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* Supplementary Note 1: BAC tiling path of horse MSY

A BAC contig map of the horse MSY (Supplementary Fig. 1) was constructed by sequence
tagged site (STS)-content analysis, chromosome walking, and fluorescence in situ hybridization
(FISH) using the methods described below. This BAC contig map was the basis of the
sequencing of the MSY.

BAC library screening. We used known MSY markers 2 and newly generated STSs-from BAC
end sequences (BES) to design primers for PCR (Supplementary Data 4). The sequences were
masked for repeats with RepeatMasker (http://www.repeatmasker.org/) and the primers were
designed with the Primer3 software 3. The primers were optimized on male and female horse
genomic DNA and used to screen by PCR the CHORI-241
(http://bacpac.chori.org/equine241.htm) BAC library. This genomic library is constructed from a
male Thoroughbred horse, Bravo (Cornell University). If no clones were found in CHORI-241,
the markers were additionally screened in TAMU (L. C. Skow, unpublished) and INRA 4 male
BAC libraries, constructed from a male Arabian and a male Selle Francais, respectively. The
BAC DNA was isolated with Plasmid Midi Kit (Qiagen) and end sequenced for STS
development using the standard T7 and SP6 or M13 primers and BigDye chemistry. Detailed
information about 192 horse MSY BACs is available in Supplementary Data 5.

Chromosome preparations and Fluorescence in situ hybridization (FISH). Peripheral blood
samples and fibroblast cultures from a male Thoroughbred horse, the DNA donor for the
CHORI-241 BAC library, were used for metaphase and interphase chromosome preparations °.
Mechanically stretched DNA fibers on poly-L-lysine coated glass slides for fiber-FISH were
prepared from blood lymphocytes of the same male Thoroughbred according to established
procedures °. Chromosome preparations of the donkey (Equus asinus; EAS), the quagga plains
zebra (Equus burchelli; EBU) and Hartmann’s mountain zebra (Equus zebra hartmannae; EZH)
were obtained from blood lymphocytes or fibroblast cultures °.

DNA from individual BAC clones was labeled with biotin-16-dUTP and/or digoxigenin-11-
dUTP by nick translation using Biotin- or DIG-Nick Translation Mix (Roche). The labeled
probes were hybridized individually or in combinations of 2 or 3 probes to metaphase/interphase
chromosomes and DNA fibers. Metaphase FISH was carried out with all BACs to confirm their
Y chromosome origin. Interphase and fiber FISH experiments were conducted with selected
clones to verify clone order, clone overlaps, copy numbers, and determine the size of gaps
between MSY contigs. A minimum of 10 metaphase spreads, 30 interphase cells or ~30 DNA
fiber hybridization images were captured and analyzed per each experiment using a Zeiss
Axioplan2 fluorescent microscope equipped with Isis v 5.2 (MetaSystems GmbH) software.

The BAC contig map. The BACs were arranged into contigs by STS content mapping which was
carried out by PCR with all STS primers on all BAC clones. The final contig map was assembled
through stepwise chromosome walking into the gaps. The order and orientation of contigs, and
the size of gaps between contigs were determined by interphase and/or fiber-FISH. The tiling
path of the horse MSY (Supplementary Fig. 1) comprised 192 partially overlapping BAC clones
of which 139 originated from the CHORI-241 BAC library (http://bacpac.chori.org/equine?)
(Thoroughbred), 41 clones from the TAMU library (Arabian; L. Skow, unpublished), and 12
clones from the INRA library (*; Selle Frangais), thus representing 3 different Y chromosomes.
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The tiling path clones were arranged into 4 BAC contigs leaving 3 small gaps for which no
clones were found due to repetitive sequences. The order and overlaps of the BACs were
supported by 265 linearly ordered genes, ESTs and STS markers (Supplementary Fig. 1 and
Supplementary Data 4). A region of contig | contained BACs with multiple copies in MSY
(Supplementary Fig. 1, blue shade) and their tiling path was arranged provisionally based on a
set of selected markers. The orientation of individual contigs in relation to each other was
confirmed by dual-color interphase FISH. Proximally, the BAC tiling path extended into Y
chromosome heterochromatin (HC) and distally into the pseudoautosomal region (PAR), thus
spanning over the entire eMSY. Y-specificity of all BACs was confirmed by FISH to male
metaphase chromosomes (Supplementary Fig. 2). The majority of clones hybridized exclusively
to the eMSY with a cytogenetic location at Yq14-g15 6, whereas the clones spanning the
pseudoautosomal boundary (PAB) hybridized to both Yqter and Xpter. A few eMSY clones
shared sequence similarity with autosomal regions: clone 79.4H1 in contig la mapped by FISH
to MSY and chr16; clone 139C20 in multi copy region Ic to MSY and chr3q; clones 115117 and
169C6 at the proximal end of contig Il to MSY and chr18. The two most proximal clones in
MSY tiling path, 54A8 and 69E11, mapped by FISH all over the Y chromosome
heterochromatin, as well as in the facultative heterochromatin in chrXql7-g21. A region in the
proximal part of contig | (Supplementary Fig. 1, green shade) shared sequence similarity with the
pseudoautosomal region (PAR). Clones from this region gave three FISH signals: two in the Y
chromosome — in MSY and the PAR-Y, and one in the PAR-X. Copy numbers of the sequences
contained in BACs were estimated by FISH in interphase chromosomes. The majority of BACs
were single copy, while all 49 clones in contig Ib showed multiple hybridization signals
(Supplementary Fig. 2). FISH analysis indicated that the multi copy sequences were repeated
moderately from about 2 to 20 hybridization signals per interphase. The tiling path of horse MSY
was interrupted by three gaps (Supplementary Figures 1 and 3). GAP2 and GAP3 were flanked
by repetitive sequences that predominantly comprised of long interspersed nuclear elements
(LINES) and long terminal repeats (LTRS) as revealed by BES analysis (Supplementary Data 4).
GAP1 was proximally flanked by repeats. However, clones 115117 and 169C6 distal to GAP1
mapped by FISH to both MSY and chr18. Chromosome walking using the 169C6-T7 and
115117-T7 sequences identified over 10 new BAC clones, which mapped to either chr18 or
chr20. All new STS markers derived from the end sequences of the new clones shared sequence
similarity only with autosomes — an indication that chromosome walking had stepped off from
MSY. The size of the gaps was estimated by interphase and fiber-FISH using combinations of
MSY -specific clones around the gaps, viz., 127N19 and 91.4G10 for GAP1; 132K10 and
205D10 for GAP2, and 34A23 and 504H13 for GAP3 (Supplementary Fig. 3). GAP1 and GAP2
were the largest with a clear distance between the flanking clones in interphase nuclei, whereas
clones flanking GAP3 overlapped in interphase. We did not observe clone overlaps for any of the
gaps by fiber-FISH, which suggests that all three gaps exceeded 500 kb. At this distance, DNA
fibers tend to break and clones further apart cannot be visualized together °. Based on FISH
results, we estimated GAP1 and GAP2 to be approximately 1 Mb each, and GAP3 about 500-
600 kb. Altogether, the gaps in horse MSY tiling path counted for less than 3 Mb. The actual size
of gaps might be even smaller because FISH analysis with large insert clones involved blocking
the hybridization of repetitive sequences due to which the visible hybridization signals are
smaller than the actual sequence contained in the BAC.



 Supplementary Note 2: Horse MSY sequencing and assembly

The tiling path for sequencing. On average, the overlapping BACs covered horse MSY 4-5 fold.
The coverage was the highest (up to 15 fold) in the multi copy region of contig Ib and in
repetitive regions around GAP2 (6 fold), and the lowest in single copy regions (2-3 fold)
(Supplementary Fig. 1). Lessons from humans show that due to the complex organization of the
mammalian Y chromosome, sequencing of the MSY must have higher redundancy than that
needed for autosomal and X-linked regions. For example, to sequence the 23 Mb human MSY,
220 highly redundant BAC clones were used ‘. Therefore, to sequence horse MSY, we selected a
tiling path of 94 BAC clones (Supplementary Fig. 1 and Supplementary Data 5) with 2-3 fold
redundancy in single copy regions, and including 43 out of 49 clones in the multi copy region of
contig Ib.

eMSY assembly. The horse MSY draft assembly was 9,497,449 base-pairs (bp) with mean contig
N50 of 147,563 bp and maximum contig length of 288,832 bp. The N50 of scaffolds was
299,624 bp, maximum scaffold length 554,834 bp, and maximum super-scaffold length 2.2 Mb
(Supplementary Table 1). For the multi-copy region, the N50 of contigs was 67,945 and
maximum contig length was 169,861 bp. In the multi copy region, individual sequenced BACs
were assembled into nearly complete contigs or scaffolds. For example, maximum contig length
for clones 165E24 and 17D15 were 103,017 bp and 149,715 bp, respectively, with N50 scaffold
size of 150,349 bp. The sequence content of BACs was compared in MAUVE and BACs that
represented unique regions were retained in the assembly. Sequences of individual multi copy
BACs were concatenated into 3.56 Mb of sequence.



 Supplementary Note 3: Horse MSY sequence annotation

Repeat content. The eMSY GC content and the content of interspersed repeats was analyzed
with RepeatMasker (http://www.repeatmasker.org/). We used default settings and DNA source
as “mammal other than below”, i.c., non-primate, non-rodent, non-carnivore, non-ungulate. The
analysis of 9,497,449 bp of eMSY assembled sequence revealed GC level of 40.10 %, which is
comparable to human (45.4%) , chimpanzee (40.6%) & mouse (39.3%) °, and rat (39.3%) Y
chromosomes, and masked altogether 5,173,258 bp (54.47 %) of which 49.43% comprised
interspersed repeats. Details of eMSY repeat content are presented in Supplementary Table 2.

Intra-chromosomal sequence identity. We used custom Perl codes, analogous to those applied
to the human MSY "1, to analyze the horse MSY sequence for regions with 100% intra-
chromosomal sequence similarities. The script used BLAST (http://blast.wustl.edu) to compare
sequence segments with word sizes ranging from 20 bp to 1000 bp, each with a step of 20% of
the word size. We generated triangular dot plots for hits with 100% identity for 18 different word
sizes: from 20 bp to 100 bp with 10 bp intervals and from 100 bp to 1000 bp with 100 bp
intervals. Four most informative dot plots are presented in Supplementary Fig. 4. It appeared that
the word (motif) size range from 50 bp to 500 bp was the best to highlight the accumulation of
100% identical sequences specifically in the eMSY ampliconic region in the interval between 1
Mb and 4 Mb in the sequence map.

Testis RNASeq and transcriptome assembly. We sought to comprehensively annotate the MSY
with testis-expressed transcripts. There is a strong evidence from our previous studies in horses 2
and from studies of other eutherian Y chromosomes ! that the majority of MSY genes are
expressed in testis - some exclusively, others broadly in multiple tissues but always with the
inclusion of testis. To date, the only known MSY gene that is not expressed in testis is AMELY,
which expression is limited to tooth . Therefore, in this study, we focused on testis-expressed
genes, particularly as one of the major applications of the annotated reference sequence in
stallions is male fertility.

Testis samples were procured during scheduled castration (Animal Use Protocol IACUC
2012-0250 Ref#000147) from two normal mature stallions (H383 — a 3 years-old American
Quarter Horse and H452 — a 4 years-old Thoroughbred), two normal mature donkeys (EAS13 — 3
years-old Miniature donkey and EAS18 — a 8 years-old Minature donkey), and two normal
mature mules (H357 — a 4 years-old and H358 — a 3 years-old) (Supplementary Table 4).

We extracted high quality (RIN>9.6) RNA using PureLink RNA Mini Kit (Ambion),
converted RNA into cDNA, prepared 2 x 100 bp PE TruSeq libraries (Illumina), and sequenced
the samples on HiSeq (Illumina) platform. We obtained, on average, 80 million PE reads per
sample (Supplementary Table 4). The obtained RNAseq data was applied for eMSY annotation
as follows: i) we individually assembled testis transcriptomes of the two horses using Trinity
and mapped those to eMSYv3 annotated assembly, and ii) we mapped RNAseq raw reads from
horses, donkeys and mules to the entire horse genome. The latter comprised of the reference
assembly EquCab2
(https://www.ncbi.nlm.nih.gov/projects/mapview/stats/BuildStats.cgi?taxid=9796 &build=2&ver
=2) and our eMSYv3 annotated assembly (Supplementary Data 2 and 8).

Gene models. We applied the following strategies to annotate the MSY':
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1) We analyzed all published eMSY gene sequences 2 and STS markers (Supplementary Data 4)
by BLAST (https://blast.ncbi.nim.nih.gov/Blast.cqi) against the eMSYv3 assembly. The BLAST
alignment locations were inspected and used to construct the assembly and annotate the
corresponding sequences.

2) We downloaded all known mammalian MSY mRNA transcripts from Ensembl
(http://www.ensembl.org/index.html?redirect=no) and NCBI (https://www.ncbi.nlm.nih.gov/).
Where available, the horse sequences were used. If not available, we used either human, or other
mammalian orthologous sequences and BLAST analyzed against eMSYv3 assembly. Each of the
hits was inspected and rigorous criteria were used to verify their presence in eMSY:: i) there had
to be at least 70% sequence similarity; ii) presence of at least 75% of the exons; iii) highly
repetitive and fragmentary hits were excluded.

3) Discovery and annotation of novel genes, i.e., those not reported in the horse MSY gene
catalogue 2. First, by mapping RNAseq transcripts to the eMSYv3 assembly, we identified those
that may be transcribed from the Y but were not known before. Next, we BLAST analyzed these
sequences against NCBI and Ensembl protein databases to identify potential novel Y genes.
Sequences of the genes with high sequence similarity to known proteins were downloaded and
BLAST analyzed against the eMSY assembly to refine intron and exon boundaries. If this hit
was of high quality, the gene was added to the eMSY annotation.

Assembly and gene model validation. The assembly and gene models were validated by PCR.
We extracted sequences for all new and selected known Y genes and designed 88 sets of primers
to validate these sequences in the horse Y (Supplementary Data 11). PCR reactions were carried
out with DNA templates from normal male and female horses and the results were visualized on
a standard 2% agarose gel. We evaluated the results for the presence or absence of amplification,
and for the expected product size. In addition, we designed 29 sets of primers to screen horse
tissues and examine transcriptional profiles of eMSY genes by reverse transcriptase PCR (RT-
PCR), and verify their expression in testes. Where possible, the RT-PCR primers were designed
from adjacent exons, spanning the intron (see below Horse MSY expression analysis;
Supplementary Fig. 5 and Supplementary Data 11). The RT-PCR experiments also contributed to
validation of exon-intron structure, exon-intron boundaries and eMSY gene models in general.
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 Supplementary Note 4: Transcriptional profiling of horse MSY genes

Reverse transcriptase PCR (RT-PCR). We used the published information about the
transcriptional profiles of the previously known horse MSY genes/transcripts 2 and carried out
reverse transcriptase PCRs (RT-PCR) on a panel of adult tissues for all newly identified genes
(Supplementary Fig. 5a). Transcriptional profiles of select ampliconic genes were also analyzed
in a panel of fetal of one 50 days-old male fetus (Supplementary Fig. 5b). The small scope of
RT-PCR in fetal tissues was due to limited availability of these tissues. All RT-PCR experiments
were carried out in duplicate, and in case of discordant results, additional experiments were
conducted until consistent results were obtained.

Testis RNAseq. In addition, we generated RNAseq data for adult horse, donkey and mule testis.
While the primary goal of testis RNAseq was to facilitate eMSY annotation (see above Horse
MSY sequence annotation; Supplementary Data 8 and Supplementary Table 4), the data also
complemented RT-PCR results, and provided preliminary comparative information about eMSY
gene expression in the testis of the horse, the donkey and their sterile hybrid, the mule.

Equus caballus FASTA reference genome for EquCab2 and GTF gene model version 87
were downloaded from Ensembl (ftp.ensembl.org/pub/release-87/fasta/equus caballus/dna/,
ftp.ensembl.org/pub/release-87/gtf/equus_caballus). Reference chromosomes were concatenated
into a single FASTA file, with addition of the newly assembled eMSYv3 contig, and indexed
using STAR genomeGenerate (10.1093/bioinformatics/bts635). The gene model was converted
to GFF3 format and modified to include the addition of MSY annotations determined in this
study (for GFF3 lines added, see Supplementary Data 12).

Reads from the six TruSeq libraries (H383, H452, EAS13, EAS18, H357 and H358;
Supplementary Table 4) were aligned to EquCab2 with STAR two-stage aligner using non-
stringent mapping parameters (outFilterMismatchNoverLmax 0.05) to allow divergent read
mapping in across species. Initial read mapping utilized the modified GFF3 as the sjdbGTFfile
and an sjdbOverhang of 99 and the --sjdbGTFtagExonParentTranscript flag as parent to
accommodate the GFF and added data. The generated high confidence collapsed splice junctions
file SJ.out.tab was then used as the sjdbFileChrStartEnd input to re-generate the EquCab2
genome, followed by a second alignment with previously used parameters. Reads that map to
multiple locations would normally be ignored in subsequent read counting. However, due to the
high-homology paralogs associated with many MSY genes, those read mappings were modified
post-alignment by altering their NH:i:value to be 1 and their MAPQ value to be 255, and the
0x100 bit in the second SAM column FLAG as unset. Read counting was performed using the
Python framework HTSeq (10.1093/bioinformatics/btu638) on an exon level in union mode with
idattr as parent and the modified GFF3 as the gene model. A list of read coverage per gene per-
individual is available in Supplementary Data 1. Summary information about the expression
profiles of eMSY genes in the horse, based on RT-PCR, cDNA selection and testis RNAseq, is
presented in Supplementary Data 6.

Discrepancies between RT-PCR and testis RNAseq. Overall, the RT-PCR results of this and our
previous study 2 were in agreement with horse testis RNAseq results (Supplementary Data 6).
Two genes, STSY and SYPY, gave consistent negative results with both approaches, suggesting
likely pseudogenization. However, several genes that were originally discovered by testis CDNA
selection 2 (thus, by definition transcribed in testis) and with unambiguous expression in testis by
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RT-PCR, showed low or very low testis expression by RNAseq read alignment (Supplementary
Data 6, Supplementary Data 8 and Supplementary Fig. 6). The discrepancy was most
pronounced for ANOS1Y , ARSFY, ETY4, OR8J2Y, OR8K3Y, TIGDL1Y, and YIR2 with zero
RNAseq reads aligned to eMSY, though RT-PCR indicated testis-limited (ANOSL1Y) or broad
expression (Supplementary Fig. 5a). Likewise, RNASeq read alignment was very low for
SHROOM2Y (5.5) and for all 9 copies of CUL4BY (1.5 -4.0), while RT-PCR indicated that
SHROOM?2Y is broadly expressed and CUL4BY is predominantly expressed in both adult testis 2
and fetal gonads (Supplementary Fig. 5a,b).

Since the RT-PCR results were consistent between 2 or more separate experiments, and
because several of these genes were discovered by testis cDNA selection, we infer that the
RNAseq/RT-PCR discrepancy is likely due to technical reasons. In general, RNAseq coverage
across transcripts is influenced by biases introduced during various steps, such as random
hexamer priming and cDNA synthesis 3, ligation, amplification, and sequencing **. It must be
noted that the RNAseq protocol used in this study did not involve PCR amplification, so we
likely missed low abundance transcripts. These transcripts, however, were recorded by RT-PCR.
Also, due to repetitive elements, high homology between paralogs, incomplete genome reference
sequence, and inaccuracies in transcript annotation, quantification of RNAseq requires
consideration of read mapping uncertainty, which may bias transcript abundance estimation *°.
This is partially influenced by the reality that de novo construction of transcriptomes are often
not sufficient to detect certain transcripts and/or cover their entire length 6. Further, the TruSeq
library method used involves poly(A)* enrichment, which is highly sensitive to transcript
degradation, and may bias against representation of partially degraded transcripts ’. Lastly,
discrepancies for ampliconic genes, such as CUL4BY, ETY4, TIGDLY, YIR2, are influenced by
errors in the assembly of these complex sequences. As noted above, the assembly of eMSY
ampliconic regions remained tentative and is a subject for re-sequencing and —assembly in the
future.



* Supplementary Note 5: MSY testis transcripts in horse, donkey and mule

Inclusion of donkey and mule testis RNASeq served two purposes. Firstly, we aimed to refine
comparative information between horse and donkey MSY gene content and expression profiles.
Secondly, because the mule is a sterile horse-donkey interspecific hybrid with impaired
spermatogenesis, genes differentially expressed in the mule testis may reveal those critical for
normal spermatogenesis in the horse and donkey.

Horse-donkey comparison. In 2011 ? we showed that of the 37 horse MSY genes known at that
time, 29 genes were present (according to PCR on male and female genomic DNA) in donkey
MSY. Thus, the MSY's of the two species are rather similar in gene content which was confirmed
and refined in this study by comparative testis RNAseq analysis (Supplementary Data 8 and
Supplementary Fig. 6). We also confirmed and refined main differences between the two MSYs.
As already observed in 2011 2, donkey does not carry male specific ETSTY7 sequences (alias
ZNF33Db) as indicated by the same PCR amplicon pattern of these sequences in male and female
donkeys 2. Expression analysis by RT-PCR in donkey testis in the prior study indicated no or
very low-level transcription. Here we clarify and refine these observations and show by FISH
that ETSTY7 is restricted to the X chromosome in donkeys (Supplementary Note 6 and
Supplementary Fig.7) with low-level transcription in tests as revealed by RNAseq. Another
clearly different transcript between the donkey and horse MSYs was ETSTY2. Though ETSTY?2
sequences are present in MSY in both species ?, it is not expressed in donkey testis but is among
highly abundant MSY transcripts in the horse (Supplementary Fig. 6). In addition, we noted
absence or very low abundance of SH3TCL1Y transcripts in the donkey and moderate abundance
in the horse. Other than these 3 examples, there was surprisingly high concordance between the
abundance of horse and donkey MSY transcripts in testis as measured by RNAseq alignment to
horse eMSY assembly. Though, we anticipate that a more refined comparative analysis will
reveal more structural and functional differences between the two MSYSs.

Horse-donkey comparison with the mule. Mule is a sterile hybrid of a male donkey and female
horse, and carries the Y chromosome of the donkey. While we observed overall similar
alignment patterns for donkey and mule testis RNAseq reads, some transcripts showed
dysregulation in the mule. Of these, the only clearly downregulated transcript in the mule was
HSFY, while in horse and donkey HSFY transcripts were of medium abundance. More curiously,
several known eutherian MSY genes, such as TSPY, UBA1Y, RBMY, KDM5DY, DDX3Y, UTY,
SRY, TXLNGY, TBL1Y and equid specific transcript ETY7, showed clear upregulation in mule
testis (Supplementary Fig. 6 and Supplementary Data 8). Genome-wide analysis of 29,371
transcripts (Supplementary Data 1) showed that 839 differed by greater than 30x read depth in
both donkey and horse when compared to mule. Of these, 268 have no Ensembl annotation. Of
the remaining 571 transcripts, 543 were functionally mappable using GO enrichment with
PANTHER 13.1 (10.1093/nar/gks1118). The overrepresentation test with GO Ontology database
built 2018-02-02 produced 36 over-represented biological processes at FDR < 0.05, of which at
least 30 are directly involved in male fertility. These observations are of potential significance
for the discovery of MSY and other genes critical for stallion fertility. However, our current
knowledge about the functions of MSY genes in horses/equids is too shallow for drawing any
conclusion about functional implications of these observations. For any further speculations,



focused and thorough functional annotation of the horse Y chromosome is needed either as a
separate project or as a part of the equine FAANG (Functional Annotation of Animal Genomes)
initiative.
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* Supplementary Note 6: Horizontal transfer

Discovery and validation. Initially, the eMSY ampliconic transcript ETSTY7 sequences were
analyzed by BLAST and the results showed high similarity to the genome assembly scaffolds of
equine intestinal parasite Parascaris equorum, in particular to scaffolds PEQ_contig0000339
(LM491555; 88%); 0.0) and PEQ-contig0002468 (LM465228; 95%; 6e-17). Because GenBank
has only a single source of genome assembly for Parascaris spp. (due to ambiguities in the
systematics of these parasites 8, we prefer not to refer to a specific species) in GenBank, there
was no comparison for bioinformatics check for possible contamination of the parasite sequence
with the host DNA. Therefore, we conducted a series of rigorous wet lab experiments to verify
that the similarity between horse MSY and Parascaris spp. indicates true horizontal transfer
(HT) and is not a result of contamination.

Parasite specimen were collected from affected horses as described elsewhere 8. We used the
following Parascaris material (Supplementary Table 6): 5 different adult individuals, which
were isolated from the small intestine of one male and one female young horse; two individuals
of L4-stage larva; two sets of eggs isolated from the uterus of two different female worms;
dissected body wall, intestine and gonads obtained and pooled from 3 different worms. It is
important to note that before freezing, adult worm A3 was incubated in vitro for 48h, thus
reducing chance of contamination with host DNA.

Parasite DNA isolation: DNA was isolated from eggs, L4, dissected adult organs and whole
worms. The tissue was homogenized in a mortar by crushing with a pestel in a small amount of
liquid nitrogen and cell lysis solution (Qiagen). The material was incubated in cell lysis solution
with 10 mg/mL Proteinase K at 57 °C overnight. The DNA was isolated with standard phenol-
chloroform method using heavy 2.0 mL phase lock gel tubes (5Prime) for the separation of
aqueous and organic layers. The DNA was precipitated with isopropanol, washed with 70%
ethanol and resuspended in ddH20. This was followed by a column-based clean-up using Qiagen
DNeasy Blood & Tissue kit and the manufacturer’s protocol.

DNA quality evaluation. Parascaris DNA was quantified by NanoDrop spectrophotometer and a
1 uL aliquote was checked on a 1% agarose gel. As a rule and regardless of the source,
Parascaris DNA was fragmented compared to the high molecular weight gDNA we isolated
from horses. This was an important consideration while attempting to amplify large (>600 bp)
PCR products.

Primers and validation by PCR was done with three types of primers (Supplementary Data
11) as follows:

1. Horse-parasite shared sequences. Three sets of primers were designed from sequences
that showed similarity between Parascaris and horse. Primers ETSTY7-3ex3 were designed
from eMSY transcript ETSTY7 copy 3 exon3. These primers had 3 mismatches with Parascaris
contig0000339 (LM491555.1). Primers PEQ339.1 and PEQ339.4 were designed from
Parascaris contig0000339 and had 1 and 0 mismatches with ETSTY7 copy 3, respectively. The 3
primer-sets were used to show that the corresponding sequences are truly present in both the
parasite and horse/equid genomes (Supplementary Fig. 8a).

2. Horse-specific sequences. Next, we used primers for known horse-specific multicopy
sequences, such as mitochondrial DNA (mtDNA; 4 primer sets), autosomal copy number
variable regions ° (6 primer sets) and multicopy TSPY from eMSY. PCR experiments with these
primers on multiple Parascaris gDNA templates and horse controls resulted in horse amplicons
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only (Fig. 6 and Supplementary Fig. 8b), indicating that the adult parasites, larvae and eggs are
not contaminated with host DNA.

3. Parasite-specific sequences. Two sets of primers, PEQ001.1 and PEQO001.2, were
designed from Parascaris spp. genomic sequences (PEQ_scaffold0000001; LM462759) that
shared no similarity with eMSY or any other part of the horse genome. We tested these primers
on multiple parasite gDNA templates, horse gDNA and horse BAC DNA, and observed
amplification in parasite only (Fig. 6 and Supplementary Fig. 8c). The results indicate that horse
gDNA or BAC clones are not contaminated with parasite sequences.

Based on these PCR analyses we do not find evidence about horse-to-parasite or
parasite-to-horse DNA contamination, thus supporting the presence of true HT between
the species.

Sanger sequencing: ETSTY7-3ex3 primers were used to amplify PCR products from DNA
isolated from 6 different Parascaris spp samples (Supplementary Table 6): two adult individuals,
A0.4 and Al, originating from different hosts; adult gonads and body wall; eggs EO.1 and L4
larval stage. The PCR products were purified from unincorporated nucleotides and polymerase
through PCR clean up spin columns (Qiagen), and sequenced with forward and reverse primers
using BigDye chemistry. The sequencing products were resolved in an ABI 3730 sequencer. The
Parascaris spp. sequences were aligned with ETSTY7-3 exon 3 using NCBI BLAST 2 sequences
and showed 92-96% identity between the two species. The sequences were used to construct the
ETSTY7 phylogenetic tree in Fig. 6.

ETSTY7 sequence distribution in equids. We investigated the presence and distribution of
ETSTY7 sequences in the genomes of equids (donkey, Plains zebra and Hartmann’s mountain
zebra) and Perissodactyls (rhinoceros) by FISH on metaphase chromosome (Fig. 6 and
Supplementary Fig. 7). The hybridization probe was a biotin-labeled 612 bp PCR product of
primers ETSTY7-copy3, exon3 F: 5’-ACACCTCGGCCTAGAGAACA-3’; R: 5°-
TGACTGAAGCAGTGGTGAGG-3’ (Supplementary Data 11). Note that due to the resolution
limits of FISH °, small PCR products are typically not suitable for obtaining detectable
hybridization signals. However, FISH with ETSTY7 PCR product resulted in clear and consistent
hybridizations in all studied equids (Supplementary Fig. 7). The results suggest that ETSTY7
sequences are present in multiple copies in all equids genomes and that horizontal transfer with
Parascaris spp. dates back to more than 5 MYR, preceding the divergence of modern equids %.
On the other hand, ETSTY7 showed distinct distribution patterns in the four equid genomes: Y
and X in the horse; X only in the donkey; both sex chromosomes and subtelomeres of multiple
autosomes in the two zebra species. The findings suggest a dynamic nature of these sequences in
equid genomes, though further studies are needed to understand their functions. In contrast, no
hybridization with ETSTY7 was detected in the rhino (Supplementary Fig. 7). This may indicate
that the sequences are too diverged and/or with too few copies for detection by FISH, or that
ETSTY7-homologous sequences are not present in other Perissodactyls. To test the latter, we
conducted PCR with ETSTY7-3 ex 3 primers using gDNA of equids, Perissodactyls (rhino, tapir)
and a random selection of mammals from diverged eutherian orders. ETSTY7 was amplified in
horses and equids only, and not in rhino, tapir or other mammalian species (Supplementary Fig.
8).
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Supplementary Table 1. Metrics of horse MSY sequence assembly

Length N50 Max N50 Max
Section of  (base contigs Contig  Scaffold Scaffold
themap  pairs, bp) Start(bp) End (bp) (bp) (bp) (bp) (bp)
Contig la
(single
copy) 1,122,312 1 1,122,312 15,461 93,459 203,697 372,289
Contig Ib
(multi
copy) 3,558,619 1,122,313 4,680,932 84,850 149,715 180,613 250,326
Contig Ic
(single
copy) 2,039,080 4,680,933 6,720,013 76,475 130,524 538,439 787,619
Contig Il
(single
copy) 1,307,465 6,720,014 8,027,479 147,563 288,832 299,624 554,834
Contig 111
(single
copy) 779,909 8,027,480 8,807,388 147,563 288,832 299,624 554,834
Contig IV
(single
copy) 690,064 8,807,389 9,362,219 147,563 288,832 299,624 554,834
TOTAL 9,497,449
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Supplementary Table 2. Horse MSY repeat content

Repeat content of the 9,497,449 bp horse MSY sequence as revealed by RepeatMasker:
http://www.repeatmasker.org/.

Repeat class Repeat sub- | Number | Length, % of

type of bp sequence
elements

SINEs 2,334 454,155 4.78
MIRs 628 82,664 0.87

LINEs 4,354 3,251,245 | 34.23
LINE1 3,740 3,122,723 | 32.88
LINE?2 485 99,589 1.05
L3/CR1 69 12,296 0.13
RTE 55 15,775 0.17

LTR elements 1,641 792,419 8.34
ERVL 331 177,863 1.87
ERVL- 411 158,016 1.66
MaLRs
ERV classl | 671 404,210 4.26
ERV classll | 209 48,569 0.51

DNA elements 888 194,939 2.05
hAT-Charlie | 540 100,870 1.06
TcMar- 199 68,973 0.73
Tigger

Unclassified 14 2,249 0.02

Total interspersed 4,695,007 | 49.43

repeats

Small RNA 1,619 346,963 3.65

Satellites 665 410,951 4.33

Simple repeats 1,127 63,080 0.66

Low complexity 166 8,000 0.08
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Supplementary Table 3. Divergence times and phylogenetic topologies of eMSY genes

Evolutionary data on individual eMSY genes showing divergence time with 95% confidence
intervals (CI), percent sequence divergence from gametolog/paralog, and phylogenetic pattern;
genes that tested positive for gene conversion are denoted “GC” in the topology column.

Gene symbol Divergence; MYA (95% CI) % divergence Topology
X-Y ancestral gametologs

AMELY 61.5 (55.7-69.2) 8.3 broadly polyphyletic, GC

ANOS1Y 49.2 (28.7-63.4) 5.6 polyphyletic, 2 events, GC

AP1S2Y 134.5 (103.6-171.4) 9.1 monophyletic

BCORY 116.5 (106.3-129.4) 17.9 monophyletic

CcuL4BY 142.6 (128.7-155.5) 34.0 monophyletic

DDX3Y 133.7 (117.4-149.3) 9.7 monophyletic

EIF1AY 129.1 (117.1-142.6) 9.9 monophyletic

EIF2S3Y 119.0 (105.1-136.8) 10.6 monophyletic

HSFY?! ~180 n.a. monophyletic

KDM5D 133.7 (119.2-147.3) 16.5 monophyletic

NLGN4Y 4.4 (4.1-4.5) 3.9 polyphyletic, 2 events, GC

OFD1Y 4.3 (4.0-4.5) 3.1 broadly polyphyletic

RBMY! ~180 n.a monophyletic

SHROOM2Y  37.5(25.9-45.2) 8.8 monophyletic

SRY! ~180 n.a. monophyletic

STSY 32.6 (19.8-43.5) 9.0 polyphyletic, 2 events, GC

SYPY 115.7 (107.5-140.6) 41.9 monophyletic

TAB3Y 123.5 (107.5-140.6) 35.5 monophyletic

TBL1Y 35.1 (24.5-47.8) 4.9 broadly polyphyletic, GC

TMSB4Y 45 (4.4-4.5) 11.3 polyphyletic, 2 events, GC

TSPY?! ~180 n.a. monophyletic

TXLNGY 114.0 (102.0-132.0) 15.7 monophyletic

UBAL1Y 137.9 (116.8-159.7) 14.7 monophyletic

USP9Y 137.5 (122.2-154.6) 12.2 monophyletic

uTY 128.4 (112.9-145.2) 10.1 monophyletic

WWC3Y 56.9 (39.4-69.0) 16.9 monophyletic

ZFY 126.9 (113.3-143.3) 17.2 monophyletic, GC

ZRSR2Y 53.0 (27.1-64.8) 16.6 polyphyletic, 2 events, GC

PAR transposed

ARSFY 2.3(1.3-3.4) 0.9 monophyletic, GC

ARSHY 4.3 (4.0-4.5) 1.8 monophyletic, GC
Autosomal transposed

ATP6VOCY 23.9 (14.9-34.7) 4.6 monophyletic

EIF3CY 4.0 (3.4-4.4) 0.9 monophyletic, GC

HSPALLY 20.1 (11.2-29.8) 3.3 monophyletic

HTRA3Y 4.1 (4.1-4.5) 2.2 monophyletic

MYL9Y 3.8 (1.6-4.5) 0.7 monophyletic, GC

OR8J2Y 65.6 (55.4-75.6) 22.1 monophyletic

ORB8K3Y 90.6 (83.0-95.7) 20.1 monophyletic

RPS3AY 23.2 (13.6-34.5) 3.3 monophyletic

SH3TC1lY 3.3(2.9-3.7) 1.7 monophyletic, GC

TIGD1Y 86.4 (83.8-97.9) 28.5 monophyletic

XKR3Y 9.2 (5.2-16.2) 2.6 polyphyletic, 2 events, GC

lavailable sequences of X and Y paralogs are not sufficiently alignable for divergence time
analysis and therefore approximate dates are provided based on Bellott et al. 2014 .,
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Supplementary Table 4: Horse, donkey and mule testis RNAseq statistics

Sample ID

EAS13 EAS18 H357 H358 H383 H452
Species donkey donkey mule mule horse horse
Breed Miniature Miniature n/a n/a American Thoroughbred

Quarter Horse

Age, years 3 8 4 3 3 4
Read Length 100 100 100 100 100 100
Ends 2 2 2 2 2 2
Total Reads 87,795,658 | 87,008,992 | 75,190,048 | 74,825,766 | 78,698,836 83,136,092
Index % 15 14.86 12.85 12.79 13.44 14.2
Passed Filter 82,320,998 | 81,241,658 | 70,374,154 | 69,608,268 | 73,410,388 78,206,040
Reads (PF)
Yield (Mb) 8232 8124 7037 6961 7341 7821
%PF 93.76 93.37 93.6 93.03 93.28 94.07
%Q30 (PF) 93.5 93.05 93.38 93.05 92.59 93.35
Mean QScore (PF) | 36.21 36.04 36.21 36.13 35.9 36.17
%Perfect Index 99.36 99.13 98.94 99.37 98.8 95.58
Match
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Supplementary Table 5: Evolutionary strata and divergence estimates of horse gametologs

Divergence estimates of synonymous sites (Ks) between equine gametologs; Cl — confidence
interval.

95% CI
Gene ID Stratum | Ks Lower Upper
HSFY 1 1.968 0.570 3.365
SRY 1 1.811 0.000 7.457
RBMY1 1 0.478 0.135 0.821
RBMY2 1 0.478 0.135 0.821
CUL4BY 1 0.667 0.375 0.959
TSPY 2/3 0.731 0.000 9.725
KDM5D 2/3 0.461 0.395 0.528
SYPY 2/3 0.594 0.067 1.121
UBALY 2/3 0.298 0.242 0.354
UTY 2/3 0.243 0.203 0.282
DDX3Y 2/3 0.342 0.254 0.430
USP9Y 2/3 0.317 0.000 0.724
BCORY 2/3 0.403 0.354 0.451
TAB3Y 2/3 0.362 0.092 0.632
ZFY 2/3 0.163 0.119 0.206
EIF2S3Y 2/3 0.320 0.203 0.436
EIF1AY 2/3 0.300 0.116 0.484
TXLNGY 2/3 0.306 0.223 0.388
AP1S2Y 2/3 0.290 0.128 0.452
ZRSR2Y 2/3 0.202 0.103 0.300
OFD1Y 2/3 0.016 0.008 0.025
TMSB4Y 2/3 0.272 0.046 0.498
AMELY 2/3 0.130 0.049 0.212
WWC3Y 2/3 0.261 0.208 0.315
SHROOM2Y |4 0.094 0.037 0.151
TBL1Y 4 0.099 0.069 0.128
ANOS1Y 4 0.188 0.107 0.268
STSY 4 0.141 0.104 0.178
NLGN4Y 4 0.124 0.092 0.156

17



Supplementary Table 6: Details of the Parascaris samples

The Parascaris samples were used to validate putative horizontal transfer by PCR (see Fig. 6 and
Supplementary Fig. 8 for more details).

ID Develop. | Processing before DNA isolation Worm | Horse Horse
stage sex (host) (host) sex
ID
A0.1 | adult flash frozen in LN2 male #260-15 | female
A0.3 | adult flash frozen in LN2 male #260-15 | female
A0.4 | adult flash frozen in LN2 male #260-15 | female
Al adult Transported to the lab in a sub-section of small male #17-C39 | male

intestine in a 37°C water bath; removed from
intestine and flash frozen in LN2

Al.1 | adult Same as above; 2" DNA isolation male #17-C39 | male
A3 adult Collected and removed from small intestine; male #17-C39 | male
transport in RPMI 1680 in a 37°C water bath;
cultivated in RPMI 1680 at 37°C for 48h; shap
frozen in LN2

L4.0 | L4 larva | flash frozen in LN2 n/a n/a n/a
L4.1 | L4 larva | flash frozen in LN2 n/a n/a n/a
EO eggs; unembryonated eggs isolated from the uterus of a | Female | n/a n/a
external | dissected female worm
stage
EO.1 | eggs, unembryonated eggs isolated from the uterus of a | female | n/a n/a

external | dissected female worm (a different female worm
stage than for EQ)

BW | body dissected from 3 adult worms males | n/a male
wall

I intestine | dissected from 3 adult worms males | n/a male

G gonads dissected from 3 adult worms males | n/a male
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Supplementary Fig. 1: BAC tiling path map for horse MSY sequencing and assembly. a-b
Horse MSY sequence assembly scaffolds and superscaffolds (details in Supplementary Table 1);
c Linear order of 265 genes, ESTs and STS markers to support the order and overlaps of BAC
clones (marker details are in Supplementary Data 4); genes are in blue bold italic font; STS
markers in regular font; d The tiling path of 192 partially overlapping BAC clones of which 139
originated from CHORI-241 BAC library (BAC IDs in regular black or red font); 41 from
TAMU BAC library (green highlight), and 12 from INRA BAC library (yellow highlight). The
tiling path clones were arranged into four contigs (I, Il, 111, IV) leaving 3 gaps for which no
clones were found. Contig | was further divided into two single-copy regions — la and Ic, and an
ampliconic region Ib (blue shade with BAC IDs in red font). The tiling path of ampliconic BACs
was arranged provisionally based on a set of selected markers. Light green shaded area in contig
la denotes the PAR-transposed region in eMSY. Proximally, the BAC tiling path extends into Y
heterochromatin and distally into the PAR, thus spanning across the entire eMSY. BAC clones
are denoted with colored horizontal bars: in red, if sequenced, in grey, if not sequenced; STSs
are connected with vertical dotted lines to their locations in tiling path BAC clones. The total
number of BACs and the number of clones sequenced are shown below each contig.
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Supplementary Figure 2
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Supplementary Fig. 2: Validation of tiling path BACs by FISH. a Schematic of horse MSY
BAC tiling path map showing the location of BACs corresponding to FISH images b-i; single-
copy regions are shown in yellow; ampliconic regions in blue; ETSTY7 array in purple; the
pseudoautosomal region in green, and PAR-transposed region in eMSY in light green; b-e
Examples of FISH validation: b metaphase showing Y specificity of BAC 24123; ¢ metaphase
and interphase showing BAC 115117 sequence shared between MSY and chrl8; d metaphase
showing PAR transposition in eMSY, and e massive amplification of ETSTY7 arrays in Y and
XQg17-g21 heterochromatin; f-i Evaluation of BAC copy numbers by FISH in interphase
chromosomes and DNA fibers: f multi-copy BACs 24123 (red) and 17D15 (green) flanking the
main ampliconic region (see a); g dual-color FISH with BACs 152G20 (~ 4 copies) and BAC
72G7 (~10 copies); h multiple copies of BAC 160K10, and i Fiber-FISH illustrating proximity
of ampliconic BACs JBW (green) and 103.3A6 (red); Scale bars in b-h 1um; scale bar in i
(fiber-FISH) 100 kbp.
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Supplementary Figure 3
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Supplementary Fig. 3: Estimation the size of gaps in eMSY tiling path by FISH. a
Schematic of horse MSY BAC tiling path map showing the location of gaps and gap-flanking
BACs; b-d Images of dual-color interphase FISH with pairs of gap-flanking BACs; a GAP1:
127N19 red (contig I) and 91.4G10 green (contig 11); b GAP2: 132K10 green (contig 1) and
205D10 red (contig I11); c GAP3: 34A23 red (contig 111) and 504H13 green (contig 1V); Based
on the analysis of at least 30 interphase cells per experiment, we estimated the size of GAP1 and
GAP2 to be approximately 1 Mbp, and GAP3 to be approximately 500-600 kbp; None of the
gaps could be visualized by fiber-FISH, suggesting that all were larger than 500 kbp; Scale bar
1pm.
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Supplementary Figure 4
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Supplementary Fig. 4: Intra-chromosomal sequence similarity. a-d Triangular dot plots
showing the location of 100% identical sequences in horse MSY sequence map 0-9.5 Mbp (x-
axis) using sequence motifs (word size) of 50 bp (a); 100 bp (b); 500 bp (c), and 1000 bp (d)
with a step of 20% of the word size. Note the accumulation of 100% identical sequences
specifically in the major ampliconic region at approximately 1-4 Mb in eMSY (seen as a
pyramid shape). The decrease in identity observed as word size increases is reflective of the
increase in divergence between homologous sequence blocks since the expansion of this

ampliconic region.
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Supplementary Figure 5
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Supplementary Figure 5 continued
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Supplementary Fig. 5: Expression profiles of eMSY genes by reverse transcriptase PCR. a
In equine adult tissues: B — brain, Ki — kidney, He — heart, Sm — skeletal muscle, Li — liver, Lu —
lung, Sp — spleen, Sv — seminal vesicle, T — testis, 10 — no mRNA control, 11 — no RT control,
12 — no genomic DNA control, & — male genomic DNA control, ¢ — female genomic DNA
control; L —100 bp ladder (NEB); shown are only results for newly discovered MSY genes
(n=19) not including those published by Paria et al. 2011 2. An exception is equine testis-specific
transcript on Y 7 (ETSTY7, alias ZNF33b) which was included to confirm that this highly
ampliconic transcript is expressed exclusively in testis. The control housekeeping gene was

autosomal ACTR1B.
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Supplementary Figure 5 continued
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Supplementary Fig. 5: Expression profiles of eMSY genes by reverse transcriptase PCR. b
In equine fetal tissues: L —100 bp ladder (NEB), B — brain, Ki — kidney, He — heart, Li — liver, Lu
- lung, Gi — Gi-tract, Ca — chorionic allantois, G — gonad, Gb — gubernaculum, 10 — no RT
control, 11 — no mRNA template control, 12 — no gDNA control, & — male gDNA control, @ —
female gDNA control; T — adult testis cDNA control. The figure depicts RT-PCR results with
select ampliconic eMSY genes on a tissue panel of a 50 days-old male equine fetus.
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Supplementary Figure 6
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Supplementary Figure 6 continued
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Supplementary Fig. 6: MSY gene expression in horse, donkey and mule testis. Histogram of
total exonic read counts per MSY gene for the average of two horses (H383 and H452), two
donkeys (EAS13 and EAS18), and two mules (H357 and H358). Due to the high homology of
MSY gene families, both ambiguously and unambiguously mapped reads were counted.
Comparison of read counts between horse, donkey and mule is a proxy for relative expression of
MSY genes in each species or hybrid. We categorized expression into four mutually exclusive
groups a High abundance; mapped reads > 1000; b Moderate abundance; mapped reads > 70; ¢
Low abundance; mapped reads > 10, and d Very low abundance; remainder of annotated genes
(see also Supplementary Data 8).

28



Supplementary Figure 7
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Supplementary Fig. 7: ETSTY7 FISH analysis in equids and the rhino. For each species, we
presented a metaphase image and an arranged karyogram showing chromosomal distribution of
ETSTY7 sequences in a horse; b donkey; ¢ Hartmann’s mountain zebra; d Plains zebra, and e
White rhinoceros. ETSTY7 arrays are present in the genomes of all studied equids, but not in the
rhino. Scale bar 1um. Animal images purchased from Bigstock https://www.bigstockphoto.com/.
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Supplementary Figure 8
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Supplementary Fig. 8. Validation of horizontal transfer. a HT validation with primers
designed from horse-parasite shared sequences in horse genome (ETSTY7-3ex3) and Parascaris
genome (PEQ339.1, PEQ339.4) on 3 groups of DNA templates: a.1 - 13 Parascaris individuals,
tissues and developmental stages, C. elegans as negative invertebrate control, and male and
female horses; a.2 — 10 randomly selected autosomal and 12 X and Y BACs from CHORI-241
and TAMU libraries; BACs 54A8 and 69E11 (bold font) contain 15 copies of ETSTY7 in eMSY
sequence map (Fig. 1 and Supplementary Fig. 1); a.3 — equids, Perissodactyls and diverse
mammals; b Tests for horse-to-parasite DNA contamination with primers designed from horse-
specific multicopy sequences in mtDNA, autosomes, chrUn and eMSY;; ¢ Tests for parasite-to-
horse DNA contamination with primers designed from Parascaris-specific scaffold
PEQ_scaffold0000001 (LM462759) and using parasite and horse gDNA and horse BAC DNA as
templates.
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Supplementary Figure 9 continued
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Supplementary Figure 9 continued
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Supplementary Figure 9 continued
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Supplementary Figure 9 continued
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Supplementary Fig. 9. Time trees. Time divergence trees for 37 eMSY genes constructed with
MCMCTREE (PAML v.4.9f) using soft fossil constraints (Supplementary Data 13). Information
for individual genes is in Supplementary Data 7.
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Supplementary Fig. 10. Maximum likelihood trees for 41 eMSY genes. Highest likelihood
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nodes. Information for individual genes is in Supplementary Data 7.
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