Supplementary material

Supplementary methods

Real-Time PCR

The RNA (100 ng) extracted from TGs was reverse-transcribed using the iScriptTM cDNA synthesis kit (Bio-Rad) according to the manufacturer's protocol. For relative quantification of mRNA, real time PCR was performed on Rotor Gene® Q (Qiagen). The 18S-FW sets of primers-probes were as follows: (forward): 5'-CGCGGTTCTATTTGTTGGT-3', 18**S**-**R**E (reverse): 5'-AGTCGGCATCGTTTATGGTC-3' (NCBI Ref Seq: NR 003278.3); TRPA1-FW: 5'-CAGGATGCTACGGTTTTTTCATTACT-3', TRPA1-RE: 5'-GCATGTGTCAATGTTTGGTACTTCT-3' (NCBI Ref Seq: NM_177781.4). The chosen reference gene was the 18S. The SsoAdvanced[™] Universal SYBR® Green Supermix (Bio-Rad) was used for amplification, and the cycling conditions were the following: samples were heated to 95°C for 1 min followed by 40 cycles of 95°C for 10 sec, and 65°C for 20 sec. PCR reaction was carried out in triplicate.

In TGs from $Adv-Cre^+$; $Trpa1^{fl/fl}$ and $Adv-Cre^-$; $Trpa1^{fl/fl}$, Trpa1 was amplified and detected using the TaqMan assays (Invitrogen) (Zappia *et al.*, 2017). Relative expression of TRPA1 mRNA was calculated using the $2^{-\Delta}(^{\Delta}CT)$ comparative method, with each gene normalized against the internal endogenous reference 18S gene.

H_2O_2 assay

TG and brainstem tissues were removed and placed into modified Krebs/HEPES buffer [mmol/l: 99.01 NaCl, 4.69 KCl, 2.50 CaCl₂, 1.20 MgSO₄, 1.03 KH₂PO₄, 25.0 NaHCO₃, 20.0 Na-HEPES, and 5.6 glucose (pH 7.4)]. Samples were minced and incubated with Amplex red (100 μ M) and HRP (1 U/ml) (1h, 37°C) in modified Krebs/HEPES buffer (Landmesser *et al.*, 2003). Fluorescence excitation/emission were at 540/590 nm. H₂O₂ production was expressed as μ mol/l of mg of dry tissue.

For H_2O_2 assay in cultured cells, both trigeminal neuron-SGCs mixed and SGCsenriched primary culture were plated (5x10⁵ cells/well) in 96-well and maintained in 5% CO_2 and 95% O_2 (37°C, 48 h). The cultured medium was replaced with Krebs-Ringer phosphate (KRP) buffer [mmol/l: 2 CaCl₂, 5.4 KCl, 0.4 MgSO₄, 135 NaCl, 10 D-glucose, 10 HEPES at pH 7.4]. Both cultures were stimulated with the different stimuli added with Amplex red (50 µM) and HRP (1 U/ml) (0.5 h, room temperature, RT). Signal was detected 3 h after exposure to the stimulus. H_2O_2 release was calculated using H_2O_2 standards and expressed as nmol/l.

Supplemetary Figures

Supplementary Figure 1. (A, B) Periorbital mechanical allodynia (PMA) evoked by GTN (10 mg/kg, i.p.) in $Trpv1^{+/+}$ or in $Trpav4^{+/+}$ is unaffected in $Trpv1^{-/-}$ or in $Trpav4^{-/-}$ mice. Time-course of hind paw mechanical allodynia evoked by GTN (10 mg/kg, i.p.) in (C) C57BL/6 mice or (D) $Trpa1^{+/+}$ and $Trpa1^{-/-}$ mice. (E) TRPA1 antagonism by HC-030031 (HC03; 100 mg/kg, i.p.) transiently reverses GTN-evoked (10 mg/kg, i.p.) PMA in C57BL/6 mice. (F) PMA evoked by GTN (1 mg/kg, i.p.) is attenuated by (HC03 (100 mg/kg, i.p.). (G) GTN (10 mg/kg, i.p.)-evoked PMA is inhibited by A967079 (A96; 100 mg/kg, i.p.), but not by (H) capsazepine (CPZ, 4 mg/kg, i.p.) or (I) HC-067047 (HC06, 10 mg/kg, i.p.). (J) PMA evoked by subcutaneous (s.c.) injection (10 µl/site) into the

periorbital area of AITC (10 nmol) is inhibited by s.c. HC03 (100 µg/site). (K) GTN (10 mg/kg, i.p.)-evoked PMA is inhibited by intrathecal (i.th.) A96 (10 µg). (L) Eye wiping response evoked by ocular instillation (5 µl/drop eye) of capsaicin (CPS) or AITC in RTX desensitized C57BL/6 mice. (M) Eye wiping response evoked by ocular instillation (5 µl/drop eye) of AITC in C57BL/6 mice treated (i.th.) with TRPA1 AS/MM ODN or in *Advillin-Cre⁺*;*Trpa1*^{fl/fl} (*Adv-Cre⁺*;*Trpa1*^{fl/fl}) or *Advillin-Cre⁻*; *Trpa1*^{fl/fl} (Control) mice. BL, baseline mechanical threshold. Veh is the vehicle of GTN. Dash (-) indicates combined vehicles of treatments. Arrows indicate time of drug administration. Error bars indicate mean \pm SEM, 6-7 mice *per* group. **P*< 0.05, ***P*<0.01, ****P*<0.001 *vs. Trpv1*^{+/+}-Veh, *Trpv4*^{+/+}- Veh, *Trpa1*^{+/+}-Veh, Veh. **P*<0.05, ***P*<0.01, ****P*<0.001 *vs. Trpa1*^{+/+}-GTN, GTN, AITC, CPS; one-way or two-way ANOVA with Bonferroni posthoc correction.

Supplementary Figure 2. (A) Representative images of staining for NOX1, NOX2 and NOX4 and neuronal (neuronal nuclei, NeuN) or satellite glial cells (glutamine synthetase, GS) in mouse trigeminal ganglion (TG) from C57BL/6 mice. (Scale bars: 100 μ m). (B, C) Periorbital mechanical allodynia (PMA) evoked by GTN (10 mg/kg, i.p.) in C57BL/6 mice is reduced by the NOX1/4 inhibitor, GKT137831 (GKT, 60 mg/kg, i.p.), and completely abated by the combination of GKT and the NOX2 selective inhibitor, gp91ds-tat peptide (gp91, 10 mg/kg, i.p.). Veh is the vehicle of GTN. Dash (-) indicates combined vehicles of treatments. Error bars indicate mean \pm SEM, 8 mice *per* group. ****P*<0.001 *vs*. Veh. **P*<0.05, ****P*<0.001 *vs*. GTN; one-way ANOVA with Bonferroni post-hoc correction.

Supplementary Table 1

Drugs	Target action	Dose	Administration route	Reference
		100 mg/kg	i.p.	(Eid et al., 2008)
HC-030031	TRPA1 antagonist	100 µg/10 µl	s.c.	(da Costa <i>et al.,</i> 2010)
		10 µg/5 µl	i.th.	(da Costa <i>et al.,</i> 2010)
10/7070	TRPA1	100 mg/kg	i.p.	(Trevisan <i>et al.</i> , 2016)
A967079	antagonist	10 μg/5 μl	i.th.	(Wei et al., 2011)
Capsazepine	TRPV1 antagonist	4 mg/kg	i.p.	(Nassini <i>et al.</i> , 2011)
HC-067047	TRPV4 antagonist	10 mg/kg	i.p.	(Materazzi <i>et al.</i> , 2012)
	Aldehyde	100 mg/kg	i.p.	(Kim <i>et al.</i> , 2010)
Disulfiram	dehydrogenase	10 μg/10 μl	s.c.	ş
	inhibitor	5 μg/5 μl	i.th.	ş
		0.6 mg/kg	i.p.	(Lee <i>et al.</i> , 2009)
cPTIO	Nitric oxide scavenger	60 µg/10 µl	s.c.	(Nozaki <i>et al.</i> 1998)
	eest engel	30 µg/5 µl	i.th.	(Chen and Pan, 2003)
		100 mg/kg	i.p.	(Joseph <i>et al.</i> , 2008)
α-lipoic acid	Antioxidant	5 µg/10 µl	s.c.	(Joseph <i>et al.</i> , 2008)
		10 μg/5 μl	i.th.	ş
PBN	Free-radical spin trap	100 mg/kg	i.p.	(De Logu <i>et al.</i> , 2017)
	HNE	250 mg/kg	i.p.	(Rossato <i>et al.</i> , 2010)
NAC	sequestering	20 µg/10 µl	s.c.	(Rossato et al., 2010)
	agent	50 μg/5 μl	i.th.	(Rossato <i>et al.</i> , 2010)
L-Carnosine	HNE sequestering agent	250 mg/kg	i.p.	(Alsheblak <i>et al.,</i> 2016)
Apocynin	Non selective NOX inhibitor	100 mg/kg	i.p.	(Li <i>et al.</i> , 2013)
Gp91ds-tat	NOX2 inhibitor	10 mg/kg	i.p.	(De Logu <i>et al.</i> , 2017)
ML171	NOX1 inhibitor	60 mg/kg	i.p.	(De Logu <i>et al.</i> , 2017)
GKT137831	NOX1/4 inhibitor	60 mg/kg	i.p.	(De Logu <i>et al.</i> , 2017)
		2 µmol/kg	i.p.	(Nassini <i>et al.</i> , 2010)
CGRP ₈₋₃₇	CGRP receptor antagonist	10 nmol/10 µl	s.c.	ş
	J	5 nmol/5 μl	i.th.	(de Prado <i>et al.,</i> 2009)
		1 mg/kg	i.p.	(Doods et al., 2000)
BIBN4096BS	CGRP receptor antagonist	4 nmol/10 μl	s.c.	ş
	untugonist	1 μg/5 μl	i.th.	(Mogil et al., 2005)

\$ Preliminary experiments showed that this dose did not evoke "per se" any behavioural response

Supplementary Table 2

					DEGREES OF
			1		FREEDOM &
	Statistical test	n	P value		F/t values
Fig 1 A	Two-way Al	AVOV		< 0.0001	F (24, 224)= 5.870
-			0.5 hour		
	post hoc analysis	8 vs. 8	GTN 10mg vs. Veh	< 0.0001	t= 7.027
		8 VS. 8	GIN 5mg vs. Ven	< 0.0001	t= 5.229
		8 vs. 8	GTN 10 mg vs. Veh	< 0.0001	t= 8.825
		8 vs. 8	GTN 5mg vs. Veh	< 0.0001	t= 6.864
		8 vs. 8	GTN 1mg/10ml vs. Ver 2 hours	0.0447	t= 2.451
		8 vs. 8	GTN 1mg vs. Veh	< 0.0001	t= 9.315
		8 vs. 8	GTN 5mg vs. Veh	< 0.0001	t= 6.537
		8 vs. 8	GTN 10mg vs. Veh 4 hours	0.0176	t= 2.778
		8 vs. 8	GTN 10mg vs. Veh	< 0.0001	t= 8.661
		8 vs. 8	GTN 5mg vs. Veh	< 0.0001	t= 5.72
			6 hours		
		8 vs. 8	GTN 10mg vs. Veh	< 0.0001	t= 5.393
		8 VS. 8	GTN 5mg vs. ven	0.0006	t= 3.759
Fig 1 B	Two tailed	Ftest	GTN vs. Veh	0.0018	t= 4 207 df= 10
		0 43. 0		0.0010	
Fig 1 C	Two-way Al	AVOV	2 hours	0.0379	F (6, 70)= 2.377
	post hoc analysis	6 vs. 6	GTN WT vs. Veh WT	0.0018	t= 4.23
	,	6 vs. 6	GTN KO vs. GTN WT	0.0033	t= 4.067
Fig 1 D	Two-way At	JOVA	1	<0.0001	F (18, 196)= 7,501
			0.5 hour		. (,)
	post hoc analysis	8 vs.8	GTN WT vs. Veh WT	0.0001	t= 4.406
		8 vs.8	GTN KO vs. GTN WT	0.0006	t= 3.987
			1 hour		
		8 vs.8	GIN WI vs. Veh WI	<0.0001	t= 8.603
		0 VS.0	2 hours	<0.0001	L- 7.004
		8 vs.8	GTN WT vs. Veh WT	<0.0001	t= 10.28
		8 vs.8	GTN KO vs. GTN WT	<0.0001	t= 9.022
		8.46.8	4 hours	<0.0001	+- 9 192
		8 vs 8	GTN KO vs. GTN WT	<0.0001	t= 6.085
			6 hours		
		8 vs.8	GTN WT vs. Veh WT	0.0001	t= 4.406
		8 vs.8	G I'N KO vs. GTN WT	0.0417	t= 2.728
Fig 1 E	One-way Al	NOVA	[< 0.0001	F (3, 20)= 19.74
	post hoc analysis	6 vs.6	GTN WT vs. Veh WT	0.0004	t= 5.027
Fig 1 F I	eft panel		г	< 0.0001	E (A 25) - A 24
	one-way Al	6vs 6	GTN vs. veh	< 0.0001	r (4, 20)- 4.21 t= 6.542
		6 vs. 6	HC03 GTN vs. GTN	< 0.0001	t= 5.782
		6 vs. 6	DSF GTN vs. GTN	0.0001	t= 5.477
Eig 4 E -	ight papel	6 vs. 6	cPTIO GTN vs. GTN	< 0.0001	t= 5.782
rig 1 F ľ	One-way Al	NOVA	ſ	< 0.0001	F (4, 41) = 24 21
	post hoc analysis	6 vs. 6	GTN vs. veh	< 0.0001	t= 7.327
		6 vs. 6	GTN HC03 vs. GTN	< 0.0001	t= 7.127
Fig 1 G	One-way Al	NOVA]	< 0.0001	F (3, 20)= 13.56
	post hoc analysis	6 vs. 6	GTN vs. veh	0.0004	t= 4.978
		6 vs. 6	GTN DSF vs. GTN	0.002	t= 4.314

						DEGREES OF
		Statistical test	'n	B volue		FREEDOM &
		Statistical test	п	P value		Fit values
Fig 2 A I	eft panel	One-way	ANOVA	web we FOUN	< 0.0001	F (4. 331) = 16.97
	post noc a	analysis	78 vs. 53 78 vs. 83	ven vs. ouµivi veh vs. 100uM	< 0.0058	t = 3.212 t = 6.216
			78 vs 54	veh vs. 300 uM	< 0.0001	t= 6.922
		0			0.0004	F (2, 4,44) = 4,000
Fig 2 A r	nost hoc a	One-way . analysis	ANOVA 29 ve 79	HC03 GTN vs. GTN	0.0005	F (3, 144)= 4.299
	postnoca	analysis	20 13.10	1000 0111 03. 0111	0.0000	1- 4.007
Fig 2 B		One-way	ANOVA		< 0.0001	F (3, 83)= 94.51
	post hoc a	analysis	21 vs. 20	GTN WT vs. Veh WT	< 0.0001	t= 13.5
			26 vs. 21	GTN KO vs. GTN WT	< 0.0001	t= 14.38
		0			10,0001	F (F 450) - 404 4
	nost hoc a	analysis	54 vs 131	GTN wrvs. Veh wr	< 0.0001	r (3, 432) - 121.4 t= 17.15
	poornool		77 vs.54	GTN wt vs. GTN 3C/KQ	< 0.0001	t= 14.32
			54 vs. 131	Menthol wt vs. Veh wt	< 0.0001	t= 16.44
Fig 2 D I	eff nanel				0.0064	E (2 177)= 5 204
. 19 2 0 1	cit parier	Une-way .			0.0004	<u>1 (2, 177)</u> - 0.204
	post hoc a	analysis	83 vs. 47	GIN 10 µM vs. veh	0.0154	t= 2.834
	post hoc a	One-way . analysis	ANOVA 83 vs. 34	GTN 100 µM vs. veh	< 0.0001	F (2, 145)= 35.45
	poornool		00 10. 01		0.0001	0.000
Fig 2 D r	ight panel	One-way	ANOVA		< 0.0001	F (3, 77)= 11.62
	post hoc a	analysis	22 vs. 20	SNAP vs. veh	< 0.0001	t= 5.007
			22 vs. 28	HC03 SNAP vs. SNAP	< 0.0001	t= 5.212 t= 3.351
			22 85.21	CETTO SINAE VS. SINAE	0.0037	1- 5.551
Fig 2E		Two-way	ANOVA		0.0029	F (12, 100)= 2.745
	post hoc a	analysis		0.5 hour		
			6 VS. 6	GIN WI vs. Veh WI	0.0003	t = 4.272
			0 vs. 0	1 hour	0.0040	[= 5.471
			6 vs. 6	GTN WT vs. Veh WT	< 0.0001	t= 5.474
			6 vs. 6	GTN KO vs. GTN WT	< 0.0001	t= 5.741
			6.u. 6	2 hours	0.0010	- 2 729
			ovs.o 6vs.6	GTN WI VS. VEN WI GTN KO vs. GTN WT	0.0019	t= 3.730
Fig 2F		Two-way	ANOVA		< 0.0001	F (12, 140)= 7.199
-	post hoc a	analysis		0.5 hour		
			8 vs. 8	SNAP WT vs. Veh WT	< 0.0001	t= 6.883
				SNAP KOVS. SNAP WI	< 0.0001	t= 5.767
			8 vs. 8	SNAP WT vs. Veh WT	< 0.0001	t= 8.185
			8 vs. 8	SNAP KO vs. SNAP WT	< 0.0001	t= 7.999
				2 hours		
			8 vs. 8	SNAP WT vs. Veh WT	< 0.0001	t= 7.069
			0 VS. 0	SNAP KU VS. SNAP VVI	< 0.0001	t= 0.325
Fig 2G		One-way	ANOVA		0.0005	F (5, 34)= 5.880
	post hoc a	analysis	6 vs.6	GTN vs. veh	0.0032	t= 3.576
			6 vs.6	HC03(s.c.) GTN vs GTN	0.0382	t= 2.63
			6 VS.6	HCU3(I.P.) GTN VS GTN	0.0295	t= 2.735
Fig 2 H		One-way	ANOVA		< 0.0001	F (4, 27)= 9.380
	post hoc a	analysis	6 vs. 6	SNAP vs. veh	0.0002	t= 5.184
			6 vs. 6	HCU3(s.c.) SNAP vs SNAP	0.0342	τ= 3.209 t= 4.691
			8 vs 6	CPTIO SNAP vs. SNAP	0.0007	t= 5.146

	1 hour		
9 vs.6	GTN vs. Veh	< 0.0001	t= 6.946
9 vs.6	NAC GTN vs GTN	0.0074	t= 3.893
	2 hours		
9 vs.6	GTN vs. Veh	< 0.0001	t= 7.785
9 vs.6	NAC GTN vs GTN	< 0.0001	t= 5.906
	4 hours		
6 vs. 6	GTN vs. Veh	< 0.0001	t= 6.004
6 vs.6	NAC GTN vs GTN	< 0.0001	t= 5.269
	5 hours		
9 vs.6	GTN vs. Veh	< 0.0001	t= 6.846
9 vs.6	NAC GTN vs GTN	0.0009	t= 4.430
	6 hours		
6 vs. 6	GTN vs. Veh	0.0001	t= 4.901
6 vs.6	GTN NAC vs GTN	0.0258	t= 3.554
	8 hours		
9 vs.6	GTN vs. Veh	< 0.0001	t= 5.101
9 vs.6	GTN NAC vs GTN	0.0122	t= 3.758

	· · · · ·				DEGREES OF FREEDOM &
	Statistical test	n	P val	ue	F/t values
Fig 3 A	One-way ANOV	'A		< 0.0001	F (5, 31)= 8.003
I	post hoc analysis	6 vs.6	GTN vs. Veh	0.0003	t= 5.006
Fig 3 B	One-way ANOV	'A		< 0.0001	F (5, 28)= 35.66
	post hoc analysis	6 vs.6	GTN vs. Veh	< 0.0001	t= 11.53
		6 VS. 0	GTN ALA VS. GTN GTN DBN ve. GTN	< 0.0001	t= 9.124 t= 9.732
		7 vs 6	NAC GTN vs. GTN	< 0.0001	t= 5 798
		6 vs.6	Carn GTN vs. GTN	< 0.0001	t= 5.948
Fig 3 C	One-way ANOV	'A		< 0.0001	F (5, 32)= 15.80
	post hoc analysis	6 vs.6	GTN vs. Veh	< 0.0001	t= 6.063
		7 vs.6	NAC GTN vs. GTN	0.0215	t= 3.073
		6 vs.6	Carn GTN vs. GTN	0.0003	t= 4.653
Fig 3 D	One-way ANOV	'A		< 0.0001	F (3, 28)= 67.63
	post hoc analysis	8 vs.8	GTN vs. Veh	< 0.0001	t= 12.48
Fig 3 E	One-way ANOV	'A		< 0.0001	F (3, 28)= 35.89
	post hoc analysis	8 vs.8	GTN vs. Veh	< 0.0001	t= 8.873
Fig 3 F	Two-way ANOV	A		< 0.0001	F (14, 124)= 4.197
	post hoc analysis		1 hour		
		6 vs.6	GTN vs. Veh	0.0008	t= 4.311
		6 vs.6	GTN NAC vs Veh 2 hours	< 0.0001	t= 5.127
		6 vs.6	GTN vs. Veh	< 0.0001	t= 6.292
		6 vs.6	GTN NAC vs Veh 4 hours	< 0.0001	t= 6.409
		6 vs.6	GTN vs. Veh	< 0.0001	t= 5.826
		6 vs.6	GTN NAC vs Veh 5 hours	< 0.0001	t= 5.826
		6 vs.6	GTN vs. Veh	< 0.0001	t= 4.894
		6 vs.6	GTN NAC vs Veh 6 hours	< 0.0001	t= 5.481
		6 vs.6	GTN vs. Veh	0.0019	t= 4.078
			GTN NAC vs Veh 8 hours	< 0.0001	t= 4.983
		6 vs.6	GTN vs. Veh	0.0246	t= 3.029
			GTN NAC vs Veh	0.0246	t= 3.363
Fig 3 G	One-way ANOV	Ά		< 0.0001	F (5, 35)= 9.520
I	post hoc analysis	6 vs.6	GTN vs. Veh	0.0241	t= 2.924
		7 vs. 6	HC03 GTN vs. GTN	0.0316	t= 2.817
		7 vs 6 9 vs.6	CPTIO GTN vs. GTN CPTIO GTN vs. GTN	0.0023	t= 3.793 t= 4.575
Fig 3 H	One-way ANOV	'A		< 0.0001	F (5, 42) = 41.13
1	post hoc analysis	8 vs.8	GTN vs. Veh	< 0.0001	t= 9.442
		8 vs.8	GTN HC03 vs. GTN	< 0.0001	t= 8.534
		8 vs.8	GTN aLA vs. GTN	< 0.0001	t= 8.171
Fig 3 I	Two-way ANOV	A		< 0.0001	F (24, 192)= 5.932
I	post hoc analysis	6 vs.6	0.5 hour GTN vs. Veh	< 0.0001	t= 5.098

	1 hour		
9 vs.6	GTN vs. Veh	< 0.0001	t= 6.946
9 vs.6	NAC GTN vs GTN	0.0074	t= 3.893
	2 hours		
9 vs.6	GTN vs. Veh	< 0.0001	t= 7.785
9 vs.6	NAC GTN vs GTN	< 0.0001	t= 5.906
	4 hours		
6 vs. 6	GTN vs. Veh	< 0.0001	t= 6.004
6 vs.6	NAC GTN vs GTN	< 0.0001	t= 5.269
	5 hours		
9 vs.6	GTN vs. Veh	< 0.0001	t= 6.846
9 vs.6	NAC GTN vs GTN	0.0009	t= 4.430
	6 hours		
6 vs. 6	GTN vs. Veh	0.0001	t= 4.901
6 vs.6	GTN NAC vs GTN	0.0258	t= 3.554
	8 hours		
9 vs.6	GTN vs. Veh	< 0.0001	t= 5.101
9 vs.6	GTN NAC vs GTN	0.0122	t= 3.758

					DEGREES OF
	Statistical test	<u>n</u>	P valu	le	FREEDOM & F/t values
Fig 4 A	One-way AN	IOVA	H2O2 level	< 0.0001	F (6, 36)= 10.66
pog	st hoc analvsis		1 hour		
,	,	6 vs. 6	GTN vs. BL 2 hours	0.0227	t= 3.094
		6 vs. 6	GTN vs. BL	< 0.0001	t= 6.38
		6 vs. 6	GTN vs. BL	0.0059	t= 3.586
			HNE level	< 0.0001	F (5, 18)= 37.64
pos	st hoc analysis	4 vs.4	GTN 4h vs. GTN 0.5h	< 0.0001	t= 8.475
,	-	4 vs.4	GTN 6h vs. GTN 0.5h	< 0.0001	t= 10.53
Fig 4 C	One-way AN	IOVA	H2O2 level	< 0.0001	F (5, 26)= 39.14
pos	st hoc analysis	4 vs. 4	GTN vs. Veh	< 0.0001	t= 10.58
		6 vs.4	cPTIO GTN vs. GTN	< 0.0001	t= 11.95
		6 vs.4	DSF GTN vs. GTN	< 0.0001	t= 11.48
		6 vs.4	a-LA GTN vs. GTN	< 0.0001	t= 10.04
		6 vs.4	HC03 GTN vs. GTN	< 0.0001	t= 11.99
Fig 4 D	One-way AN	IOVA	HNE level	0.0003	F (4, 23)= 8.122
- pos	st hoc analysis	6 vs.4	GTN cPTIO vs. GTN	0.0013	t= 4.208
	-	6 vs.4	GTN aLA vs. GTN	0.0002	t= 4.974
		6 vs.4	GTN NAC vs.GTN	0.0001	t= 5.165
		6 vs.4	GTN HC03 vs. GTN	0.0022	t= 4.017
Fig 4 E	One-way AN	IOVA	H2O2 level	< 0.0001	F (3, 20)= 29.14
pos	st hoc analysis	6 vs.6	GTN wt vs. Veh wt	< 0.0001	t= 7.718
		6 vs.6	GTN wt vs. GTN ko	< 0.0001	t= 7.532
	Two tailed T	test	HNE level		t= 4.622 df= 10
		6 vs.6	GTN wt vs. GTN ko	0.0009	

					DEGREES OF
	Statistical tes	t n	P value		F/t values
Fig 5	B Two-wa	ay ANOVA		< 0.0001	F (12, 112) = 3.908
			0.5 hour	0.0000	
	post hoc analysis	6 vs. 6 7 vs. 6	GTN vs. Veh RTX GTN vs. GTN	0.0006	t= 4.349 t= 4.851
		7 VS. 0	1 hour	< 0.0001	1- 4.001
		6 vs. 6	GTN vs. Veh	< 0.0001	t= 4.892
		7 vs. 6	RTX GTN vs. GTN	< 0.0001	t= 5.303
		6 vs. 6	GTN vs. Veh	< 0.0001	t= 5.762
		7 vs. 6	RTX GTN vs. GTN	< 0.0001	t= 6.205
		6.vc 6	4 hours	0.0001	+- 1 791
		7 vs. 6	RTX GTN vs. GTN	< 0.0001	t= 5.190
			6 hours		
		6 vs. 6	GTN vs. Veh	0.0019	t= 2.718
		/ VS. 0	RTA GTIN VS. GTIN	0.0100	1-2.090
	One-w	ay ANOVA	H2O2 level	< 0.0001	F (2, 15)= 52.92
	post hoc analysis	6 vs. 6	GIN vs Veh RTX	< 0.0001	τ= 9.360 t= 8.377
		0 vs. 0	GINKINVSUIN	< 0.000 T	- 0.077
Fig 5	C One-w	ay ANOVA	H2O2 level	< 0.0001	F (5, 55)= 87.18
	post hoc analysis	8 vs. 21	Ca2+-free GTN_vs. GTN	< 0.0001	t= 14.81 += 15.72
		8 vs. ∠1 6 vs. 21	HC03 GTN VS. GTN	< 0.0001	t= 13.72 t= 13.47
		0 03. 21	1000 0111 03. 0111	- 0.0001	
	Two ta	iled T test			
		6 vs. 8	HC03 ALLC vs. ALLC	< 0.0001	t= 12.16 df= 12
	Two ta	iled T test			
		8 vs. 8	HC03 SNAP vs. SNAP	< 0.0001	t= 30.14 df= 14
Fig 5	E Two ta	iled T test	mRNA level		
		6 vs. 8	AS vs. MM	< 0.0001	t= 12.16 df= 12
	Two-wa	ay ANOVA		< 0.0001	F (18, 151)= 5.566
		7 0	0.5 hour	. 0 0001	
	post noc analysis	7 VS. 6 7 vs. 7	AS GTN vs. MM GTN	< 0.0001 < 0.0001	t= 6.310 t= 4.854
		1 V3. 1	1 hour	< 0.0001	1- 4.004
		7 vs. 6	MM GTN vs. MM Veh	< 0.0001	t= 7.545
		7 vs. 7	AS GTN vs. MM GTN	< 0.0001	t= 6.996
		6 vs. 6	∠ nours MM GTN vs. MM Veh	< 0.0001	t= 8.093
		7 vs. 6	AS GTN vs. MM GTN	< 0.0001	t= 7.995
		0	4 hours	< 0.0001	- 6 950
		0 VS. 0 7 vs. 6	AS GTN vs. MM GTN	< 0.0001 < 0.0001	เ– ๒.๕๖ษ t= 5.761
		7 43. 0	6 hours	0.0001	
		6 vs. 6	MM GTN vs. MM Veh	< 0.0001	t= 5.350
		7 vs. 6	AS GEN VS. MM GTN	< 0.0001	t= 5.075
	One-w	ay ANOVA	H2O2 level	< 0.0001	F (3, 20)= 20.11
	post hoc analysis	6 vs.6	GTN MM vs. Veh MM	< 0.0001	t= 6.497
		6 vs.6	GTN AS vs. GTN MM	< 0.0001	t= 6.264
Eig F	E Tur to	iled T test	m RNA loval		
Figit	i iwo ta	6 vs. 8	AS vs. MM	< 0.0001	t= 9.625 df= 6

Two-way ANC	DVA		< 0.0001	F (18, 140)= 3.568
		0.5 hour		
post hoc analysis	7 vs. 6	Control GTN vs.Control Veh	0.0002	t= 4.274
	7 vs. 7	Adv-cre GTN vs Control GTN	< 0.0001	t=5.280
		1 hour		
	7 vs. 6	Control GTN vs.Control Veh	< 0.0001	t= 4.651
	7 vs. 7	Adv-cre GTN vs Control GTN	< 0.0001	t= 5.280
		2 hours		
	6 vs. 6	Control GTN vs.Control Veh	< 0.0001	t= 6.034
	7 vs. 6	Adv-cre GTN vs Control GTN	< 0.0001	t= 6.411
		4 hours		
	6 vs. 6	Control GTN vs.Control Veh < 0.0001		t= 5.280
	7 vs. 6	Adv-cre GTN vs Control GTN	< 0.0001	t= 5.531
		6 hours		
	6 vs. 6	Control GTN vs.Control Veh	0.0002	t= 4.274
	7 vs. 6	Adv-cre GTN vs Control GTN	< 0.0001	t= 4.902
One-way AN	OVA	H2O2 level	< 0.0001	F (3, 20)= 12.29
post hoc analysis	6 vs.6	Control GTN vs.Control Veh	0.004	t= 4.025
	6 vs.6	Adv-cre GTN vs Control GTN	0.0002	t= 5.368

					DEGREES OF FREEDOM &
	Statistical test	n	P value		F/t values
Fig 6 B	One-way AN	OVA		0.0002	F (4, 27)= 8.044
	post hoc analysis	7 vs. 7	GTN vs. Veh	< 0.0001	t= 5.430
Fig 6 C	One-way AN	OVA		< 0.0001	F (5, 42)= 32.22
	post hoc analysis	8 vs. 8	GTN vs. Veh	< 0.0001	t= 10.20
		8 vs. 8	Apo GTN vs. GTN	< 0.0001	t= 9.238
		8 vs. 8	gp91 GTN vs. GTN	< 0.0001	t= 5.196
		8 vs. 8	ML171 GTN vs. GTN	0.0002	t= 6.543
		8 vs. 8	gp91+ML171 GTN vs. GTN	< 0.0001	t= 10.58

						DEGREES OF FREEDOM &
	Sta	tistical test	n	P value		F/t values
Fig 7 A left	panel post hoc analysis	One-way Al	NOVA 8 vs.6 7 vs.8	GTN vs. veh BIBN GTN vs GTN	< 0.0001 < 0.0001 0.0449	F (3, 25)= 16.46 t= 6.971 t= 2.91
Fig 7 A right	p anel post hoc analysis	One-way Al	NOVA 8 vs.6 7 vs.8 8 vs.8	GTN vs. veh GTN BIBN vs GTN GTN CGRP837 vs. GTN	< 0.0001 < 0.0001 < 0.0001 < 0.0001	F (3, 25) = 51.55 t= 12.29 t= 7.126 t= 6.639
Fig 7 B left	panel post hoc analysis	One-way Al	NOVA 6 vs.6	GTN vs. veh	< 0.0001 < 0.0001	F (3, 20)= 23.27 t= 6.635
Fig 7 B righ	panel post hoc analysis	One-way Al	NOVA 6 vs.6	GTN vs. veh	< 0.0001 < 0.0001	F (3, 17)= 29.24 t= 7.932
Fig 7 C		Two-way Al	NOVA	0.5 hour	< 0.0001	F (15, 168)= 6.653
	post hoc analysis		8 vs. 8	CGRP 5µg vs. Veh 1 hour	< 0.0001	t= 5.364
			8 vs. 8	CGRP 5µg vs. Veh	< 0.0001	t= 6.954
			8 vs. 8	GTN 5 µg vs. Veh 4 hours	< 0.0001	t= 8.146
			8 vs. 8	GTN 5 µg vs. Veh	< 0.0001	t= 5.166
Fig 7 D	post hoc analysis	One-way Al	NOVA 8 vs.7 8 vs.7 8 vs.7	CGRP vs. Veh CGRP8-37 CGRP vs. CGRP BIBN CGRP vs. CGRP	0.0014 0.0007 0.0462 0.008	F (3, 25)= 7.034 t= 4.316 t= 2.594 t= 3.335
Fig 7 E left p	a nel post hoc analysis	One-way Al	NOVA 6 vs.6	GTN vs. Veh	< 0.0001 < 0.0001	F (3, 20)= 25.53 t= 6.685
Fig 7 E right	panel post hoc analysis	One-way Al	NOVA 6 vs.6 7 vs.6 6 vs.6	GTN vs. veh GTN BIBN vs GTN GTN CGRP837 vs. GTN	 < 0.0001 < 0.0001 < 0.0001 0.0003 	F (3, 21)= 26.56 t= 8.770 t= 5.957 t= 5.102
Fig 7 F	post hoc analysis	One-way Al	NOVA 6 vs.6 6 vs.6	GTN vs. Veh BIBN GTN vs Veh	< 0.0001 < 0.0001 < 0.0001	F (3, 20)= 39.98 t= 8.322 t= 7.077

				DEGREES OF FREEDOM &
Statist	ical test n	P value		F/t values
Suppl Fig 1 A	Two-way ANOVA	0.5 hour	< 0.0001	F (18, 140)= 5.563
post hoc analysis	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 1 bour	< 0.0001 < 0.0001	t= 5.436 t= 5.310
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 2 hours	< 0.0001 < 0.0001	t= 6.574 t= 6.447
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 4 hours	< 0.0001 < 0.0001	t= 6.447 t= 6.574
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 6 hours	< 0.0001 < 0.0001	t= 6.700 t= 6.700
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT	< 0.0001 < 0.0001	t= 5.562 t= 6.447
Suppl Fig 1 B	Two-way ANOVA	0.5 hour	< 0.0001	F (18, 140)= 3.628
post hoc analysis	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 1 hour	0.0031 0.0067	t= 3.900 t= 3.689
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 2 hours	< 0.0001 0.0006	t= 5.270 t= 4.322
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 4 hours	< 0.0001 < 0.0001	t= 6.008 t= 5.060
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT 6 hours	0.0021 0.0286	t= 4.006 t= 3.268
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. Veh WT	0.0403 0.0286	t= 3.162 t= 3.268
Suppl Fig 1 C	Two-way ANOVA		< 0.0001	F (6, 70)= 6.154
post hoc analysis	6 vs. 6	0.5 hour GTN 10mg vs. Veh 1 hour	0.0022	t= 3.789
	6 vs. 6	GTN 10mg vs. Veh 2 hours	< 0.0001	t= 5.92
	6 vs. 6	GTN 10mg vs. Veh 4 hours GTN 10mg vs. Veh	< 0.0001	t= 6.204
	6 vs. 6	6 hours GTN 10mg vs. Veh	0.0022	t= 3.789
Suppl Fig 1 D	Two-way ANOVA		0.0001	F (18, 141)= 3.010
post hoc analysis	6 vs. 6 6 vs. 6	2 hours GTN WT vs. Veh WT GTN KO vs. GTN WT 4 hours	< 0.0001 0.0007	t= 5.349 t= 4.442
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. GTN WT 6 hours	0.0013 0.0371	t= 4.298 t= 3.391
	6 vs. 6 6 vs. 6	GTN WT vs. Veh WT GTN KO vs. GTN WT	0.0006 0.0392	t= 4.489 t= 3.375
Suppl Fig 1 E	One-way ANOVA	4 hours	< 0.0001	F (2, 15)= 28.47
post hoc analysis	6 vs.6 6 vs.6	GTN vs. veh GTN HC03 vs. GTN	< 0.0001 0.0002	t= 7.261 t= 5.410
	One-way ANOVA	5 hours	0.0011	F (2, 15)= 11.02
post hoc analysis	6 vs.6 6 vs.6	GTN vs. veh GTN HC03 vs. GTN	0.0019 0.0052	t= 4.287 t= 3.8

		One-way Al	NOVA	6 hours	0.0011	F (2, 15)= 11.16
	post hoc analysis		6 vs.6	GTN vs. veh	0.001	t= 4 601
			6 vs.6	GTN HC03 vs. GTN	0.0167	t= 3.233
Suppl Fig 1	F	One-way Al	AVOV		0.0002	F (2, 16)= 15.37
	post hoc analysis		7 VS.6	GIN vs. veh	0.0005	t= 4.838 t= 4.627
			1 13.0	HOUS GIN VS. GIN	0.0008	i- 4.007
Suppl Fig 1	G left panel	One-way Al	NOVA		< 0.0001	F (2, 15)= 19.68
-	post hoc analysis		6 vs.6	GTN vs. veh	0.0002	t= 5.578
0	C sinkt as a l		6 vs.6	A96 GTN vs. GTN	0.0003	t= 5.276
ouppi ⊢ig 1	o right panel	One-way Al	NOVA 6 ve 6	GTN vs veh	< 0.0001	r (∠, 15)= 34.16 t= 7.453
	2000 HOC analysis		6 vs.6	GTN A96 vs. GTN	< 0.0001	t= 6.821
Suppl Fig 1	н	One-way Al	NOVA		< 0.0001	F (2, 17)= 36.13
	post hoc analysis		6 vs.6	GTN vs. veh	< 0.0001	t= 7.915
Suppl Fig 1	I	One-way Al	NOVA		< 0.0001	F (2, 16) = 21.02
	post hoc analysis		7 vs.6	GTN vs. veh	0.0001	t=5.616
	•					
Suppl Fig 1	J	One-way Al	NOVA		0.035	F (2, 16)= 8.239
	post hoc analysis		7 vs.6	AITC vs. veh	0.0042	t= 3.853
			7 vs.6	HC03 AITC vs.AITC	0.0306	t= 2.911
Suppl Fig 1K left panel		One-way ANOVA			0.016	F (2, 15)= 5.457
····3·	post hoc analysis		6 vs.6	GTN vs. veh	0.0172	t= 3.020
			6456	A96 GTN vs. GTN	0.035	t= 2 669
Suppl Fia 1	K right panel	One-way Al	NOVA	AUGUNINA, OTN	0.0007	F (2, 15)= 12.18
	post hoc analysis		6 vs.6	GTN vs. veh	0.0014	t= 4.234
	-		6 vs.6	GTN A96 vs. GTN	0.0012	t= 4.312
		_				
Suppl Fig 1	L left panel	One-way Al	NOVA		< 0.0001	F (3, 20)= 28.32
	post noc analysis		6 VS.6	CAPS VS. Ven	< 0.0001	τ= /.6/6
			6 vs.6	RTX CPS vs.Veh RTX CPS	< 0.0001	t= 7.217
Suppl Fig 1	L right panel	One-way Al	NOVA		< 0.0001	F (3, 20)=17.52
	post hoc analysis		6 vs.6	AITC vs. Veh	< 0.0001	t= 6.099
			6 vs.6	RTX AITC vs. Veh RTX AITC	0.0003	t= 5.090
Suppl Ein 4	M laft namel	One way A1			L < 0.0004	E (2, 20)= 01 22
Suppi Fig 1	nost hoc analysis	One-way Al	NOVA 6VS6	MM AITC vs MM veh	< 0.0001	r (3, 20)- 91.23 t= 13.56
	post not unaryold		6 vs.6	AS AITC vs. MM AITC	< 0.0001	t= 12.47
Suppl Fig 1	M right panel	One-way Al	NOVA		0.0018	F (3, 20)= 7.191
	post hoc analysis		6 vs.6	AITC control vs.Veh control	0.0043	t= 3.989
			0 VS.0	ALLO AUV-CLE VS ALLO CONTROL	0.0208	ι− 3.∠∠∪

					DEGREES OF
	Statistical test	n	P value		F/t values
Suppl Fig 2 B	One-way ANO	VA		< 0.0001	F (2, 21) = 42.56
post hoc analysis		8 vs. 8	GTN vs. veh	< 0.0001	t= 9.007
		8 vs 8	GTN GKT vs. GTN	0.0339	t= 2.771
Suppl Fig 2 C	One-way ANO	VA		< 0.0001	F (2, 21) = 186.0
post hoc ar	alysis	8 vs. 8	GTN vs. veh	< 0.0001	t= 16.37
		8 vs. 8	GTN GKT+gp91 vs. GTN	< 0.0001	t= 17.02

References

- Alsheblak MM, Elsherbiny NM, El-Karef A, El-Shishtawy MM. Protective effects of Lcarnosine on CCl4 -induced hepatic injury in rats. Eur Cytokine Netw 2016; 27:6-15.
- Chen SR, Pan HL. Spinal nitric oxide contributes to the analgesic effect of intrathecal [d-pen2,d-pen5]-enkephalin in normal and diabetic rats. Anesthesiology 2003; 98:217-22.
- Chen Y, Kanju P, Fang Q, Lee SH, Parekh PK, Lee W, *et al.* TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain 2014; 155:2662-72.
- da Costa DS, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 2010; 148:431-7.
- De Logu F, Nassini R, Materazzi S, Carvalho Goncalves M, Nosi D, Rossi Degl'Innocenti D, et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun 2017; 8:1887.
- Doods H, Hallermayer G, Wu D, Entzeroth M, Rudolf K, Engel W, *et al.* Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol 2000; 129:420-3.
- Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain 2008; 4:48.
- Glowka TR, Steinebach A, Stein K, Schwandt T, Lysson M, Holzmann B, *et al.* The novel CGRP receptor antagonist BIBN4096BS alleviates a postoperative intestinal inflammation and prevents postoperative ileus. Neurogastroenterol Motil 2015; 27:1038-49.
- Jeong BK, Song JH, Jeong H, Choi HS, Jung JH, Hahm JR, et al. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget 2016; 7:15105-17.

- Jiang JX, Chen X, Serizawa N, Szyndralewiez C, Page P, Schroder K, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 2012; 53:289-96.
- Joseph EK, Chen X, Bogen O, Levine JD. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain 2008; 9:463-72.
- Kim AK, Souza-Formigoni ML. Disulfiram impairs the development of behavioural sensitization to the stimulant effect of ethanol. Behav Brain Res 2010; 207:441-6.
- Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, *et al.* Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111:1201-9.
- Lee EJ, Hung YC, Chen HY, Wu TS, Chen TY. Delayed treatment with carboxy-PTIO permits a 4-h therapeutic window of opportunity and prevents against ischemiainduced energy depletion following permanent focal cerebral ischemia in mice. Neurochem Res 2009; 34:1157-66.
- Li YQ, Li XB, Guo SJ, Chu SL, Gao PJ, Zhu DL, *et al.* Apocynin attenuates oxidative stress and cardiac fibrosis in angiotensin II-induced cardiac diastolic dysfunction in mice. Acta Pharmacol Sin 2013; 34:352-9.
- Marquez de Prado B, Hammond DL, Russo AF. Genetic enhancement of calcitonin gene-related Peptide-induced central sensitization to mechanical stimuli in mice. J Pain 2009; 10:992-1000.
- Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, *et al.* TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 2012; 463:561-9.
- Mogil JS, Miermeister F, Seifert F, Strasburg K, Zimmermann K, Reinold H, *et al.* Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci U S A 2005; 102:12938-43.
- Nassini R, Materazzi S, Andre E, Sartiani L, Aldini G, Trevisani M, *et al.* Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. Faseb J 2010; 24:4904-16.
- Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, *et al.* Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 2011; 152:1621-31.

- Nozaki-Taguchi N, Yamamoto T. Involvement of nitric oxide in peripheral antinociception mediated by kappa- and delta-opioid receptors. Anesth Analg 1998; 87:388-93.
- Rossato MF, Velloso NA, de Oliveira Ferreira AP, de Mello CF, Ferreira J. Spinal levels of nonprotein thiols are related to nociception in mice. J Pain 2010; 11:545-54.
- Trevisan G, Benemei S, Materazzi S, De Logu F, De Siena G, Fusi C, et al. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 2016; 139:1361-77.
- Wei H, Koivisto A, Saarnilehto M, Chapman H, Kuokkanen K, Hao B, et al. Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat. Pain 2011; 152:582-91.
- Yilmaz Z, Kalaz EB, Aydin AF, Soluk-Tekkesin M, Dogru-Abbasoglu S, Uysal M, et al. The effect of carnosine on methylglyoxal-induced oxidative stress in rats. Arch Physiol Biochem 2017; 123:192-98.
- Zappia KJ, O'Hara CL, Moehring F, Kwan KY, Stucky CL. Sensory Neuron-Specific Deletion of TRPA1 Results in Mechanical Cutaneous Sensory Deficits. eNeuro 2017; 4:0069-16.