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S2 Text. Elastic Model in the Contact Configuration.

In this appendix, we analyse the configuration where the rim of the phialopore is in contact with the inverted
posterior for completeness of the mechanical analysis. We also analyse a toy problem to illustrate the intricate
interplay of geometry and mechanics during contact.

Boundary conditions for the contact configuration. Let P be the angular extent of the axisymmetric
phialopore at the anterior pole of the shell. Here, we discuss the contact problem where the shell has deformed
in such a way that the rim of the phialopore (at θ = π − P = Q, where θ = s/R is the polar angle) is in contact
with the shell at some as yet unknown position θ = C, as shown in Fig. B1a,b.

As in the derivation of the governing equations without contact (Materials and Methods), we shall express
the variations in terms of δr and δ β. The third variation, δz, is not independent of the former two, and so
the condition that the vertical positions of the shell at the point of contact and at the phialopore match must
be incorporated via a Lagrange multiplier, U. Ref. [95] raised a related issue in the derivation of the shape
equations for vesicles. The Lagrangian for the problem is therefore

L = E − 2πU
∫ Q

C

fs sin β dθ, (B1)

where the prefactor has been introduced for mere convenience. We note the variation of Eq. (B1),
δL
2π
=
δE
2π
−
�
U tan β δr

�Q
C+
+U fs (C+) sin β(C) δC

+U
∫ Q

C

{
fsκs sec2 β δr − fs sec β δ β

}
dθ. (B2)
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Figure B1. Analysis of the Contact Problem. (a) Undeformed configuration and (b) contact configuration.
The phialopore at θ = Q = π − P touches the shell at θ = C, where θ is the polar angle. (c) Increasing
circumferential stretch fφ with advancing position θp of the peeling front, at constant intrinsic stretch f 0

φ.
Insets: configuration with inverted posterior (as in Fig. 12d), at beginning of contact, and at a later stage.
(d) Advancing contact position with advancing peeling front. Insets: configurations at beginning of contact and
at later stage, as in (c).
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Next, expanding the condition β(C−) = β(C+) of geometric continuity that we have already implicitly applied
in the above, we note that

δ β(C−) + fs (C−)κs (C−) δC = δ β(C+) + fs (C+)κs (C+) δC. (B3)

Since the outer part of the shell can rotate freely with respect to the inner part at the points of contact, the
variations δ β(C±) and δ β(Q) are, by contrast, independent. This is not true of the variations δr (C±) and δr (Q),
however:

δr (Q) = δr (C−) + fs (C−) cos β(C) δC = δr (C+) + fs (C+) cos β(C) δC. (B4)

Analogous expansionswere used in Ref. [96] to discuss an adhesion problem for vesicles. Next, a straightforward
calculation reveals that the governing equations (24) and (25) remain unchanged if we define T = −Ns tan β +
U sec β/r for C 6 θ 6 Q. For convenience, we adjoin the equation dz/ds = fs sin β to the system (thereby
fixing the degree of freedom of vertical translation). The system thus becomes a system of six first-order
differential equations on two regions, with two unknown parameters (the contact position C and the Lagrange
multiplier U). We thus have to impose fourteen boundary conditions:

r (0) = 0, z(0) = 0, β(0) = 0, T (0) = 0, (B5a)

r (Q) = r (C), z(Q) = z(C), Ns (Q) = 0, Ms (Q) = 0, (B5b)

as well as the continuity conditions at θ = C,

~ β� = 0, ~r� = 0, ~z� = 0, ~Ms� = 0, (B5c)

and

r (C)~Ns� sec β(C) −U tan β(C) = r (Q)Ns (Q) sec β(Q) −U tan β(Q), (B5d)

~T� = −~Ns� tan β(C) +
U sec β(C)

r (C)
, (B5e)

~E�
2π
= r (C)

�
fsNs
�
+ r (C)Ms (C)~ fsκs�. (B5f)

We note that the conditions r (Q) = r (C) and z(C) = z(Q) do not take into account the finite, but small,
thickness of the shell. A more detailed condition would require knowledge of the nature of the contact (and is
anyway beyond the remit of a thin shell theory).

Numerical study of the contact configuration. We briefly explore shapes in the contact configuration in
what follows. We start from a configuration where the posterior hemisphere has inverted, as in Fig. 12d, and
advance the peeling front, but now without increasing the intrinsic circumferential stretch f 0

φ at the phialopore.
As the peeling front advances, the circumferential stretch at the phialopore increases (Fig. B1c) at constant f 0

φ,
showing how the phialopore is pushed open by the posterior hemisphere. The procession of the point of contact
between the posterior and the phialopore along the inverted posterior speeds up with advancing peeling front
position (Fig. B1d) because the closer the point of contact is to the posterior, the more the latter resists the
progression of the contact point because of the changing tangent angle.

The inset configurations in Fig. B1c,d also suggest that, as the peeling front advances, the regime of contact
at a point discussed here gives way to a second contact regime, where the contact is over a finite extent of the
meridian of the shell. We do not pursue this further.
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Asymptotic Analysis of a Toy Problem. Some analytic progress can be made and additional insight into the
contact configuration can be gained by asymptotic analysis of a toy problem: two elastic spherical shells, an
inner shell of radius R1 and an outer, open shell of radius R2 > R1, touch at the respective angular positions
Θ1 and Θ2 < Θ1 (Fig. B2a), so that R2/R1 = sin Θ1/ sin Θ2. The intrinsic stretches and curvatures are those of
the undeformed shells. For the remainder of this section, we non-dimensionalise distances with respect to the
radius R1 of the inner shell; stresses we non-dimensionalise with Eh.

If the outer shell is moved relative to the inner shell by a distance d (Fig. B2b), the two shells deform in
asymptotically small regions near the point of contact. This point of contact moves a distance dΞ down along
the inner shell, determined by matching the displacements of the contact point and the forces exerted by one
shell on the other. We assume in particular that the nature of the contact is such that the shells do not exert
torques on each other. Since we have non-dimensionalised distances with R1, our asymptotic small parameter
is

ε2 =
1

12(1 − ν2)
h2

R2
1
� 1. (B6)

The classical leading-order scalings for this problem are discussed in Ref. [56], for example: deformations
are localised to asymptotic inner regions of width δ ∼ ε1/2, in which deviations of the tangent angle from its
equilibrium value are of order d/δ, and we assume that d � δ. We introduce an inner coordinate ξ, and write
the polar angles as θ1 = Θ1 + δξ +O(d), θ2 = Θ2 + δξ. We thus expand

β1(θ1) = Θ1 + (d/δ)b1(ξ), β2(θ2) = Θ2 + (d/δ)b2(ξ). (B7)

Assuming that δ2 � d � δ, we then have the leading-order expansions

N (1)
s = Eh δd σ1(ξ), N (2)

s = Eh δd σ2(ξ), (B8a)

N (1)
φ

(∗)
= Eh E (1)

φ + νN (1)
s = Ehδ a1(ξ), N (2)

φ

(∗)
= Eh E (2)

φ + νN (2)
s = Ehδ a2(ξ), (B8b)

where a1, a2 are hoop strains. We note that the relations marked (∗) are only valid at leading order, where we
may approximate fs ≈ fφ ≈ 1. Let Fr and Fz denote the (suitably scaled) radial and vertical forces exerted by
the outer shell on the inner shell. We obtain the leading-order force balances from the energy variation (28):
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Figure B2. Asymptotic Toy Contact Problem. (a) Two shells of radii R1 and R2 are in contact at angular
positions Θ1 and Θ2, respectively. (b) Relative motion of one shell with respect to the other by a distance d
induces deformations of the shell in an asymptotic inner layer of size δ, and causes the point of contact to move
by a distance dΞ along the inner shell. (c) Contours of Ξ in the (Θ1,Θ2) plane.

S2 Text – 3



using dashes to denote differentiation with respect to ξ,

σ′1 sin2 Θ1 − b′′′1 cos Θ1 sin Θ1 = Fzδ(ξ), (B9a)

σ′1 sin Θ1 cos Θ1 − a1 + b′′′1 sin2 Θ1 = Frδ(ξ). (B9b)

This system is closed, at leading order, by the geometric relation a′1 = −b1, as in Ref. [56]. Eliminating σ1, we
obtain

b′′′′1 + b1 =
(
Fr − Fz cot Θ1

)
δ′(ξ). (B10)

The matching conditions b1 → 0 as ξ → ±∞ reduce the number of undetermined constants to four, which are
determined by the jump conditions at the contact point ξ = 0.

The asymptotic balance for the outer shell is of course the same, but we must remember that the system has
been non-dimensionalised with the radius of the inner shell, for which reason a geometric factor arises in the
equations. Thus

b′′′′2 +

(
sin Θ1
sin Θ2

)4
b2 = 0, (B11)

with the matching condition b2 → 0 as ξ → ∞, leaving two boundary conditions to be imposed on this equation.
Since the shells do not exert any moments on each other, b′2(0) = 0. The second condition is obtained from the
force balance: the vertical force balance can be integrated once to yield

sin Θ1 sin Θ2


σ2 − cot Θ2

(
sin Θ2
sin Θ1

)4
b′′2



= Fz . (B12)

Matching to the undeformed, unstressed shell as ξ → ∞ implies Fz = 0. The radial force boundary condition
resulting from (28) is

sin Θ1 cos Θ2


σ2(0) + tan Θ2

(
sin Θ2
sin Θ1

)4
b′′2 (0)



= Fr, (B13)

which, upon imposing (B12), reduces to

b′′2 (0) =
(
sin Θ1
sin Θ2

)3
Fr . (B14)

Let U (1)
r ,U (1)

z and U (2)
r ,U (2)

z denote the respective (non-dimensional) displacements of the contact point ξ = 0,
scaled with d. Then

U (1)
r = sin Θ1

∫ ∞

0
b1 dξ = −

Fr

2
√

2
sin Θ1, (B15a)

U (1)
z = − cos Θ1

∫ ∞

0
b1 dξ =

Fr

2
√

2
cos Θ1, (B15b)

U (2)
r = sin Θ1

∫ ∞

0
b2 dξ = −

√
2Fr sin Θ1, (B15c)

U (2)
z = − sin Θ1 cot Θ2

∫ ∞

0
b2 dξ =

√
2Fr sin Θ1 cot Θ2. (B15d)

In particular, these expressions once again contain additional geometric factors resulting from the non-
dimensionalisation. The values of the two remaining undetermined constants, Fr and Ξ , are finally obtained by
imposing continuity of the displacement of the contact point, i.e.

U (1)
r + Ξ cos Θ1 = U (2)

r , U (1)
z + Ξ sin Θ1 = U (2)

z + 1. (B16)

Notice that arclength is computed here from the anterior pole of the shell to match the asymptotic setup of
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Ref. [56], and so the ‘vertical’ axis is pointing downwards in Fig. B2a, giving rise to some sign changes. In
particular, we obtain

Ξ =
3 sin Θ1

1 + 2 cosec Θ2 sin
(
2Θ1 − Θ2

) . (B17)

The contours of this expression are plotted in Fig. B2c. The very non-linear nature of this expression illustrates
that the contact geometry is quite intricate; in particular, Θ2(Θ1) at fixed Ξ is not a monotonic function, but,
as expected (since it is easier for the the contact point to slide along the inner shell the more parallel it is to the
axis of symmetry), at fixed Θ1, Ξ increases with Θ2.
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