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I. WRAP-AROUND WAVEGUIDE FOR HIGHER ORDER MODE EXCITATION

High frequency (visible wavelength) TM2 mode and low frequency (IR wavelength) TM0 mode are co-existing in
the same microring resonator, as illustrated in Fig. S1a. We tune the visible pump laser into phase-matched resonance
to excite corresponding TM2 mode in microring resonator. Due to cavity enhanced χ(2) effect, visible photons in TM2

mode will be down converted to IR photon pairs in TM0 mode. Critical coupling for visible TM2 mode is desired
to maximize pump power inside microring cavity and hence the photon pair generation efficiency (Supplementary
section III). To maintain the high Q for IR modes, however, the visible light coupling waveguide cannot be too close
to the microring. We therefore adopt a very narrow wrap-around waveguide for visible light coupling. Efficient TM2

mode excitation is achieved when the effective refractive index of fundamental TM0 mode in wrap-around waveguide
matches that of TM2 mode in the microring resonator.

Visible light TM2 mode’s effective refractive index is nTM2
= 1.988 with w = 1.10µm, as shown in Fig. 1b in

main context. Considering the radius difference, the phase match condition requires the targeted effective index of

the wrap-around waveguide should be nTM0
= nTM2

· RmicroringRbus
= 1.988 · 30

31 = 1.9239. The waveguide width is
determined to be w = 70 nm according to numerical simulation. In reality, however, this phase match condition is
not strict because critical coupling only requires small coupling efficiency (on the order of 1%). We use a tapered
wrap-around waveguide design, e.g. from 150 nm to 100 nm, for better fabrication robustness. We simulate coupling
region taking into account bending effect due to the microring curvature (Fig. S1b). It is clear that the TM2 mode
can be effectively excited with tapered narrow waveguide. Coupling efficiency with different bus waveguide widths
and different gap values is simulated with coupling length fixed to be 80µm, as shown in Fig. S1c. We find that
critical coupling gap can be quite large when choosing proper wrap-around waveguide width. For example, critical
coupling could be achieved with a gap of 0.5µm with a wrap-around waveguide tapering from 150 nm to 100 nm.
The device shown in the main context is slightly under-coupled with relative small resonance extinction. A near
critically-coupled transmission spectrum is shown in Fig. S1e. The resonances fitted with red lines correspond to
TM2 mode. A critically coupled Q for TM2 mode near 775 nm is measured to be 7× 104.

The existence of wrap-around waveguide may induce extra scattering for IR photons and deteriorate Q for IR
modes. We numerically calculated scattering Q induced by the wrap-around waveguide assuming a microring radius
of 30µm, as shown in Fig. S1d. The scattering Q is around 2.7 × 106 with a gap of 0.5µm, much bigger than the
critically coupled IR Q of 2× 105. Hence we conclude that the existence of wrap-around waveguide will not degrade
the Q of IR modes.

II. WAVEGUIDE COUPLED SUPERCONDUCTING SINGLE PHOTON DETECTOR

We use superconducting single-photon detectors (SSPD) to measure the statistical properties of the light field and
extract correlations between photon detection events. The SSPDs are fabricated in traveling wave geometry on top of
SiN waveguide-devices on a separate silicon chip inside a cryostat at 1.7 K. Each SSPD is realized as a U-shaped 40µm
long, 70 nm narrow and 8 nm thin NbTiN nanowire. This SSPD design realizes more than 95% photon absorption
efficiency, milli-Hz dark count rate and high timing accuracy.

The on-chip detection efficiency for a representative device is shown in Fig. S2c as a function of SSPD bias current
for photons of 1550 nm wavelength. For all SSPDs used here we observe around 14% on-chip detection efficiency when
biased close to the critical current, Ic. We measured a system detection efficiency of 0.7% considering insertion loss
from fiber to chip and calibration outputs. The grating couplers used for guiding light from the output of an optical
fiber into the waveguides on chip show some wavelength dependency, as seen from Fig. S2d. The transmission spectrum
is centered at 1550 nm and translates directly to system detection efficiency as the intrinsic quantum efficiency of an
SSPDs only varies negligibly for small wavelength changes around 1550 nm.

We use the device shown in Fig S2a to measure self-correlations of degenerate down conversion and the idler of
the nearest non-degenerate down conversion. Photons are coupled onto the chip via one of the central two input
grating couplers, split randomly at a 50/50 directional coupler (center) and are detected at its outputs. To measure
cross-correlations between signal and idler photons in the non-degenerate case we use the device shown in Fig S2b.
Here photons are guided to the SSPDs via independent optical waveguides from the two outermost grating couplers.
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FIG. S1: Triply-resonant parametric down conversion process in a microring resonator and wrap-around narrow
waveguide for TM2 mode excitation. a, A schematic showing the parametric down conversion process in a triply resonant
microring resonator. The high energy photon (blue) are coupled into TM2 mode through wrap-around narrow waveguide and
down converted to low frequency photon pairs (red) in TM0 mode. The generated photon pairs are finally coupled out by the
point-contact bus waveguide. The nodes number in the figure is arbitrary. For the real device, nodes number is around 484 for
TM2 mode near 775 nm. b, Intensity profile of visible light (λ = 775 nm) in the wrap-around waveguide coupling region. c,
Simulated coupling efficiency for different bus waveguide width and gap values, with fixed coupling length to be 80µm. The
bending effect has been taken into consideration by defining effective curvature in the mode solver. d, Simulated scattering Q
for IR modes induced by the scattering of wrap-around waveguide. e, A critically-coupled visible light transmission spectrum.
The resonances fitted with red lines are TM2 modes.
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FIG. S2: Waveguide coupled superconducting single photon detectors (SSPDs). a, SSPDs with 50/50 directional
coupler. b, SSPDs without directional coupler. c, On-chip and off-chip detection efficiency under different bias current. During
measurement the bias current is set to be 95% of the critical current Ic. d, Transmission spectrum of the device.

III. χ(2) IN THE MICRORING RESONATOR

A. Basics of χ(2) process

In general, the second order nonlinear optics (χ(2)) process can be describe by the Hamiltonian

H = 2g(a†bc+ ab†c†), (S.1)

where a, b and c denote the Bosonic operator of three optical modes which satisfy the energy and momentum
conservation relation. The factor of 2 is due to the non-degenerate process (b 6= c). Here g is the nonlinear coupling
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strength proportional to material’s second order nonlinear coefficient (χ(2)) as well as the mode overlap, with expression

g =

√
~√ωaωbωc√
ε02πR

∫
drdzχ(2)ua(r, z)u∗b(r, z)u

∗
c(r, z)

(
∫
drdzn2a(r, z)u∗a(r, z)ua(r, z))

1
2 (
∫
drdzn2b(r, z)u

∗
b(r, z)ub(r, z))

1
2 (
∫
drdzn2c(r, z)u

∗
c(r, z)uc(r, z))

1
2

(S.2)
where ωx is the angular frequency, nx is refractive index and ux is mode profile of mode x, x can be a, b, c. R is
the radius of microring resonator. For different experiment with different pump and signal modes, we have a general
table for χ(2) processes [Table. I]. Therefore, we know that these processes share the same coupling strength g and are
related in experiments. In our experiment, we mainly focus on the degenerate and non-degenerate SPDC processes,
while using the second harmonic and difference frequency generation experiments to characterize the χ(2) process and
estimate the coupling strength g.

Name Hamiltonian Description

Sum-frequency H = 2g(a†bc+ ab†c†) ≈ 2g 〈b〉 〈c〉 a† + h.c. pump at b and c, generate a

Second harmonic generation H = g[a†b2 + a(b†)2] ≈ g 〈b〉2 a† + h.c. b = c degenerate, pump at b

Difference frequency generation H = 2g[a†bc+ ab†c†] ≈ 2g
〈
a†b

〉
c+ h.c. pump at a and b, generate c

Frequency Conversion H = 2g[a†bc+ ab†c†] ≈ 2g 〈b〉 a†c+ h.c. pump at b, signal is a or c

Non-degenerate SPDC H = 2g[a†bc+ ab†c†] ≈ 2g 〈a〉 b†c† + h.c. pump at a

Degenerate SPDC H = g[a†b2 + a(b†)2] ≈ g 〈a〉 (b†)2 + h.c. pump at a

TABLE I: Different χ(2) nonlinear processes.

B. Second harmonic generation in microring resonator

For second harmonic generation process inside a microring resonator, the Hamiltonian [Table. I] can be written as

H = ωaa
†a+ ωbb

†b+ g[(a†)2b+ a2b†] + iεp(−aeiωpt + a†e−iωpt). (S.3)

Here, ωa,b are frequency of the IR and visible modes, εp =
√

2κa,1
Pp
~ωp corresponds to external pump laser with

frequency ωp and power Pp. κa,1 is the external coupling coefficient for the IR mode. The total amplitude decay rate
of microring mode consists of intrinsic loss and external coupling as κa,tot = κa,0 + κa,1, corresponding to a Q-factor
as Q = ωa

2κa,tot
. Similar parameters are used for visible mode by replacing the subscript a to b.

In the rotating frame of A = ωpa
†a+ 2ωpb

†b, the Hamiltonian becomes

H = δaa
†a+ δbb

†b+ g((a†)2b+ a2b†) + iεp(−a+ a†), (S.4)

where δa = ωa − ωp, δb = ωb − 2ωp. Then, the dynamics of a can be solved by the Heisenberg equation

d

dt
a = −i[a,H]− κa,tota = (−iδa − κa,tot)a+ εp − ig2a†b (S.5)

Under the non-depletion approximation, we omit last term. At steady state da/dt = 0, we have

a = α =

∣∣∣∣ −εp
−iδa − κa,tot

∣∣∣∣ eiθ =

√
2κa,1

δ2a + κ2a,tot

√
Pp
~ωp

eiθ. (S.6)

Here, θ is a phase factor depending on the driving laser. Treat a as complex constant α, and ignore the phase of α
(as which can be combined into the phase of b), the Hamiltonian becomes

H = δbb
†b+ g|α|2(b+ b†) (S.7)

Then, we can solve b as

d

dt
b = (−iδb − κb,tot)b− ig |α|2 . (S.8)
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At steady state, we have the generated second harmonic photon

b =
ig |α|2

−iδb − κb,tot
. (S.9)

Due to the input-output relation, the output is

bout = −
√

2κb1b =
−i
√

2κb1g |α|2

−iδb − κb,tot
. (S.10)

The corresponding power of second harmonic output is

PSHG = |bout|2 ~ωb = g2
2κb1

δ2b + κ2b,tot

(
2κa,1

δ2a + κ2a,tot

)2(
Pp
~ωp

)2

~ωb. (S.11)

The total second harmonic generation efficiency can be calculated as

ηSHG =
PSHG
P 2
p

= g2
2κb1

δ2b + κ2b,tot

(
2κa,1

δ2a + κ2a,tot

)2(
1

~ωp

)2

~ωb (S.12)

The momentum conservation (azimuthal quantum number conservation) is contained in the non-zero coupling strength
g. The energy conservation condition is indicated by the efficiency that maximum efficiency can be achieved when
δb = δa = 0, which requires ωb = 2ωa.

C. Degenerate SPDC

Now we consider the SPDC inside the microring resonator and start with the degenerate case. From Table. I, the
Hamiltonian for degenerate SPDC is the same with the SHG, while with different pump laser frequency

H = ωaa
†a+ ωbb

†b+ g[(a†)2b+ a2b†] + iεs(−beiωst + b†e−iωst). (S.13)

Here, ωa,b are frequency of the IR and visible modes, εs =
√

2κb1
Ps
~ωs corresponds to external pump laser with

frequency ωs and power Ps. Similar to the SHG case, we solve the pump field under non-depletion and steady state
approximations as

b = β =

√
2κb1

κ2b,tot + δ2b

√
Ps
~ωs

eiθ, (S.14)

where δb = ωb − ωs is the pump detuning of the mode b and θ is the phase depending on the driving. Treat b as
complex constant β, and ignore the phase of β (as which can be combined into the phase of a), the Hamiltonian
becomes

H = δaa
†a+ g |β| [(a†)2 + a2], (S.15)

with δa = ωa − ωs
2 .

For the SPDC, the vacuum noise plays great role to induce the spontaneous photon pair generation. Therefore, we
solve the dynamics of IR photons with vacuum noise. The Langevin equation reads

d

dt
a = (−iδa − κa,tot)a− i2g |β| a† − i

√
2κa,totain, (S.16)

where ain is vacuum noise including all channels. Introducing the Fourier transformed operators as

a(ω) =
1

2π

∫
dte−iωta(t), (S.17)

a†(−ω) =
1

2π

∫
dte−iωta†(t), (S.18)
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we have

0 = [−i(δa + ω)− κa,tot]a(ω)− i2g |β| a†(−ω)− i
√

2κa,totain(ω). (S.19)

Then, we can solve

a(ω) =
i
√

2κa,tot · [i(δa − ω)− κa,tot]ain(ω) + 2g |β|
√

2κa,tota
†
in(−ω)

[i(δa − ω)− κa,tot] · [−i(δa + ω)− κa,tot]− 4g2 |β|2
. (S.20)

a†(−ω) =
−i
√

2κa,tot · [−i(δa + ω)− κa,tot]a†in(−ω) + 2g |β|
√

2κa,totain(ω)

[−i(δa + ω)− κa,tot] · [i(δa − ω)− κa,tot]− 4g2 |β|2
. (S.21)

The output photon number spectrum density around mode a is:

Sa,out(ω, ω
′) = 2κa,1

〈
a†(ω)a(ω′)

〉
. (S.22)

Due to the noise spectrum 〈
a†in(t)ain(t′)

〉
= 0, (S.23)〈

ain(t)a†in(t′)
〉

= δ(t− t′), (S.24)

and 〈
a†in(ω)ain(ω′)

〉
= 0, (S.25)〈

ain(ω)a†in(−ω′)
〉

=
1

2π
δ(ω + ω′), (S.26)

we finally obtain

Sa,out(ω, ω
′) =

1

2π
· 2κa,1 · δ(ω′ − ω) ·

2g |β|
√

2κa,tot{
[−i(δa − ω)− κa,tot][i(δa + ω)− κa,tot]− 4g2 |β|2

}
·

2g |β|
√

2κa,tot{
[i(δa − ω′)− κa,tot][−i(δa + ω′)− κa,tot]− 4g2 |β|2

} (S.27)

When input pump power below the threshold of optical parametric oscillator, we have
∣∣∣ 4g2|β|2
δ2a+κ

2
a,tot

∣∣∣� 1, then

Sa,out(ω, ω
′) ≈

1
2π · 2κa,1(2g |β|

√
2κa,tot)

2 · δ(ω′ − ω).

{[−i(δa − ω)− κa,tot][i(δa + ω)− κa,tot]} {[i(δa − ω′)− κa,tot][−i(δa + ω′)− κa,tot]}
(S.28)

The output photon rate is

Na,out = 2κa,1
〈
a†(t)a(t)

〉
=

∫
dωdω′Sa,out(ω, ω

′)ei(ω
′−ω)t

=
1

2π

∫
dω

2κa,1(2g |β|
√

2κa,tot)
2

|[−i(δa − ω)− κa,tot][i(δa + ω)− κa,tot]|2

=
4g2κa,1
κ2a,tot + δ2a

2κb1
κ2b,tot + δ2b

Ps
~ωs

. (S.29)

The total photon generation rate is

Na = 2κa,tot
〈
a†(t)a(t)

〉
=

4g2κa,tot
κ2a,tot + δ2a

2κb1
κ2b,tot + δ2b

Ps
~ωs

. (S.30)

In terms of photon pair, the total photon pair generation rate is

R = Na/2

=
2g2κa,tot
κ2a,tot + δ2a

2κb1
κ2b,tot + δ2b

Ps
~ωs

. (S.31)
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D. Non-degenerate SPDC

For non-degenerate case, we introduce IR signal and idle modes as a and c, then the Hamiltonian is

H = ωaa
†a+ ωbb

†b+ ωcc
†c+ 2g(a†bc† + ab†c)

+iεs(−beiωst + b†e−iωst). (S.32)

With other symbols similar to previous section, and under the non-depletion and steady state approximations, the
Hamiltonian is simplified as

H = δaa
†a+ δcc

†c+ 2g |β| (a†c† + ac), (S.33)

with δb = ωb − ωs, δa + δc = ωa + ωc − ωs. The Langevin equations of a, c are

d

dt
a = (−iδa − κa,tot)a− i2g |β| c† − i

√
2κa,totain, (S.34)

d

dt
c = (−iδc − κc,tot)c− i2g |β| a† − i

√
2κc,totcin. (S.35)

By Fourier transformation, we solve the equations

0 = [−i(δa + ω)− κa,tot]a(ω)− i2g |β| c†(−ω)− i
√

2κa,totain(ω), (S.36)

0 = [−i(δc + ω)− κc,tot]c(ω)− i2g |β| a†(−ω)− i
√

2κc,totcin(ω). (S.37)

and obtain

a(ω) =
i
√

2κa,tot[i(δc − ω)− κc,tot]ain(ω) + 2g |β|
√

2κc,totc
†
in(−ω)

[−i(δa + ω)− κa,tot][i(δc − ω)− κc,tot]− 4g2 |β|2
, (S.38)

c†(−ω) =
−i
√

2κc,tot[−i(δa + ω)− κa,tot]c†in(−ω) + 2g |β|
√

2κa,totain(ω)

[−i(δa + ω)− κa,tot][i(δc − ω)− κc,tot]− 4g2 |β|2
. (S.39)

Then, the output spectrum densities are

Sa,out(ω, ω
′) =

1

2π
· 2κa,1 · δ(ω′ − ω) ·

2g |β|
√

2κc,tot{
[i(δa + ω)− κa,tot][−i(δc − ω)− κc,tot]− 4g2 |β|2

}
·

2g |β|
√

2κc,tot{
[−i(δa + ω′)− κa,tot][i(δc − ω′)− κc,tot]− 4g2 |β|2

} (S.40)

Sc,out(ω, ω
′) =

1

2π
· 2κc,1 · δ(ω′ − ω) ·

2g |β|
√

2κa,tot{
[i(δa + ω)− κa,tot][−i(δc − ω)− κc,tot]− 4g2 |β|2

}
·

2g |β|
√

2κa,tot{
[−i(δa + ω′)− κa,tot][i(δc − ω′)− κc,tot]− 4g2 |β|2

} (S.41)

Below the threshold of optical parametric oscillator, we have
∣∣∣ 4g2|β|2
(−iδa−κa,tot)(iδc−κc,tot)

∣∣∣ � 1, then we have the total

photon pair generation rate to be

R =
8g2(κa,tot + κc,tot)

(κa,tot + κc,tot)2 + (ωa + ωc − ωs)2
2κb1

κ2b,tot + (ωb − ωs)2
Ps
~ωs

. (S.42)

The output photon rate for mode a and c are

Na,out =
κa,1
κa,tot

R, (S.43)

Nc,out =
κc,1
κc,tot

R, (S.44)

Comparing Eq. (S.42) with Eq. (S.31), we conclude that non-degenerate SPDC rate is two times more efficient than
degenerate SPDC, assuming the phase match condition are both fulfilled and quality factors of IR modes are the
same.



S8

E. Experiment estimation of SPDC efficiency

Assuming the phase match condition is perfectly fulfilled (δa = δb = 0), together with Eq. (S.12), we can estimate
the degenerate photon pair generation rate from SHG efficiency as

R =
2g2κa,tot
κ2a,tot

2κb1
κ2b,tot

Ps
~ωs

=
κ3a,tot
8κ2a,1

ηSHGPs. (S.45)

Therefore, the SHG efficiency ηSHG can be used as a figure of merit to optimize the device performance. Strong SHG
will occur when IR pump is tuned into phase matched resonance. A typical IR transmission around the phase-matched
resonance and the corresponding SHG are shown in Fig. S3a and b. With 0.146 mW IR pump power on-chip, the
maximum SHG is 24.8 nW. This corresponds to a SHG efficiency to be: ηSHG = PSHG

P 2
p

= 1.16 (W−1).

By tuning the temperature, IR and visible resonance teeth will be shifted respectively. Experimentally a red
shifting with increasing temperature is observed for both IR and visible resonances, with different coefficient. For
IR mode, dλIR

dT = 0.0216 (nm/◦C), while for visible mode dλvis
dT = 0.01136 (nm/◦C). The fact that dλIR

dT − 2dλvisdT =
−0.0011 (nm/◦C) 6= 0 means that the two resonance teeth will have relative shift with the change of temperature.
Under a certain temperature, when the corresponding resonances are aligned (λN = 2λ2N ), maximum SHG will occur.
The temperature dependence of SHG efficiency ηSHG is shown in Fig. S3c. Theoretically, with IR mode to be critically
coupled (κa,tot = 2κa,1) and a loaded Q = 197 K, and a maximum SHG efficiency to be ηSHG = 1.16 (W−1), the

degenerate down conversion photon pair generation rate per unit pump power is calculated to be: R
Ps

= 1
2κa,totηSHG =

ωa
4QηSHG = 1.8 (MHz/mW).

a c

b

FIG. S3: Second harmonic generation (SHG) in microring resonator. a, IR transmission around phase-matched
resonance. b, Measured SHG under different IR pump wavelength. c, SHG efficiency ηSHG under different temperature.

F. Raw data of coincidence measurement

The raw data of coincidence measurement for the nearest non-degenerate down conversion is shown in Fig. S4, with
on-chip pump power of 1.9 mW. A coincidence time window of 128 ps is used to get the coincidence histogram. Due
to the small jitter time of our SSPDs compared to the photon life time, the coincidence peak can be fully resolved.
By summing up the coincidence under the peak, the total measured coincidence rate is around 80 Hz.
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FIG. S4: Raw data of coincidence measurement. Here the binwidth is chosen to be 128 ps. The total measured coincidence
rate is around 80 Hz.

IV. DISPERSION AND BANDWIDTH OF THE GENERATED DOWN-CONVERSION PHOTON
COMBS

The waveguide width in our device is engineered so that phase match condition between TM0 mode in IR and
TM2 mode in visible band will be fulfilled. The group velocity dispersion (GVD) for the IR mode is not optimized.
Due to the non-zero GVD, the generated photon frequency comb will have a limited bandwidth. For our waveguide
size, effective refractive index of TM0 mode under different wavelength has been simulated. The fitting equation is

neff = 1.99139−0.2107 ·∆λ−0.02837 ·∆λ2 (unit of ∆λ is µm), corresponding to a GVD of D = − λ
C
d2n
dλ2 = 146 ps

km·nm
around 1550 nm. Considering that the temperature is optimized so that the resonance teeth is aligned, the phase
match condition for degenerate down conversion is perfectly fulfilled. Then we need to calculate how much detuning
there is for the non-degenerate photon pairs whose wavelength is δλ away from the degenerate down conversion photon
wavelength. The detuning ∆ω can be expressed with D as

∆ω = ωa + ωc − ωb =
ω2 (δλ)

2

2πng
·D (S.46)

Let ∆ω = κa,tot + κc,tot (Considering IR modes are critically coupled with loaded Q = 197 K)

∆ω =
ω2 (δλ)

2

2πng
·D = κa,tot + κc,tot =

ω

Q
(S.47)

δλ =

√
2πng
ωQ ·D

= 20.2 nm (S.48)

From Eq. (S.42), when ∆ω = κa,tot + κc,tot, the SPDC generation rate will drop to half. Hence the full width at half
maximum (FWHM) of the SPDC photon comb is 2 · δλ = 40.4 nm.

V. THE SECOND ORDER CORRELATION FUNCTION g(2)(τ)

A. Photon correlation function

For non-degenerate down conversion cross correlation, g(2)(τ) can be fitted by a double exponential function

g(2)cross(τ) = 1 +
1

2Rτc
e−|τ |/τc , (S.49)
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For degenerate down conversion self correlation, photons will be split randomly by the 50/50 directional coupler.
There are 50% of chance that both photons go to the same detector and coincidence cannot be detected. So the peak
value will drop by a factor of 2 and the g(2)(τ) function can be fitted as

g
(2)
self (τ) = 1 +

1

4Rτc
e−|τ |/τc , (S.50)

B. Detector jitter and bin-width’s broadening effect on the g(2)(τ) function

The detector’s jitter means that the time recorded by the time-tagging electronics is not exactly the photon arrival
time. This gives error on the time tagging data, thus affects the shape of the measured coincidence histogram.
Another factor that will influence the width of coincidence histogram is the coincidence time window (bin-width) that
is chosen to process the time tagging data. The bigger bin-width will give more uncertainty, resulting in a broader
coincidence histogram. Uncertainty of arrival time due to photon lifetime together with the bin-width and detector
jitter determine the width of the coincidence histogram distribution. To calibrate the detector jitter’s effect, a down-
conversion source based on short PPKTP waveguide is tested by our integrated photon correlation measurement
system. Due to the broadband nature of the down-converted photons from short crystal waveguide, the intrinsic
photon arrival time difference is within several ps, much shorter than the detector jitter. Thus the distribution of the
coincidence histogram (Fig. S5) is almost fully due to the jitter and bin-width. Here the bin-width is chosen to be
τb = 10 ps. The Gaussian fitting of the histogram gives the standard deviation to be τw = 26 ps. With the equation of

τw =
√(

τb
2

)2
+ 2τ2j , the detector jitter is calculated to be τj = 18 ps. Due to jitter and bin-width, a sharp coincidence

peak is transformed into a Gaussian distribution. For photons generated from the microring resonator whose photon
life time is comparable to the jitter and bin-width, the measured g(2) function is actually the convolution between
original double exponential function due to the source property and the Gaussian distribution

g
(2)
self (τ) = [1 +

1

4Rτc
e−|τ |/τc ] ∗ [

1√
2πτw

e−τ
2/2τ2

w ]

= 1 +
1

8Rτc
eτ

2
w/2τ

2
c [f+(τ) + f−(τ)] , (S.51)

g(2)cross(τ) = [1 +
1

2Rτc
e−|τ |/τc ] ∗ [

1√
2πτw

e−τ
2/2τ2

w ]

= 1 +
1

4Rτc
eτ

2
w/2τ

2
c [f+(τ) + f−(τ)] , (S.52)

where f±(τ) =
[
1∓ erf

(
τ±τ2

w/τc√
2τw

)]
· e±τ/τc .

C. Cross correlation for other two groups of photon pairs

Cross correlation of the other two neighboring photon-pair group has also been measured. The measurement result
is shown in Fig. S6. A 50/50 fiber-coupler is used to randomly split the photon flux into two arms. Tunable filters
are inserted in both arms. By tuning the passband of the each bandpass filter, the signal and idler could be selected
and the coincidence is measured by two separate waveguide coupled SSPDs.

VI. ADIABATIC ON-CHIP WAVELENGTH DIVISION MULTIPLEXER (WDM)

The designed on-chip WDM is shown in the Fig. 5 in the main context, which consists of two tapered coupled
waveguides. Shown in Fig. S7a is the cross section of such two waveguides, one with width w1 = w0−w and the other
with w2 = w0 + w. Here 2w is the width difference of the two waveguides. We linearly tapered the two waveguides,
with one waveguide tapered to be narrower, the other to be wider, with expressions: w = (z − l0

2 ) · a. Here z is the
coordinate along the tapering direction, l0 is the total length of the WDM device and a is the tapering speed. The
gap between the two waveguides is fixed in the entire tapered structure, and the designed central waveguide width is
w0 = 0.7µm.
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FIG. S5: Second order correlation function of PPKTP waveguide down conversion source measured by on-chip
SSPDs

a

b

FIG. S6: Second order cross correlation function for the second and third nearest non-degenerate down conver-
sion photon pairs. a, The second nearest non-degenerate photon pairs with λsignal = 1539.0 nm, λidler = 1562.5 nm b, The
third nearest non-degenerate photon pairs with λsignal = 1532.9 nm, λidler = 1568.6 nm. The binwidth is chosen to be 200 ps.

In the coupled waveguides, new eigenmodes formed as combination of eigenmodes in separated waveguides. The
relationship between the new eigenmodes’ effective refractive indices and the waveguide width difference 2w is shown
in Fig. S7b and c. For wavelength of λ = 1550 nm, The big avoided-crossing gap (Fig. S7b) indicates strong mode
coupling for IR light. While for λ = 775 nm, the avoided-crossing gap (Fig. S7c) is much smaller due to better light
confinement in the waveguide and indicates weak coupling.

In this tapered coupled waveguide, the adiabatic mode coupling efficiency can be estimated by Lauder-Zener formula
as

ζ = 1− e−
πg2kl0
∆n , (S.53)

where g is the coupling strength, k = 2π
λ is the wave vector, and ∆n is the refractive index difference between the wide

(wwide = 0.8µm) and narrow (wnarrow = 0.6µm) waveguide. From the coupled mode theory, the coupling strength
g between two waveguides can be deduced from the avoided-crossing gap as g equals to the half of the minimum
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FIG. S7: Adiabatic on-chip WDM. a, Cross section of the WDM structure. The narrow waveguide width is w0 − w and
wide waveguide w0 + w. The gap is fixed throughout the structure. b, Effective refractive index for IR light (λ = 1550 nm)
symmetric and anti-symmetric TM0 modes when w varies from −0.1µm to 0.1µm. c, Effective refractive index of visible light
(λ = 775 nm) symmetric and anti-symmetric TM0 mode when w varies from −0.1µm to 0.1µm. d, Coupling strength g for
both IR and visible light under different gap. Waveguide width w0 is 0.7µm. e, Coupling strength ratio gIR

gvis
between IR

and visible light. f, The optimized WDM efficiency under different gap values. WDM efficiency ζWDM stands for cross port
coupling efficiency for IR, and drop port coupling efficiency for visible. g, The coupling length needed to achieve best WDM
performance.

refractive index difference. The big difference in coupling strength g leads to different performances of the same
structure under difference wavelengths. With IR light passing through the structure, adiabatic mode coupling will
happen in the avoided-crossing region and light’s energy is coupled to the other waveguide gradually. With visible
light input, the photons goes through the avoided-crossing region non-adiabatically and most of photons will still

remain in the same waveguide after the coupling region. Mathematically, for IR modes whose πg2kl0
∆n � 1, ζ will

approach unity with the increase of l0. For visible mode whose πg2kl0
∆n � 1, ζ ≈ πg2kl0

∆n will be a small value close to 0
and linearly dependent on l0. These explained the two curves in Fig. 5c in the main context.

We design the structure as an efficient on-chip WDM between IR and visible light. Because we want to make
IR’s cross coupling to be as high as possible, while keeping visible light’s cross coupling to be as low as possible, the
figure of merit that needs to be optimize is the ratio between IR coupling strength gIR and visible light coupling
strength gvisible:

gIR
gvisible

. As coupling between waveguides are weaker with bigger gap, both IR and visible light

coupling strength (gIR and gvis) will decrease with the gap (Fig. S7d). However, the coupling strength ratio gIR
gvisible
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a

b

FIG. S8: Wavelength dependent coupling efficiency for on-chip WDM. a, Cross port coupling efficiency for IR light.
For IR light whose wavelength λ ≥ 1510 nm, cross port coupling efficiency is higher than 99%. b, Drop port coupling efficiency
for visible light. For visible light whose wavelength λ ≤ 816 nm, drop port coupling efficiency is higher than 99%.

will increase monotonically with the gap as shown in Fig. S7e. Let IR’s crossing coupling to be equal with visible’s
drop coupling, with equation: ζIR = 1− ζvisible, we can calculate the optimized coupling length l0 and corresponding
WDM efficiency ζWDM (= ζIR = 1 − ζvisible). The WDM efficiency ζ will increase with gap and approach unity
(Fig. S7f). However, the corresponding coupling length l0 will also increase with gap (Fig. S7g). Considering the foot-
print and the propagation loss in the waveguide, the WDM’s length l0 cannot be arbitrarily long. WDM efficiency
ζWDM is greater than 99.9% with 0.55µm gap and 2 mm coupling length. This performance corresponds to 30 dB
isolation of visible light with 0.004 dB insertion loss for IR light for each WDM.

We also expects a broad-band operation from the robust performance of the on-chip WDM. The wavelength
dependence of coupling efficiency is shown in Fig. S8 with the following design parameters: wwide = 0.8µm,
wnarrow = 0.6µm, gap = 0.4µm, l0 = 260µm. For IR light with wavelength λ ≥ 1510 nm, cross port coupling
efficiency is more than 99%. For visible light with wavelength λ ≤ 816 nm, drop port coupling efficiency is more than
99%.
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