Supporting Information

In-situ Coupling of Multidimensional MOFs for Heterogeneous Metal Oxide Architectures: Toward Sensitive Chemiresistor

Ji-Soo Jang, ^{†, ‡} Won-Tae Koo, ^{†, ‡} Dong-Ha Kim, ^{†, ‡} and Il-Doo Kim^{†, ‡, *}

[†]Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
[‡]Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro, Yuseonggu Daejeon 34141, Republic of Korea
*E-mail: idkim@kaist.ac.kr

Table of Contents

- S1. Additional TEM analysis and EDS mapping images
- S2. XRD analysis
- **S3**. Schematic illustration of fabrication process of ZIF-67 NRs
- S4. XRD analysis of various double-Co₃O₄ rods@ZnO sheets
- **S5.** SEM images of double-Co₃O₄ rods@ZnO sheets depending on the calcination temperature
- S6. SEM image of polyhedron ZIF-67 particles
- **S7**. SEM image of Zn based ZIF-L
- S8. SEM and TEM images of collapsed Co₃O₄ rods loaded ZnO sheet
- **S9.** EDS mapping images of calcined HMOFs
- S10. XPS spectra of heterogeneous Co₃O₄ rods@ZnO sheet
- S11. Temperature dependent acetone response
- S12. Extrapolation of the double-Co₃O₄ rods@ZnO sheet's detection limit
- **S13.** Resistance variation of Co₃O₄ rods, ZnO sheet, single-Co₃O₄ rods@ZnO sheet, double-Co₃O₄ rods@ZnO sheet, and triple-Co₃O₄ rods@ZnO sheet
- S14. XPS spectra of oxygen
- **S15.** N₂ adsorption/desorption isotherms
- S16 Schematic image of sensing measurement system

Table S1. The pH values of 4 ZIFs solutions

Table S2. Grain sizes of samples based on the (100), (002), and (101) peaks

Table S3 ICP results

Table S4. The surface area under XPS spectra of O 1s

Table S5 Recent publications on MOF derived SMOs based chemiresistive acetone sensors

Table S4. Recent publications on MOF based chemiresistive sensors

Figure S1. STEM images of (a) ZIF-67 rods and (c) ZIF-67 belts, EDS mapping images of (b) ZIF-67 rods and (d) ZIF-67 belts with Co, O, C, and N elements.

Figure S2. XRD analysis of Co based ZIF-L, Zn based ZIF-L, and double-ZIF-L@ZIF-67 rods.

Figure S3. (a) Schematic image showing mixing process of HMIM dissolved solution and Co ions dissoved solution, (b) schematic illustration of Marangoni flow between HMIM-EtOH and Co ions-DI water solutions.

Figure S4. XRD analysis of various double-Co₃O₄ rods@ZnO sheets (e.g. 350 double-Co₃O₄ rods@ZnO sheet, 450 double-Co₃O₄ rods@ZnO sheet, 550 double-Co₃O₄ rods@ZnO sheet, 650 double-Co₃O₄ rods@ZnO sheet, and 750 double-Co₃O₄ rods@ZnO sheet)

Figure S5. SEM image of (a) 550 double- Co_3O_4 rods@ZnO sheets, (b) 650 double- Co_3O_4 rods@ZnO sheets, and (c) 750 double- Co_3O_4 rods@ZnO sheets.

Figure S6. (a) SEM image of polyhedron ZIF-67 particles produced by using mixed solvent of DI water and EtOH. (b) Magnified SEM image of polyhedron ZIF-67.

Figure S7. SEM image of Zn based ZIF-L structures.

Figure S8. SEM images of (a, b) collapsed Co_3O_4 rods loaded ZnO sheet, and (c) TEM image of collapsed Co_3O_4 rods loaded ZnO sheet.

Figure S9. EDS mapping images of (a) single-Co₃O₄ rods@ZnO sheet, and (b) double-Co₃O₄ rods@ZnO sheet.

Figure S10. XPS spectra of single-Co₃O₄ rods@ZnO sheet: (a) Co 2p and (c) Zn 2p, and XPS spectra of double-Co₃O₄ rods@ZnO sheet: (b) Co 2p and (d) Zn 2p.

Figure S11. Acetone sensing response of double-Co₃O₄ rods@ZnO sheet at various sensing temperatures.

Figure S12. Extrapolation of the double-Co₃O₄ rods@ZnO sheet's detection limit toward acetone gas at 450 \Box

double-Co₃O₄ rods@ZnO sheet, and triple-Co₃O₄ rods@ZnO sheet upon exposure to 5 ppm of acetone at 450 \Box .

Figure S14. XPS spectra of oxygen in (a) single- Co_3O_4 rods@ZnO sheet, and (b) triple- Co_3O_4 rods@ZnO sheet.

Figure S15. N₂ adsorption/desorption isotherms of (a) single-Co₃O₄ rods@ZnO sheet, (b) double-Co₃O₄ rods@ZnO sheet, and (c) triple-Co₃O₄ rods@ZnO sheet.

Figure S16. Schematic image of sensing measurement system.

Table S1. The pH values of 4 ZIFs solutions

Solution	pН
DI water+Co ions + HMIM	8.47
Methanol+Co ions + HMIM	7.59
DI water/EtOH (2/1) + Co ions + HMIM, belt	8.22
DI water/EtOH $(1/2)$ + Co ions + HMIM, rod	8.05

	450 double-Co ₃ O ₄ rods@ZnO sheet	550 double-Co ₃ O ₄ rods@ZnO sheet	650 double-Co ₃ O ₄ rods@ZnO sheet	750 double-Co ₃ O ₄ rods@ZnO sheet
(100)	30.7 nm	54.6 nm	71.9 nm	92.5 nm
(002)	35 nm	55.6 nm	71.3 nm	94.4 nm
(101)	29.5 nm	50.5 nm	65.2 nm	91.2 nm
Aver.	31.7 nm	53.6 nm	69.5 nm	92.7 nm

Table S2. Grain sizes of samples based on the (100), (002), and (101) peaks.

Table S3. ICP results of single- Co_3O_4 NRs@ZnO NSs, double- Co_3O_4 NRs@ZnO NSs, andtriple- Co_3O_4 NRs@ZnO NSs

ICP analysis				
Samples	Co (%)	Zn (%)		
single-Co ₃ O ₄ NRs@ZnO NSs	0.27	80.0		
double-Co ₃ O ₄ NRs@ZnO NSs	0.71	79.6		
triple-Co ₃ O ₄ NRs@ZnO NSs	1.82	78.4		

Table S4. The surface area under XPS spectra of O 1s in single-Co $_3O_4$ rods@ZnO sheet,double-Co $_3O_4$ rods@ZnO sheet, and triple-Co $_3O_4$ rods@ZnO sheet.

Spectral Feature Table					
Element/Transition	Peak Energy (eV)	Peak Area (eV counts)	O ⁻ /O ²⁻		
O ²⁻ (1s) in Single-Co ₃ O ₄ NRs@ZnO NSs	530.2	60693.83	0.615		
O ⁻ (1s) in Single-Co ₃ O ₄ NRs@ZnO NSs	531.0	37325.69			
O ²⁻ (1s) in Double-Co ₃ O ₄ NRs@ZnO NSs	530.2	47322.30	1.203		
O ⁻ (1s) in Double-Co ₃ O ₄ NRs@ZnO NSs	531.0	56943.89			
O ²⁻ (1s) in Triple-Co ₃ O ₄ NRs@ZnO NSs	530.2	54250.09	0.727		
O ⁻ (1s) in Triple-Co ₃ O ₄ NRs@ZnO NSs	531.0	39428.26			

Gas	Materials	Optimal	Limit of	Response	Reference
species		temperature	detection		
	ZnO@ZIF-CoZn	260 °C	1.9 ppb	12-13.5 @ 5	1
	nanowire			ppm	
	MOF templated	150 °C	N/A	2.6-3 @ 200	2
	Cu ₂ O/CuO cages			ppm	
	MOF templated ZnO	300 °C	100 ppb	2.2 @ 0.1 ppm	3
	nanocages				
	MOF templated PdO-	400 °C	10 ppb	10 @ 5 ppm	4
	ZnO loaded SnO ₂ nanotubes				
	MOF templated	250 °C	N/A	1.7 @ 5 ppm	5
Acetone	ZnO/ZnCo ₂ O ₄ hollow spheres				
	MOF derived PdO	350 °C	0.1 ppm	2.51 @ 5 ppm	6
	loaded Co ₃ O ₄ cubes				
	MOF templated	290 °C	1 pm	10 @ 25 ppm,	7
	$ZnO/ZnFe_2O_4$			5 @ 5 ppm	
	nanospheres				
	MOF derived	228.9 °C	N/A	3.09 @ 100	8
	Co ₃ O ₄ /NiCo ₂ O ₃			ppm	
	MOF derived Co ₃ O ₄ -	450 °C	5 ppb	22.8 @ 5ppm	9
	PdO loaded n-SnO ₂ HNCs				
	HMOF template	450 °C	5 ppb	29@5 ppm	this work
	double- Co_3O_4				
	roas@ZnO sheet				

 Table S5. Recent publications on MOF derived SMOs based chemiresistive acetone sensors.

Gas	Materials	Optimal	Detection	Response	Reference
species		temperature	limit		
H_2S	ZIF-8	Room	N/A	3 @ 1ppm	10
		temperature			
n-butanol	SNNU-50	Room	N/A	1.56 @ 100 ppm	11
		temperature			
H_2S	Cu(bdc) xH ₂ O	Room	N/A	1–2 @ 1ppm	10
		temperature			
H_2S	Fumarate based fcu-	Room	5.4 ppb	12–15 @ 10 ppm	10, 12
	MOF	temperature			
$N(CH_3)_3$	Co(im) ₂ MOF	75 °C	2 ppm	14 @ 100 ppm	13
(Trimethyl					
amine)					
MeOH	Cu ₃ (HTTP) ₂	Room	N/A	1.08 @ 200 ppm	14
Acetone		temperature		(EtOH), ~1.02 @	
				200 ppm (acetone)	
EtOH	Ni ₃ (HITP) ₂	Room	N/A	1.03–1.04 @ 200	14, 15
Acetone		temperature		ppm (EtOH), ~1.02	
				@ 200 ppm	
				(acetone)	
MeOH	MIL-53-NH ₂	Room	N/A	2.49 @ 5000 ppm	16, 17
	(Al)@polymer	temperature			
Formaldeh	ZIF-67	150 °C	5 ppm	13 @ 100 ppm	18
yde				(Formaldehyde)	
Acetone				7 @ 100 ppm	
				(acetone)	
Acetone	MOF derived Co ₃ O ₄ -	450 °C	5 ppb	22.8 @ 5ppm	9
	PdO loaded n-SnO ₂				
	HNCs				
Acetone	HMOF template	450 °C	5 ppb	29@5 ppm	this work
	double-Co ₃ O ₄				
	rods@ZnO sheet				

 Table S6. Recent publications on MOF based chemiresistive sensors.

References

1. Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF Thin Film□Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance. *Adv. Mater.* **2016**, 28, 5229-5234.

2. Wang, Y.; Lü, Y.; Zhan, W.; Xie, Z.; Kuang, Q.; Zheng, L. Synthesis of porous Cu₂ O/CuO Cages using Cu-based Metal–organic Frameworks as Templates and Their Gassensing Properties. *J. Mater. Chem. A*, **2015**, *3*, 12796.

3. Li, W.; Wu, X.; Han, N.; Chen, J.; Qian, X.; Deng, Y.; Tang, W.; Chen, Y. MOFderived Hierarchical Hollow ZnO Nanocages with Enhanced Low-concentration VOCs Gassensing Performance. *Sensor. Actuat. B: Chem.*, **2016**, *225*, *158*.

4. Koo, W.-T.; Jang, J.-S.; Choi, S.-J.; Cho, H.-J.; Kim, I.-D. Metal-Organic Framework Templated Catalysts: Dual Sensitization of PdO-ZnO Composite on Hollow SnO₂ Nanotubes for Selective Acetone Sensors. *ACS Appl. Mater. Inter.* **2017**, *9*, 18069.

5. Koo, W.-T.; Choi, S.-J.; Jang, J.-S.; Kim, I.-D. Metal-Organic Framework Templated Synthesis of Ultrasmall Catalyst Loaded ZnO/ZnCo₂O₄ Hollow Spheres for Enhanced Gas Sensing Properties. *Sci. Rep.* **2017**, *7*, 45074.

6. Koo, W.-T.; Yu, S.; Choi, S.-J.; Jang, J.-S.; Cheong, J. Y.; Kim, I.-D. Nanoscale PdO Catalyst Functionalized Co₃O₄ Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. *ACS Appl. Mater. Inter.*, 2017, 9, 8201-8210.

7. Wang, X.; Zhang, S.; Shao, M.; Huang, J.; Deng, X.; Hou, P.; Xu, X. Fabrication of ZnO/ZnFe₂O₄ Hollow Nanocages Through Metal Organic Frameworks Route with Enhanced Gas Sensing Properties. *Sensor. Actuat. B: Chem.*, *2017*, *251*, *27*.

8. Qu, F.; Jiang, H.; Yang, M. MOF-derived Co₃O₄/NiCoO₄ double-shelled nanocages with excellent gas sensing properties. *Mater. Lett.*, **2017**, *190*, 75.-78.

9. Jang, J.-S.; Koo, W.-T.; Choi, S.-J.; Kim, I.-D. Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement. *J. Am. Chem. Soc.* **2017**, *139*, *11868-11876*

Yassine, O.; Shekhah, O.; Assen, A. H.; Belmabkhout, Y.; Salama, K. N.; Eddaoudi,
 M. H₂S Sensors: Fumarate Based fcu MOF Thin Film Grown on a Capacitive Interdigitated Electrode. *Angew. Chem. Int. Edit* 2016, 55, 15879-15883.

11. Bai, X.-Y.; Ji, W.-J.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C.; Zhai, Q.-G. Nonlinear Optical Rod Indium-Imidazoledicarboxylate Framework as Room-Temperature Gas Sensor for

Butanol Isomers. Cryst. Growth Des. 2016, 17, 423-427.

12. Campbell, M. G.; Dincă, M. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices. *Sensors* 2017, 17, 1108.

13. Chen, E.-X.; Fu, H.-R.; Lin, R.; Tan, Y.-X.; Zhang, J. Highly Selective and Sensitive Trimethylamine Gas Sensor Based on Cobalt Imidazolate Framework Material. *ACS Appl. Mater. Inter* 2014, *6*, 22871.

14. Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. Chemiresistive Sensor Arrays from Conductive 2d Metal–organic Frameworks. *J. Am. Chem. Soc.* **2015**, *137*, *13780-13783*.

15. Wu, G.; Huang, J.; Zang, Y.; He, J.; Xu, G. Porous Field-effect Transistors Based on a Semiconductive Metal–organic Framework. *J. Am. Chem. Soc.* **2016**, *139*, *1360-1363*.

16. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. *Chem. Soc. Rev.* **2017**, *46*, *3185-3241*.

17. Sachdeva, S.; Soccol, D.; Gravesteijn, D. J.; Kapteijn, F.; Sudhölter, E. J.; Gascon, J.; de Smet, L. C. Polymer–Metal Organic Framework Composite Films as Affinity Layer for Capacitive Sensor Devices. *ACS Sensors* **2016**, *1*, *1188-1192*.

18. Chen, E.-X.; Yang, H.; Zhang, J. Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. *Inorg. Chem.* 2014, 53, 5411-5413.