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Supplementary Figure S1.  (a) Simulated extinction coefficient of a 3L-GNRA. The three graphene layers 

have Fermi levels |EF
(1)|=0.30 eV, |EF

(2)|=0.25 eV, |EF
(3)|=0.20 eV, relaxation time τ=100 fs and are 

embedded in a dielectric with refractive index n=1.41. The ribbon width is W=40 nm and the graphene 

layers are separated by a distance s. Dashed lines represent the resonances of the  individual layers. (b) 

Electric charge distributions across the ribbons for the 3L-GNRA with s=W/4 at the three resonance 

frequencies indicated in the figure (780, 995, and 1400 cm-1). (c) Simulated extinction spectra of the 3L-

GNRA (solid lines) for an interlayer separation varying from s=W (red line) to s=W/100 (blue line). 

Dashed lines represent the extinction spectra of 1L-GNRAs with Fermi levels |EF
(1)|, |EF

(2)|, |EF
(3)| and 

|EF
(1)|+|EF

(2)|+|EF
(3)|.  



Supplementary Note 1.  Electrostatic biasing in multi-layer graphene stacks (all layers having same 
doping type) 

We consider a stack of N graphene layers in close proximity, that are electrically connected and are 
biased through a common backgate (Supplementary Figure S2). In this section we calculate the 
equivalent Fermi level of the biased multi-layer structure (𝐸𝐸F

NL). We assume that all graphene layers 
have the same doping type (p or n). The case when layers have different doping types p/n is addressed 
in Supplementary Note 2. 

 

 

Supplementary Figure S2. Band diagram representation of a multi-layer graphene stack composed of 
two layers electrically interconnected. The black/red planes represent the Fermi level before/ after 
biasing. 

 

The initial doping of each layer is 𝐸𝐸F0
(𝑖𝑖) for i=1...N, defined as the Fermi level relative to its Dirac point. 

The Dirac cone of each layer shifts along the energy axis so the Fermi levels of all layers are aligned. 

After applying a biasing voltage Vg, each layer reaches a Fermi level 𝐸𝐸F
(𝑖𝑖) and the increment of Fermi 

level is the same for all layers. 

 𝐸𝐸F
(𝑖𝑖) − 𝐸𝐸F0

(𝑖𝑖) = 𝐸𝐸F
(1) − 𝐸𝐸F0

(1),            𝑖𝑖 = 1. . .N (S1) 
 
Additionally, the total amount of carriers injected by the bias is given by the charge in the capacitor 
formed by the thin SiO2 layer with surface capacitance 𝐶𝐶ox: 
 

 ∑ 𝑛𝑛s
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(𝑖𝑖)𝑁𝑁
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Taking  into account the relation between Fermi level and carrier density in graphene (𝐸𝐸F =  ℏv𝐹𝐹�𝜋𝜋𝑛𝑛𝑠𝑠)  
we have: 
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where 𝐴𝐴 = 𝐶𝐶oxℏ2v𝐹𝐹2𝜋𝜋/𝑒𝑒  and the plus/minus sign accounts for the common doping type of the 
graphene layers. 
 
Substituting (S1) in (S3),  
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where 𝐸𝐸F0
𝑁𝑁𝑁𝑁 = ∑ 𝐸𝐸F0

(𝑖𝑖)
𝑖𝑖 . 

 
Solving the second-order equation, 
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The other solution of the second-order equation is non-physical because it does not satisfy  
�𝐸𝐸F

(1)�
𝑉𝑉𝑔𝑔=0
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(1). 

 
Due to symmetry in the equations (variables can be exchanged without modifying the system of 
equations) the previous expression for layer i=1 is also valid for any layer.  
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Then the equivalent Fermi layer of the multi-layer stack is calculated by adding all the individual Fermi 

levels (𝐸𝐸F
𝑁𝑁𝑁𝑁 = ∑ 𝐸𝐸F

(𝑖𝑖)
𝑖𝑖 ), which we initially assumed to have the same sign (same doping type). 
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Then, 
 

(𝐸𝐸F
NL)2 =  (𝐸𝐸F0

NL)2  ± 𝑁𝑁𝐴𝐴 𝑉𝑉g 
 
and using the relation between Fermi level and carrier density (𝐸𝐸F =  ℏv𝐹𝐹�𝜋𝜋𝑛𝑛𝑠𝑠)  we have 
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is the equivalent number of carriers in the multi-layer structure.  

 
Therefore, when all the graphene layers have the same doping type (p or n), the equivalent carrier 
density in a multi-layer graphene stack varies linearly with the voltage Vg and biasing is enhanced by a 
factor N (the number of layers) respect to SLG. 
  
 



Supplementary Note 2: Electrostatic biasing in multi-layer graphene stacks (general case) 

We consider the general case of biasing a multi-layer graphene stack where the different layers may 

have different doping types (before or after applying a bias voltage). This can be generally solved by 

considering the same equations (S1) and (S2) from the previous section.  

 𝐸𝐸F
(𝑖𝑖) − 𝐸𝐸F0
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(1),            𝑖𝑖 = 1. . .N (S1) 
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However, equation (S3) has to be modified to account for the sign of doping 
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Solving equations (S1) and (S4) allows to calculate the equivalent Fermi level of the multi-layer stack, 

defined as 𝐸𝐸F
NL = ∑ |𝐸𝐸F

(𝑖𝑖)|𝑖𝑖 . In contrast to the discussion in section (S3), the Fermi levels of each layer 

may have different signs and have to be added up in absolute value as a consequence of graphene 

ambipolarity. 

 

In Supplementary Figure S3 we show the solution of the  previous equations for a DLG (N=2) and 

compare them against the experimental data. We observe that this analytic model captures the 

saturation observed in the experimental data occurring for bias voltages above +40V. This saturation is 

caused by the Fermi level crossing the Dirac point of one of the layers, leaving the two layers with 

opposite doping types. In this case, a shift of the overall Fermi level will increase the absolute doping of 

one layer and decrease in the same amount the absolute doping of the second layer, which has different 

doping type. The net result when doping levels are added up 𝐸𝐸F
2𝑁𝑁 = �𝐸𝐸F

(1)� + �𝐸𝐸F
(2)� is a zero variation, 

explaining the saturation effect. For voltages where the two layers have different doping types, the 

equivalent Fermi level of the structure remains constant at a level equal to the difference between the 

initial doping levels �𝐸𝐸F
2𝑁𝑁�

saturation
= �𝐸𝐸F0

(1) − 𝐸𝐸F0
(2)�.  In our experimental data the Fermi level saturates 

between 0.15 eV and  0.20 eV, indicating that the two graphene layers in our device have significantly 

different doping levels. This is consistent with the device stack-up, where the graphene layers are 

exposed to different environments: the bottom layer is in contact with silica while the top layer is 

exposed to air. From the experimental data we estimate that the graphene layers have respective 

doping levels of approximately EF
(1) =−0.22 eV and EF

(2) =−0.05 eV.   

 



 

 
Supplementary Figure S3.  (a) Equivalent carrier density of 2L graphene extracted from experiments 

(circles) and calculations (solid line). The calculations are performed solving equations (S1) and (S2) for 

EF
(1) =−0.22 eV, EF

(2) =−0.05 eV. (b) Band diagram representation of the DLG for different biasing voltages. 

The red plane represents the Fermi level. 

 

 


