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Glossary of terms
Aggrephagy-(G0:0035973) Selective degradation of protein aggregates by macroautophagy.
Source: GOC:autophagy, PMID:18508269, GOC:kmv, PMID:25062811.

Axonogenesis-(GO:0007409) De novo generation of a long process of a neuron, including the
terminal branched region. Refers to the morphogenesis or creation of shape or form of the
developing axon, which carries efferent (outgoing) action potentials from the cell body towards
target cells. Source: GOC:pg, GOC:dph, GOC:jid, GOC:pr, ISBN:0198506732.

Bioenergetics-It is the quantitative study of the energy transductions that occur in living cells and
on the nature and function of the chemical processes underlying these transductions?. In our
study, it is implied that we were focusing on mitochondrial bioenergetics.

Macroautophagy-(G0:0016236) The major inducible pathway for the general turnover of
cytoplasmic constituents in eukaryotic cells, it is also responsible for the degradation of active
cytoplasmic enzymes and organelles during nutrient starvation. Macroautophagy involves the
formation of double-membrane-bounded autophagosomes which enclose the cytoplasmic
constituent targeted for degradation in a membrane-bounded structure. Autophagosomes then
fuse with a lysosome (or vacuole) releasing single-membrane-bounded autophagic bodies that
are then degraded within the lysosome (or vacuole). Some types of macroautophagy, e.g.
pexophagy, mitophagy, involve selective targeting of the targets to be
degraded. Source: PMID:9412464, PMID:12914914, PMID:11099404, PMID:20159618,
PMID:16973210, PMID:15798367.

Micromitophagy-(G0:0000424) Degradation of a mitochondrion by Ilysosomal
microautophagy. Source: PMID:27003723, PMID:15798367.  Mitochondria-derived  vesicle
formation (micromitophagy or Type 3 mitophagy). Includes the removal of damaged
mitochondria components by forming mitochondria-derived vesicles (MDV) that bud off and
then transit to lysosomes?.

Mitochondrial dynamics-as utilized in this study refers to the spatial mitochondria positioning
within cell (G0O:0048312; G0:0048311), mitochondrial shape changes (G0O:0070584) and
assembly, arrangement of constituent parts, or disassembly of a mitochondrion including
distribution (GO:0007005).

Mitophagy-(G0O:0000423) Degradation of a mitochondrion by macroautophagy.
Source: PMID:15798367. Clearance of damaged mitochondria via autophagy of mitochondria.

Oxidative phosphorylation (OXPHOS)-(GO:0006119) The phosphorylation of ADP to ATP that
accompanies the oxidation of a metabolite through the operation of the respiratory chain.
Oxidation of compounds establishes a proton gradient across the membrane, providing the
energy for ATP synthesis. Source:ISBN:0198506732, ISBN:0471331309.

Note: All definitions were obtained from 34, unless noted otherwise.
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Supplementary Tables
Table S1 Mitochondrial outcomes in cortex from WT and Wdfy3*/2 mijce
Outcome Mean + SEM

WT Wdfy3*/e< p-value
(n=11) (n=16)

ATP-driven oxygen uptake

Substrate

Malate-glutamate 302 23+2 0.012

Succinate 55+3 402 0.0001

Markers of mitochondrial mass and compartments

Complex IV activity (MIM) 773 52+4 <0.0001

Citrate synthase activity (MM) 450+ 16 492 +17 0.049

CCO/CS (MIM/MM) 0.17+£0.01 0.11 +0.02 0.014

Others

SRC 2.48 +0.49 0.96 £ 0.03 0.0005

ROS/Proton leak 0.43 £0.03 0.76 £ 0.05 < 0.0001
Markers of mitochondrial mass and compartments: Complex IV or Cytochrome c oxidase activity
(CCO), as a marker of mitochondrial inner membrane (MIM), was evaluated by polarography as
described in the Methods section. Citrate synthase activity, as a marker of mitochondrial matrix
(MM), was expressed as nmol x (min mg protein)?. SRC (spare respiratory capacity) is expressed

Table S2 Mitochondrial outcomes in cerebellum from WT and Wdfy3*/2 mice
Outcome Mean + SEM
WT Wdfy3+/1az p-value
(n=11) (n=16)

ATP-driven oxygen uptake
Substrate
Malate-glutamate 43 +5 33+3 0.040

Succinate 92+10 715 0.025

Markers of mitochondrial mass and compartments
Complex IV activity (MIM) 128+ 8 97 +8 0.007

Citrate synthase activity (MM) 538 £ 22 493 + 15 0.046
CCO/CS (MIM/MM) 0.24 £ 0.02 0.19+0.01 0.011
Others

SRC 1.60 +0.03 1.42 £0.04 0.001
ROS/Proton leak 0.45 +0.003 0.59 +0.02 < 0.0001

All details were indicated under Table S1 legend. All p-values calculated using the 1-tailed t-test.
In bold, values with p £0.050.



Table S3 Mitochondrial outcomes in hippocampus from WT and Wdfy3*/22 mice
Outcome Mean + SEM
WT Wdfy3*/ec p-value
(n=3) (n=5)

ATP-driven oxygen uptake

Substrate

Malate-glutamate 2914 315 0.396

Succinate 11+3 15+5 0.295

Markers of mitochondrial mass and compartments

Complex IV activity (MIM) 703 616 0.160

Citrate synthase activity (MM) 99+8 124 +9 0.057

CCO/CS (MIM/MM) 0.18 £0.01 0.12+£0.01 0.004

Others

SRC 1.09+0.12 1.29 +0.68 0.417

ROS/Proton leak 0.67 £0.05 0.76 £0.17 0.354
All details were indicated under Table S1 legend. All p-values calculated using the 1-tailed t-test.
In bold, values with p £0.050.

Table S4 Mitochondrial outcomes in olfactory bulb from WT and Wdfy3*/'2 mice
Outcome Mean + SEM

WT Wdfy3*/1a p-value
(n=3) (n=5)

ATP-driven oxygen uptake
Substrate
Malate-glutamate 25.0+£0.3
Succinate 17.3+0.9
Markers of mitochondrial mass and compartments
Complex IV activity (MIM) 868 100+ 11 0.205
Citrate synthase activity (MM) 141 +1 156+ 8 0.105
CCO/CS (MIM/MM) 0.15+0.01 0.16 £ 0.01 0.268
Others
SRC 0.72 £ 0.08 0.58 + 0.36 0.391
ROS/Proton leak 0.75 +£0.05 0.68 £0.21 0.406

All details were indicated under Table S1 legend. All p-values calculated using the 1-tailed t-test.

28+4
19+3

0.297
0.345




Supplementary Figures and Figure Legends
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Supplementary Figure S1 Brain morphology of Wdfy3*/% mice

A. Left panel. Top views of 3-m old whole-mount brains illustrate the absence of overt
morphological anomalies in Wdfy3*//%Z mutants. Right panel. Analysis of brain wet weight
confirmed no significant differences between genotypes (Student’s t test, p=0.301). B-C.
Paraformaldeyhyde-perfused brains were sectioned, routinely processed for histology,
embedded in paraffin, sectioned for slide mounting at 3-5 um and stained with hematoxylin and
eosin. Coronal HE-stained forebrain (B) and cerebellum sections (C) of 3-m old (PND100)
Wdfy3*/%<Z and WT brain reveal comparable morphology with no overt abnormalities. CC, corpus
callosum; Cx, Cortex; GCL, granular cell layer; HC, hippocampus; HT, hypothalamus; MB,
midbrain; Me, medulla; ML, molecular layer; Th, thalamus; WM, white matter. Scale bars are 1

mm.
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Supplementary Figure S2 Expression levels of markers of mitophagy and autophagy

Representative Western blots and densitometry of mitophagy-related proteins (Pink1l, Mfn2, Vdac and LC3I and
LC3Il) in mitochondrial-enriched fractions obtained from cortex (CTX), cerebellum (CB), hippocampus (HIP), and
olfactory bulb (OB) of WT (white bars) and Wdfy3 (gray bars) haploinsufficient mice. Data are shown as mean *
SEM of samples ran in duplicates (n = 3 WT and 5 mutants). Statistical analysis was performed with Student’s t
test between WT and Wdfy3 mice for each brain area. MnSOD was used as mitochondrial loading control.



DNA NNT NNT NNT WDFY3 Neg

Ladder +/+ +/- -/- 286 288 290 287 291 293 Ctrl

100 bp ladder

1517 bp

1000 bp
800 bp
700 bp — 4

500 bp
400 bp

300 bp

200 bp

100 bp

Expected Fragments: NNT +/+ =579 bp; NNT -/- =743 bp

Supplementary Figure S3 Representative Nnt genotyping

All mice utilized in this study were genotyped for the wild-type or truncated Nnt gene as described >. Genomic
DNA was isolated from 5 mg of hindbrain as previously described ©. Concentration and purity of DNA was
evaluated by measuring the absorbance of 260 and 280 nm on a Tecan Infinite M200 Nanoquant (Tecan,
Austria). The criteria utilized for the presence of Nnt was the occurrence of a band at the expected size of 579
bp; the truncated form shows a band of an expected size of 743 bp; heterozygous carriers showed two bands,
each at each expected size. Labels: NNT+/+, +/- and -/- are positive controls; the numbers indicate the mouse
numbers utilized in this study; Neg Ctrl= negative control (no DNA added).
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Supplementary Figure S4

Representative full-length, black and white images of Western blots shown as cropped images under Fig. 8 and
Supplementary Fig. 1. In many instances, the scan of the membrane was performed in the area proximal to the
expected molecular weight of the protein of interest and, as such, a full version of the image was not acquired.
Membrane shown in A was probed for Prkn, Mfn2, Lamp2, Pink1l and MnSOD. Membrane shown in B was probed
for Sgsm1, LC3, MnSOD, and VDAC. In C are shown cytosolic levels of MnSOD and actin (see Fig. 8A-B). Images were
acquired with the use of the Odyssey Infrared Imaging System (LI-COR Biosciences), which allows the sequential
detection of multiple proteins when probed with antibodies raised in different species (i.e., rabbit and mouse), due
to the possibility of detecting IR-labeled secondary antibodies simultaneously in both 700 and 800 nm channels in

Full-length western blots images

a single scan. Asterisks indicate unspecific bands.
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Supplementary Figure S5

Patient

s Open-
Access
Phenotype(s) Variants
Broad palm, Intellectual disability, Narrow nasal bridge, Short 2
foot, Short palm, Short philtrum, Short stature, Tapered finger,
Thin lower lip vermilion, Thin upper lip vermilion
Broad palm, Intellectual disability, Narrow nasal bridge. Short 2

foot, Short palm, Short philtrum, Short stature, Tapered finger,
Thin lower lip vermilion, Thin upper lip vermilion

Aplasia/Hypoplasia of metatarsal bones, Clinodactyly of the 5th 1
finger, Delayed speech and language development, Intellectual
disability, Short palm, Short stature, Short toe

Abnormality of the skin, Atria septal defect, Behavioral 1
abnormality, Blepharophimosis, Epicanthus, Intellectual disability

Absent speech, Coloboma, Intellectual disability, profound, 1
Moderate postnatal growth retardation

Autism, Intellectual disability, Self-mutilation 3
Abnormality of finger, Frontal bossing 1
Intellectual disability 1
Global developmental delay 1
Absent gallbladder, Aplasia/Hypoplasia of the hallux, Bilateral 3

cleft lip and palate, Hemiatrophy, Hypertelorism, Hypodysplasia
of the corpus callosum, Hypoplastic sacral vertebrae,
Intrauterine growth retardation, Laryngeal stenosis,
Micrognathia, obsolete Malformation of the heart and great
vessels, Short foot, Single umbilical artery, Unilateral narrow
palpebral fissure

Neonatal hypotonia 1
Bicornuate uterus, Intellectual disability, severe 1
Autism, Behavioral abnormality 1

Epicanthus, Global developmental delay, Low-set ears, Muscular 1
hypotonia, Pectus excavatum, Short philtrum, Thin upper lip
vermilion

Wdfy3 genomic variants in humans and associated phenotypes
Reported information was generated by the DECIPHER community.
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