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A. Green’s function 

The field produced by a point dipole is the sum of free-space Green’s function and Green’s 

function describing the field reflected from the substrate. Precisely at the dipole location 

r0=(0,0,z) we have only the reflected field with Green’s tensor taking the diagonal form: 
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The expressions for the derivatives are: 
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In the last equation kz1 is supposed to be included in the integrand. The following notation is used 

in Equations (S1)-(S3): k1 and k2 are the wave vectors of incident radiation in the upper and 

lower half-spaces, kρ is the transverse component of the wave vector and 
1

2 2 1/2

1( )z xk k k  and 

2

2 2 1/2

2( )z xk k k   are normal to the interface components of the wave vectors in the two media. 

Amplitude reflection coefficients are 

1 2 2 1

1 2 2 1

2 1

2 1

,
z z z z

p s

z z z z

k k k k
r r

k k k k

 

 

 
 

 
.        (S4) 

By setting integration limits to kρ= k1 in (S1)-(S3), evanescent waves scattered by the particle are 

excluded from the model and hence plasmon excitation does not take place.  
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B. Self-consistent field 

In order to find the self-consistent field in the case of a dipolar scatterer, response of an auxiliary 

structure both to external illumination and to a point source situated at the location of the particle 

should be evaluated. Field produced by a particle with a dipole moment p positioned at r0 and 

oscillating at the frequency ω can be written as 1

2

0 0
ˆ( ) ( , )D  E r G r r p , where µ1 and µ0 are 

the medium and the vacuum permeability. 

Having found a field without a scatterer and Green’s tensor of the structure, we add the particle 

to the system. A dipole moment induced on the particle is given by 
0( )p E r  while the self-

consistent field is  0 D
E(r) E (r) E (r) . Now it is possible to derive E(r0) at the particle location 

explicitly and then obtain the general expression for the total field E(r0) at an arbitrary 

coordinate. 

The total field in the particle-substrate system is a sum of initial field and the field scattered by 

the particle: 
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Self-consistent field at the dipole position is a solution of self-consistent Equation (S5) evaluated 

at r0: 

2

1 0
ˆ1   




0

0
0

0 0

E (r )
E(r )

G(r ,r )
.         (S6) 

After substituting (S6) to (S5), the total field is simply written as 
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Differentiation of (S5) gives field derivatives 
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where j is one of the coordinates. Since field derivatives are sums of two terms, two summands 

appear in the expression for the force: 
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From Equation (S7) the effective polarizability (satisfying 0

0 0
ˆ( ) ( )eff  p E r E r ) for diagonal 

Green’s tensor can be derived as 
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with particle polarizability 
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where ε0 is the open space permittivity. 

C. Force calculation 

Horizontal and vertical forces for p-polarized Gaussian beam can be written as 
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Taking into account that Green’s tensor is diagonal at the particle location r0, the total field on a 

dipole will have the same components as initial field 0

0( )E r : 
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Field derivatives read 
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This gives us a full set of variables to find forces: 
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As a consequence of Equation (S3), the vertical force Fz does not change sign with the beam 

focus tuning, Figure S1. Plasmon excitation modifies vertical force but symmetrically with 

respect to f.  

x (µm)
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m
)

Fz/FG

 

Figure S1. The same as in Figure 3 but for the vertical component of the force. 

D. Transverse force at plasmon resonance 

By introducing coefficient 
  2 2 * *

1 0 1 0

1

1 1xx zz

С
G G       


 

 the transverse force 

(Equation (S15)) can be written as 
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At the plasmon resonance for small z the sum of the first two terms is smaller by absolute value 

than the last term. Neglecting the first two terms and taking into account that (С) 1   we obtain 

2 2 0 0*

1 0| | Im( G )Im(E E )x x xz x zF      .       (S17) 

E. Paraxial model for the Gaussian beam 

To find the expressions for the Gaussian beam corresponding to Equations (4) in the paraxial 

approximation we start from the magnetic component, Figure S2: 
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Figure S2. Incident and reflected Gaussian beams. 

Here the reflection coefficient rp is calculated in the approximation that the Gaussian beam is 

reflected as a normally incident plane wave with the wave vector k1 (see Supplementary 

Information I2 on the validity of this approximation). 

By using Maxwell’s equations 
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 the corresponding electric 

field components are 
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F. Optical potential of Gaussian beam focused on the substrate 

To elucidate how optical tweezer formed by Gaussian beam focused on plasmon substrate can 

trap the particle, Figure S3 plots the depth of optical potential (Fx integral over x coordinate) in 

dependence of beam intensity. In order to achive stable optical trapping, the potential barrier 

should be about 10kT1. 

 

Figure S3 Optical potential (along x-direction) in Gaussian beam focused on the substrate. The 

beam properties: w=10λ, λ=342 nm, f=50 µm, ε2=-1.25+0.32i, ε1=1; the particle: ε=3, R=15 nm, 

z=15 nm. 

To estimate realistic forces we can find radiation pressure on the particle in the middle of free-

space Gaussian beam FG which was used as a normalization value. For beam of waist 10λ 

(λ=342 nm) we obtain FG approximately 6 fN/(W/µm2). Referring to Figure 2a we obtain 

transversal force about 30 fN/(W/µm2) for a particle over plasmonic substrate. Optical forces in 

fN-range were recently measured experimentally2. 
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G. Dipole moment of the particle 

In order to gain an intuitive understanding of the trapping and anti-trapping effects, the 

geometrical optics model can be considered. Ray tracing at different focus positions of the 

Gaussian beam results in essentially different pictures for the positive and negative f, Figure 

S4a,b. In the upper half-space, the reflected rays are directed from the beam axis in the case of 

the positive focus (f>0) (Figure S4a), while for f<0 they are bent towards the center of the beam 

(Figure S4b).  

Traditionally, relative intensity of rays (without considering polarization effects which are often 

irrelevant in free space) is compared3,4 and their intensification towards the beam axis predicts 

particle trapping what is indeed true as the bead is far from the interface.  Nevertheless, near the 

substrate plasmon excitation changes this assessment: The polarization of interfering incident 

and reflected beams is different at positive and negative positions of focal plane and is the reason 

for plasmons to be excited with different efficiency. Differential operators in Maxwell’s 

equations are local and allow to associate a ray in a Gaussian beam with a ray in a plane wave. 

Obliquely incident plane wave was studied in Ref. 5, and the picture of rays in Figure S4a could 

lead to plasmon-assisted motion towards the center of the beam while for Figure S4b one obtains 

repulsion from the beam axis. 

To further reconstruct the physical picture of the effect, we deeper analyze the induced dipole 

moment (p ) of the particle. Non-zero phase delay ∆φ between px and pz corresponds to the 

rotation of the induced dipole moment in the xz plane. Figure S4c,d shows that in the reflected 

Gaussian beam the vector of induced dipole moment of the particle draws an ellipse in space 

with time. Unidirectional rotation of the dipole compensates for the momentum taken away by 

plasmon and leads to the particle motion towards or from the beam axis. Improvement or 

reduction of trapping correlates with the value of the phase delay ∆φ5,6, compare ∆φ=0.15π for 

f=100 µm versus ∆φ=0.3π for f=-100 µm, Figure S4c, and corresponding Fx-Fx0 from Figure 3. 

Depending on the focus position, ∆φ changes, taking smaller value for the negative focus 

compared to the positive focus, Figure S4d. 
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a                                  b

x

z

 

Figure S4. Interaction of Gaussian beam with a substrate, ray optics analysis. The rays diverge 

from the beam axis if the beam is focused above the substrate (f>0) (a), while for f<0 rays 

converge towards the center of the beam (b). (c) Phase lag between components of a dipole 

moment induced on a particle pxpz
* as a function of particle position in the Gaussian beam 

focused on metal for two focus detunings (in the legend). (d) Phase lag between components of 

the induced dipole moment as a function of the focal position. The beam: w=10λ, λ=342 nm, 

ε2=-1.25+0.32i, ε1=1; the particle: ε=3, R=15 nm, z=15 nm. 
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H. FEM simulation 

In Figure S5 FEM simulation is overlaid with the results of analytical model for a range of focus 

positions. While good match is visible for positive focus, for negative focus numerical 

simulation predicts more pronounced antitrapping. The reason for the discrepancy is the 

approximation of a point dipole for a finite-size particle, and besides finite element solution can 

deviate from the exact result for substrate-mediated resonance effect, e.g., spurious excitation of 

plasmon might happen from computational domain boundaries or mesh imperfections. 

 

Figure S5. Transversal force Fx in the beam focused on metal substrate as calculated by 

analytical formalism and Comsol simulation. The beam: w=10λ, λ=342 nm, ε2=-1.25+0.32i, 

ε1=1; the particle: ε=3, R=15 nm, z=17 nm, x=-700 nm. 

I. Optical forces in the paraxial approximation 

1. Lateral force Fx and term 0 0*Im( )x zE E  

To see how Fx(f) transforms as the beam width w is changed, we can use approximate expression 

for Fx, Equation (S17)) and analyze 0 0*Im(E E )x z
 which can be explicitly written in the paraxial 

approximation. To envisage how the expression 0 0*Im( )x zE E  changes for a dipole positioned on 

the metal surface close to the beam axis (then force Fx directly characterizes stiffness), for 

simplicity of derivation we make several assumptions. 
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1.1. Approximation of the field on the surface 

The dipole is lying on the substrate so that z=0 and x is small: x<λ<<w. Then 2

i rc c w c   
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w c w c w c
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This allows to find the extremum of the function 0 0*Im( )x zE E  as 
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By further simplifying (S21) we can obtain 

 
2

23(| r | 1) 32 Im(r )
16Im(r )

p p
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kw
f    .       (S22) 

1.2. Approximation of small focus value 

For f  being small ( f<λ<<w) we can make further approximation: 
2 2

1 12
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approximate expression on the basis of Taylor expansion for small s, 
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2

1

1 2
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n
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c k w
  . By plugging this into Equation (S20) in the approximation of small focus 

for the field on the surface one can obtain: 
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This expression allows to find zero of the function 0 0*Im( )x zE E : 

2
2

0 (1 | r | )
4 Im(r )

p

p

kw
f    .         (S24) 

1.3. Conclusion 

Both focal spot positions corresponding to the maximum and minimum values of trap strength 

given by Equation (S22) and the threshold value of the focus where anti-trapping begins, 

Equation (S24), scale with the beam size as w2, which is in line with the estimations from the 

exact analytical model. The value of 0 0*Im(E E )x z
 at the points of the extremum f± is inversely 

proportional to the beam waist, and the stiffness drops for loosely focused beams. 

2. Analysis of the field 

In Figure S6a the product 0 0*Im( )x zE E  is calculated according to different approaches: full non-

paraxial model (Equation (4)), paraxial approach assuming Gaussian beam reflected as a plane 

wave (Equations (S19)) and paraxial approximation for small x and z (Equations (S20)). The 

approaches give negligible difference and the force calculation appears to be robust in regards to 

field definition.  

To further study the field effect starting from the very basics, let’s consider incident field, i.e. a 

free space Gaussian beam at small x: 

1 1

3
2

1

1
e 2 e

ik f ik finc inc

z z

i

w
E E xi

k c
  .         (S25) 

Here we suppose that the observation point is fixed in space while the free-space Gaussian beam 

is shifted. Since the phase factor 1e
ik f  does not play any role in 0 0*Im( )x zE E  evaluation, we plot 

( )inc

zE  in Figure S6b which changes asymmetrically with focus. 
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Figure S6. (a) Comparison of the 0 0*Im( )x zE E  evaluated according to the different approaches 

shows the validity of the paraxial approximation. Beam waist is w=10λ, λ=342 nm, x=-300 nm, 

ε2=-1.25+0.32i, ε1=1. The particle (ε=3, R=15 nm) is positioned at x=-300 nm, z=15 nm. (b) 

Incident field inc

zE  component defined according Equation (S25) at x=-300 nm for w=10λ, 

λ=342 nm. 
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