 NC_009648.1 2522417 ins 1165 4427 ins 1165 4427
27 NC_009648.1 2656657 ins 199 556 ins 199 556
28 NC_009648.1 2691234 ins 491 4070 ins 491 4070
29 NC_009648.1 2728309 del 15624 11536 del 15624 11536
30 NC_009648.1 3135768 del 1215 524 del 1215 524
31 NC_009648.1 3628050 ins 1223 1643 ins 1223 1643
32 NC_009648.1 3803490 ins 462 930 ins 462 930
33 NC_009648.1 3816264 del 1985 1113 del 1985 1113
34 NC_009648.1 3826861 ins 2819 3608 ins 2819 3608
35 NC_009648.1 3831299 ins 620 2203 ins 620 2203
36 NC_009648.1 3863385 - - - ins 478 12424
37 NC_009648.1 4037934 ins 449 630 ins 449 630
38 NC_009648.1 4143580 del 1355 559 del 1355 559
39 NC_009648.1 4169957 del 881 130 del 881 130
40 NC_009648.1 4323215 ins 442 1628 ins 442 1628
41 NC_009648.1 4361406 del 2963 1783 del 2963 1783
42 NC_009648.1 4362555 del 1814 634 del 1814 634
43 NC_009648.1 4501128 del 11949 397 del 11949 397
44 NC_009648.1 5020914 ins 3324 4623 ins 3324 4623
45 NC_009648.1 5035601 del 5026 864 del 5026 864
46 NC_009648.1 5035721 del 4906 744 del 4906 744
47 NC_009648.1 5061875 del 32222 118 del 32222 118
48 NC_009648.1 5091428 ins 454 6399 ins 454 6399
49 NC_009649.1 119259 ins 2596 7086 ins 2596 7086
50 NC_009649.1 132517 del 1510 405 del 1510 405
51 NC_009650.1 16509 ins 1122 11133 ins 1122 11133
52 NC_009650.1 19434 ins 1865 2418 ins 1865 2418
53 NC_009650.1 20210 del 1089 173 del 1089 173
54 NC_009650.1 23221 del 3232 1078 del 3232 1078
55 NC_009650.1 23297 del 1424 1071 del 1424 1071
56 NC_009651.1 35336 del 2322 67 del 2322 67
57 NC_009651.1 35337 - - - ins 2987 3233
58 NC_009651.1 37623 ins 701 1543 ins 701 1543
59 NC_009651.1 77540 del 2054 560 del 2054 560
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6 Links panel for K. pneumoniae isolate reconstruction

Table 2: Plasmids used for links panel in assembling 21 K. pneumoniae isolates with LdBG
ID Plasmid KPC allele Length (bp) Genbank accession Ref
1 pKPC_UVA01 KPC-2 43,621 CP009465.1 Mathers et al. (2015)
2 pKPC_UVA02 KPC-2 113,105 CP009466.1 Mathers et al. (2015)
3 E. coli strain 233 KPC-3 10,192 JX500681.1 Roth et al. (2013)
4 pBK31567 KPC-5 47,387 JX193302.1 Chen et al. (2013)

In an effort to track plasmid transmission in a K. pneumoniae outbreak, Mathers et al. (2015)
sequenced 37 isolates using the Illumina HiSeq 2000 platform, as well as generating draft reference
genomes of two index case plasmid transformants with long reads from PacBio RSII instruments.
Despite large homology between the two drafts (designated pKPC_UVA01 and pKPC_UVA02),
mapping the Illumina reads to these sequences indicated that 21/37 isolates harbored KPC alleles
on one of these two plasmid backgrounds. The authors were able to report a point mutation
in isolate CAV1360’s copy of KPC-2 (the altered allele being known as KPC-3). However, the
alignments were insufficient to characterize a large alteration in CAV1077, nor could they detail
other mutations upstream or downstream from the KPC gene.

We hypothesized that constructing a panel of links from plasmid sequences could enable recon-
struction of the full plasmid sequences for the 21 isolates and permit us to describe the alterations
more fully. The sequences included in the panel are listed in Supplementary Table 2.

In addition to the two Mathers et al. sequences, we included two others: a plasmid sequence
from E. coli harboring KPC-3, and a plasmid sequence from an unrelated K. pneumoniae isolate
harboring KPC-5. The E. coli sequence was chosen to be helpful for allele identification, but of
limited utility for plasmid identification due to the divergent nature of its haplotypic sequence to
the haplotypes present in the 21 K. pneumoniae isolates. The pBK31567 sequence was chosen as
a negative control. As no isolates in our study carry the KPC-5 allele, this entry in the panel
should go unutilized.
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7 Performance metrics
To provide details on memory usage and performance for each step of a de novo assembly, and
provide a baseline against which to evaluate these metrics, we computed runtime and memory
usage of McCortex and SGA submodules on selected publicly available datasets. For our compar-
ison, we chose E. coli (4.6 Mbp genome, ∼ 81x coverage), P. falciparum (23.3 Mbp, ∼ 63x), and
C. elegans (100.3 Mbp, ∼ 24x). These results are summarized in Supplementary Table 3.

While both assemblers are designed to make fuller use of the connectivity information within
reads, McCortex and SGA have vastly different design philosophies. SGA commands are designed
to use very little memory, and across datasets, it is apparent that SGA uses a small fraction of
the memory required by McCortex on the same dataset. McCortex attempts to balance memory
usage with speed. All graph vertices and edges are loaded into memory upfront, while reads are
processed in streaming (and parallelizable) fashion. Link construction also requires the storage of
all putative links in memory until the full read dataset has been processed to ensure that support
for each junction is correctly calculated. Thus, McCortex commands that store information based
on reads supplied as input (build and thread) consistently have the highest memory use across
the toolchain. The clean step requires as much memory as the build step in order to store
the raw graph (containing genomic data and sequencing errors), but once most errors have been
removed, memory usage by subsequent tools is reduced.

McCortex supports the use of multiple threads for processing data, greatly speeding up run-
time. By default, the number of threads is 2 (one to read data from disk and one to perform
processing steps). Link construction benefits from the use of many more threads, as the alignment
of reads to the graph is an embarrassingly parallel process). As the major computational cost is
in this thread step, our pipelines typically apply this step with several threads.
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