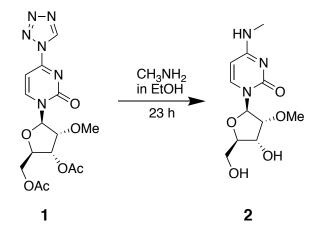
Differentiating positional isomers of nucleoside modifications by higherenergy collisional dissociation mass spectrometry (HCD MS)

Manasses Jora,¹ Andrew P. Burns,¹ Robert L. Ross,¹ Peter A. Lobue,¹ Ruoxia Zhao,¹ Cody M. Palumbo,² Peter A. Beal,² Balasubrahmanyam Addepalli,¹ and Patrick A. Limbach^{1,*}

¹Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA


² Department of Chemistry, University of California, Davis, California 95616, USA

*Corresponding author: limbacpa@ucmail.uc.edu

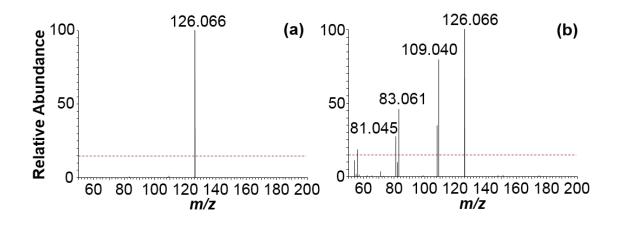
Supplemental Information

Experimental

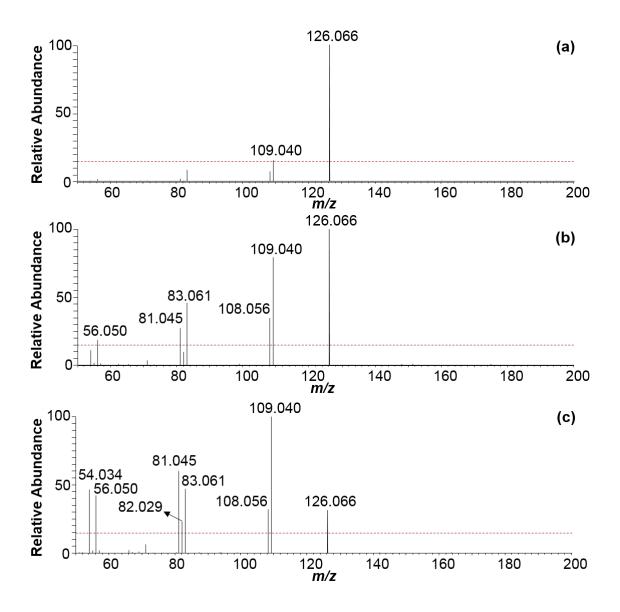
 N^4 ,2'-O-dimethylcytidine (m⁴Cm) synthesis

1 - (4-(tetrazol-1-yl)-1-(3',5'-di-O-acetyl-2'-O-methyl- β -D-ribofuranosyl) pyrimidine-2-(1H)-one) **2** - N^4 -,2'-O-dimethylcytidine (m⁴Cm)

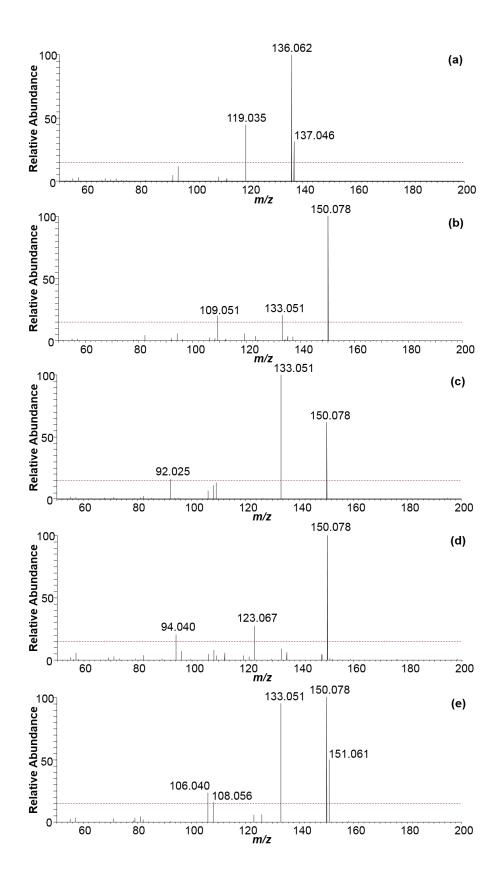
Compound 1 was prepared by previously described methods,[1] except that 0.45M tetrazole in anhydrous acetonitrile solution was used instead of solid tetrazole. All crude products were co-

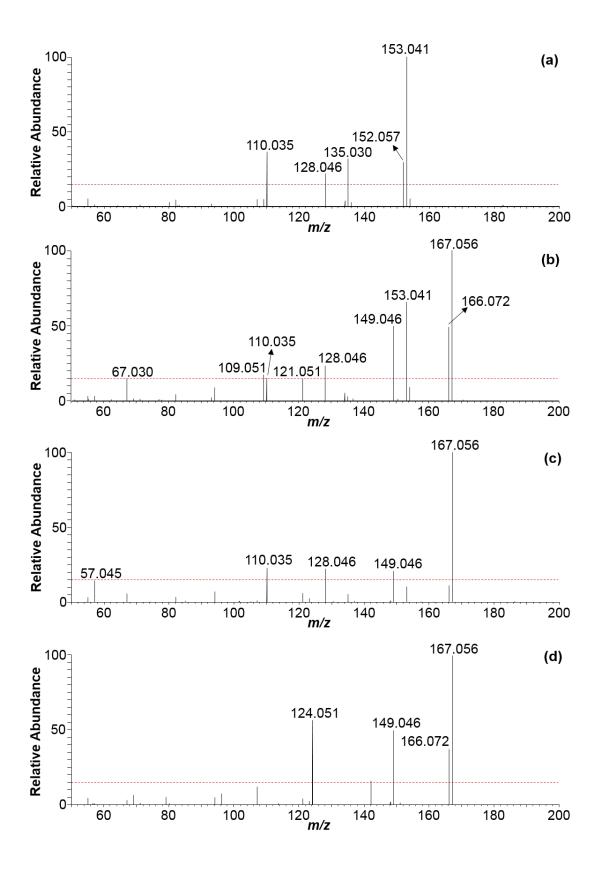

evaporated with dichloromethane prior to column chromatography. Products were formed in similar yields.

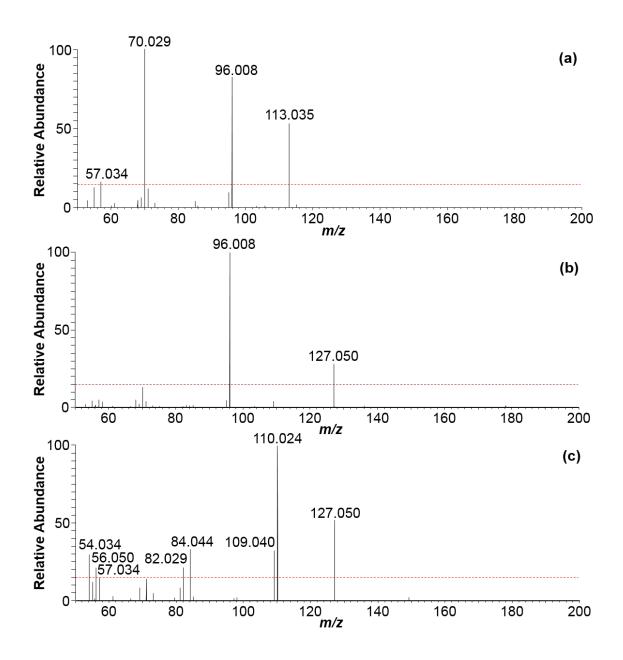
Compound 1 (370 mg, 0.93 mmol) was dried under high vacuum for 15 min and backfilled with Argon. Methylamine in ethanol (33%, 10 mL) was added via syringe and the mixture was stirred at room temperature for 23 h. Removal of all volatiles lead to formation of a brown syrup. The syrup was coevaporated first with methanol (1 x 10 mL) followed by dichloromethane (2 x 10 mL). The crude product was further purified by silica gel column chromatography with 10% methanol in dichloromethane yielding 203 mg of m⁴Cm (compound **2**, 80%) as a white solid. Spectroscopic data agreed with reported literature values.[1]

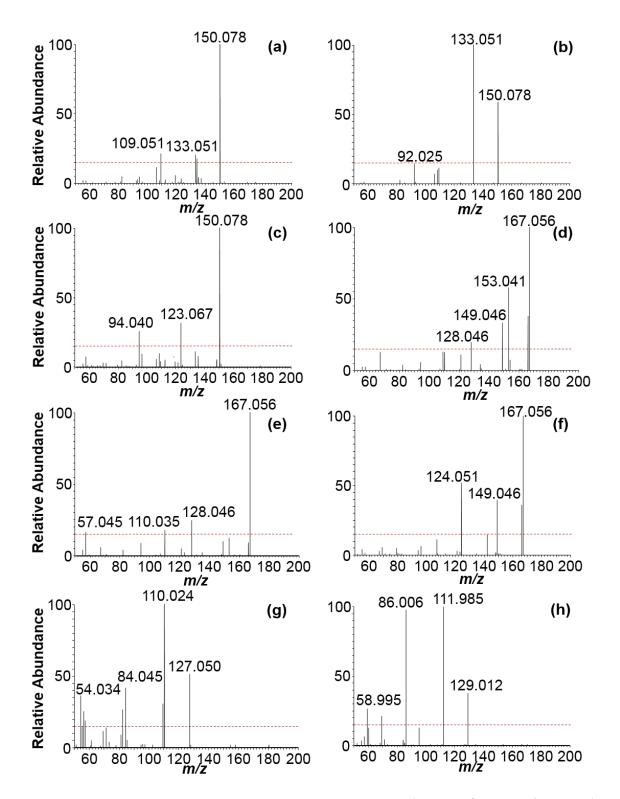

References

 Mahto, S.K., Chow, C.S.: Synthesis and solution conformation studies of the modified nucleoside N(4), 2'-O-dimethylcytidine (m(4)Cm) and its analogues. Bioorganic Med. Chem. 16, 8795-8800 (2008)


Supplemental Figures


Supplemental Figure S1. MS/MS spectra for m⁵C acquired by HCD at different CE. (a) CE 40 and (b) CE 80.


Supplemental Figure S2. Fingerprint MS/MS of m⁵C acquired at different HCD CE. (a) 60, (b) 80, and (c) 100.


Supplemental Figure S3. Fingerprint MS/MS at HCD CE 80 of adenosine (a) and positional isomers of methyl adenosine standards: (b) m^1A , (c) m^2A , (d) m^6A , and (e) m^8A . See Supplemental Table S1 for more information on the peaks labeled.

Supplemental Figure S4. Fingerprint MS/MS at HCD CE 80 of guanosine (a) and positional isomers of methyl guanosine standards: (b) m^1G , (c) m^2G , and (d) m^7G . See Supplemental Table S1 for more information on the peaks labeled.

Supplemental Figure S5. Fingerprint MS/MS at HCD CE 80 of uridine (a) and positional isomers of methyl uridine standards: (b) m³U, and (c) m⁵U. See Supplemental Table S1 for more information on the peaks labeled.

Supplemental Figure S6. Fingerprint MS/MS at HCD CE 80 of m^1A (a), m^2A (b), m^6A (c), m^1G (d), m^2G (e), m^7G (f), m^5U (g), and s^4U (h), detected in *E. coli* tRNA.

Supplemental Table S1. Theoretical m/z, experimental m/z, m/z measurement error (parts per million, PPM), as well as molecular formula of ions with RIA $\ge 15\%$ present in the HCD fingerprint of the different positional isomers discussed in the main text. Theoretical m/z values were computed by ChemCalc (http://www.chemcalc.org).

Nucleoside(s)	Experimental <i>m/z</i>	Theoretical <i>m/z</i>	Error (PPM)	Molecular formula
m ³ C	95.0241	95.0245	4.2	$C_4H_3N_2O^+$
m ³ C	109.0397	109.0402	4.6	$C_5H_5N_2O^+$
m ³ C	126.0662	126.0667	4.0	$C_5H_8N_3O^+$
m ⁴ C/m ⁴ Cm	56.0497	56.0500	5.4	$C_3H_6N^+$
m ⁴ C/m ⁴ Cm	66.0340	66.0344	6.1	$C_4H_4N^+$
m ⁴ C/m ⁴ Cm	83.0606	83.0609	3.6	$C_4H_7N_2^+$
m ⁴ C/m ⁴ Cm	95.0243	95.0245	2.1	$C_4H_3N_2O^+$
m ⁴ C/m ⁴ Cm	108.0558	108.0562	3.7	$C_{5}H_{6}N_{3}^{+}$
m ⁴ C/m ⁴ Cm	109.0398	109.0402	3.7	$C_5H_5N_2O^+$
m ⁴ C/m ⁴ Cm	126.0663	126.0667	3.2	$C_5H_8N_3O^+$
m ⁵ C/m ⁵ Cm	56.0497	56.0500	5.4	$C_3H_6N^+$
m ⁵ C/m ⁵ Cm	81.0450	81.0453	3.7	$C_4H_5N_2^+$
m ⁵ C/m ⁵ Cm	83.0606	83.0609	3.6	$C_4H_7N_2^+$
m ⁵ C/m ⁵ Cm	108.0558	108.0562	3.7	$C_5H_6N_3^+$
m ⁵ C/m ⁵ Cm	109.0398	109.0402	3.7	$C_5H_5N_2O^+$
m ⁵ C/m ⁵ Cm	126.0663	126.0667	3.2	$C_5H_8N_3O^+$
m ¹ A	109.0510	109.0514	3.7	$C_4H_5N_4^+$
m ¹ A	133.0510	133.0514	3.0	$C_6H_5N_4^+$
m^1A	150.0775	150.0780	3.3	$C_{6}H_{8}N_{5}^{+}$
m ² A	92.0246	92.0249	3.3	$C_4H_2N_3^+$
m ² A	133.0509	133.0514	3.8	$C_6H_5N_4^+$
m ² A	150.0774	150.0780	4.0	$C_6H_8N_5^+$
m ⁶ A	94.0402	94.0405	3.2	$C_4H_4N_3^+$
m ⁶ A	123.0666	123.0671	4.1	$C_5H_7N_4^+$
m ⁶ A	150.0775	150.0780	3.3	$C_6H_8N_5^+$
m ⁸ A	106.0401	106.0405	3.8	$C_5H_4N_3^+$
m ⁸ A	108.0558	108.0562	3.7	$C_5H_6N_3^+$
m ⁸ A	133.0509	133.0514	3.8	$C_6H_5N_4^+$
m ⁸ A	150.0774	150.0780	4.0	$C_6H_8N_5^+$
m ⁸ A	151.0614	151.0620	4.0	$C_6H_7N_4O^+$
m ¹ G	67.0293	67.0296	4.5	$C_3H_3N_2^+$
m ¹ G	109.0510	109.0514	3.7	$C_4H_5N_4^+$
m ¹ G	110.0350	110.0354	3.6	$C_4H_4N_3O^+$
m ¹ G	121.0510	121.0514	3.3	$C_5H_5N_4^+$
m^1G	128.0455	128.0460	3.9	$C_4H_6N_3O_2{}^+$
m ¹ G	149.0459	149.0463	2.7	$C_6H_5N_4O^+$
m ¹ G	153.0409	153.0412	2.0	$C_5H_5N_4O_2^+$
m ¹ G	166.0725	166.0729	2.4	$C_6H_8N_5O^+$
m ¹ G	167.0564	167.0569	3.0	$C_6H_7N_4O_2{}^+$
m ² G	57.0449	57.0453	7.0	$C_2H_5N_2^+$

Nucleoside(s)	Experimental <i>m/z</i>	Theoretical <i>m/z</i>	Error (PPM)	Molecular formula
m ² G	110.0351	110.0354	2.7	$C_4H_4N_3O^+$
m ² G	128.0455	128.0460	3.9	$C_4H_6N_3O_2^+$
m ² G	149.0459	149.0463	2.7	$C_6H_5N_4O^+$
m ² G	167.0564	167.0569	3.0	$C_6H_7N_4O_2^+$
m ⁷ G	124.0507	124.0511	3.2	$C_5H_6N_3O^+$
m ⁷ G	142.0611	142.0616	3.5	$C_5H_8N_3O_2^+$
m ⁷ G	149.0458	149.0463	3.4	$C_6H_5N_4O^+$
m ⁷ G	166.0724	166.0729	3.0	$C_6H_8N_5O^+$
m ⁷ G	167.0564	167.0569	3.0	$C_6H_7N_4O_2^+$
m ³ U	96.0081	96.0086	5.2	$C_4H_2NO_2^+$
m ³ U	127.0502	127.0508	4.7	$C_5H_7N_2O_2^+$
m ⁵ U	54.0340	54.0344	7.4	$C_3H_4N^+$
m ⁵ U	56.0497	56.0500	5.4	$C_3H_6N^+$
m ⁵ U	57.0337	57.0340	5.3	$C_3H_5O^+$
m ⁵ U	82.0289	82.0293	4.9	C ₄ H ₄ NO ⁺
m ⁵ U	84.0445	84.0449	4.8	$C_4H_6NO^+$
m ⁵ U	109.0398	109.0402	3.7	$C_5H_5N_2O^+$
m ⁵ U	110.0237	110.0242	4.5	$C_5H_4NO_2^+$
m ⁵ U	127.0503	127.0508	3.9	$C_5H_7N_2O_2^+$
s ² U	59.9905	59.9908	5.0	CH_2NS^+
s ² U	70.0290	70.0293	4.3	$C_{3}H_{4}NO^{+}$
s ² U	83.9905	83.9908	3.6	$C_3H_2NS^+$
s ² U	111.9853	111.9857	3.6	$C_4H_2NOS^+$
s ⁴ U	58.9952	58.9955	5.1	$C_2H_3S^+$
s ⁴ U	68.9796	68.9799	4.3	C_3HS^+
s ⁴ U	86.0061	86.0064	3.5	$C_3H_4NS^+$
s ⁴ U	111.9853	111.9857	3.6	$C_4H_2NOS^+$
s ⁴ U	129.0119	129.0122	2.3	$C_4H_5N_2OS^+$

Cont. Supplemental Table S1.