### **Supplementary Data File**

#### Greater Microbial Translocation and Vulnerability to Metabolic Disease in Healthy Aged Female Monkeys

Quentin N. Wilson<sup>1</sup>, Magan Wells<sup>1</sup>, Ashley T. Davis<sup>1</sup>, Christina Sherrill<sup>1</sup>, Matthew C. B. Tsilimigras<sup>2</sup>, Roshonda B. Jones <sup>2</sup>, Anthony A. Fodor<sup>2</sup>, Kylie Kavanagh<sup>1\*</sup>

### Supplementary Table S1.

#### Basic demographics of young and old monkeys evaluated in Study 1.

|                                              | Young (n=9) | Old (n=10)  | p-value |
|----------------------------------------------|-------------|-------------|---------|
| Age (yrs)                                    | 10.7 (0.63) | 22.1 (0.38) | < 0.001 |
| BW (kg)                                      | 4.87 (0.41) | 4.94 (0.26) | 0.45    |
| Waist (cm)                                   | 34.3 (2.32) | 38.6 (0.83) | 0.04    |
| Fasting glucose (mg/dL)*                     | 136 (31)    | 119 (17)    | 0.30    |
| Fasting insulin (µIU/mL)                     | 32.5 (12.6) | 16.1 (2.87) | 0.09    |
| HOMA score (AU)                              | 8.95 (3.12) | 5.14 (1.40) | 0.12    |
| Total plasma cholesterol (mg/dL)             | 162 (11.9)  | 168 (13.2)  | 0.36    |
| High density lipoprotein cholesterol (mg/dL) | 56.6 (5.73) | 57.2 (3.49) | 0.46    |
| Plasma triglycerides (mg/dL)                 | 80.6 (6.75) | 80.6 (9.44) | 0.50    |

<sup>\*</sup>High blood glucose values are attributed to the terminal nature of the blood collection procedure.

## **Supplementary Table S2.**

The ascending colonic mucosal-associated microbiome was not different between young and old monkeys. This table outlines the lack of significance associated with the first 3 MDS levels at the phylum, class, order, family and genus levels.

|           |      |          |           | Sequence | Adjusted for Depth |
|-----------|------|----------|-----------|----------|--------------------|
|           |      | Variance | Age Group | Depth    | Group              |
| Taxonomic |      |          |           |          |                    |
| Level     |      | %        | p-value   | p-value  | p-value            |
| Phylum    | MDS1 | 31.03    | 0.213     | 0.803    | 0.621              |
| Phylum    | MDS2 | 23.00    | 0.643     | 0.002    | 0.883              |
| Phylum    | MDS3 | 13.58    | 0.235     | 0.127    | 0.383              |
| Class     | MDS1 | 29.15    | 0.314     | 0.021    | 0.856              |
| Class     | MDS2 | 18.89    | 0.676     | 0.053    | 0.837              |
| Class     | MDS3 | 11.37    | 0.563     | 0.263    | 0.837              |
| Order     | MDS1 | 29.74    | 0.474     | 0.001    | 0.959              |
| Order     | MDS2 | 16.41    | 0.330     | 0.388    | 0.630              |
| Order     | MDS3 | 11.85    | 0.657     | 0.534    | 0.895              |
| Family    | MDS1 | 25.40    | 0.338     | 0.000    | 0.897              |
| Family    | MDS2 | 15.07    | 0.614     | 0.571    | 0.852              |
| Family    | MDS3 | 11.33    | 0.328     | 0.750    | 0.852              |
| Genus     | MDS1 | 24.88    | 0.557     | 0.000    | 0.980              |
| Genus     | MDS2 | 14.61    | 0.972     | 0.149    | 0.980              |
| Genus     | MDS3 | 11.69    | 0.502     | 0.668    | 0.980              |

## **Supplementary Table S3.**

The ascending colonic lumen microbiome was not different between young and old monkeys. This table outlines the lack of significance associated with the first 3 MDS levels at the phylum, class, order, family and genus levels.

|           |      |          |           | Sequence | Adjusted for Depth |
|-----------|------|----------|-----------|----------|--------------------|
|           |      | Variance | Age Group | Depth    | Group              |
| Taxonomic |      |          |           |          |                    |
| Level     |      | %        | p-value   | p-value  | p-value            |
| Phylum    | MDS1 | 41.32    | 0.194     | 0.365    | 0.500              |
| Phylum    | MDS2 | 23.58    | 0.590     | 0.059    | 0.780              |
| Phylum    | MDS3 | 12.79    | 0.238     | 0.784    | 0.500              |
| Class     | MDS1 | 37.71    | 0.122     | 0.374    | 0.469              |
| Class     | MDS2 | 19.78    | 0.702     | 0.054    | 0.989              |
| Class     | MDS3 | 12.77    | 0.337     | 0.251    | 0.715              |
| Order     | MDS1 | 31.72    | 0.081     | 0.261    | 0.566              |
| Order     | MDS2 | 20.30    | 0.516     | 0.217    | 0.994              |
| Order     | MDS3 | 15.09    | 0.722     | 0.024    | 0.994              |
| Family    | MDS1 | 26.90    | 0.066     | 0.562    | 0.437              |
| Family    | MDS2 | 17.69    | 0.943     | 0.021    | 0.974              |
| Family    | MDS3 | 13.28    | 0.933     | 0.149    | 0.974              |
| Genus     | MDS1 | 30.07    | 0.162     | 0.917    | 0.601              |
| Genus     | MDS2 | 14.63    | 0.953     | 0.002    | 0.719              |
| Genus     | MDS3 | 13.19    | 0.428     | 0.902    | 0.719              |

## **Supplementary Table S4.**

The fecal microbiome was not different between young and old monkeys. This table outlines the lack of significance associated with the first 3 MDS levels at the phylum, class, order, family and genus levels.

| Taxonomic |      |          |           | Sequence | Adjusted for Depth |
|-----------|------|----------|-----------|----------|--------------------|
| Level     |      | Variance | Age Group | Depth    | Group              |
|           |      | %        | p-value   | p-value  | p-value            |
| Phylum    | MDS1 | 57.99    | 0.146     | 0.018    | 0.504              |
| Phylum    | MDS2 | 14.22    | 0.330     | 0.297    | 0.504              |
| Phylum    | MDS3 | 8.29     | 0.181     | 0.533    | 0.504              |
| Class     | MDS1 | 46.12    | 0.193     | 0.007    | 0.557              |
| Class     | MDS2 | 15.58    | 0.262     | 0.734    | 0.557              |
| Class     | MDS3 | 8.48     | 0.038     | 0.313    | 0.557              |
| Order     | MDS1 | 38.52    | 0.242     | 0.011    | 0.682              |
| Order     | MDS2 | 15.95    | 0.186     | 0.592    | 0.682              |
| Order     | MDS3 | 9.31     | 0.192     | 0.104    | 0.682              |
| Family    | MDS1 | 34.78    | 0.144     | 0.017    | 0.493              |
| Family    | MDS2 | 11.75    | 0.330     | 0.381    | 0.493              |
| Family    | MDS3 | 10.21    | 0.119     | 0.240    | 0.493              |
| Genus     | MDS1 | 32.22    | 0.088     | 0.019    | 0.373              |
| Genus     | MDS2 | 11.75    | 0.905     | 0.532    | 0.991              |
| Genus     | MDS3 | 8.88     | 0.067     | 0.804    | 0.260              |

# **Supplementary Table S5.**

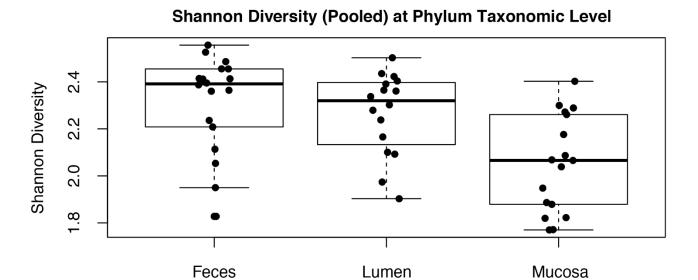
# Breakdown of dietary conditions used in Studies 1, 2, and 3.

| Dietary Component   | Chow Diet         | Western Diet       |
|---------------------|-------------------|--------------------|
| Total Protein       | 18.2% of calories | 19 % of calories   |
| Total Fat           | 13.1% of calories | 35.5 % of calories |
| Total Carbohydrates | 68.7% of calories | 46% of calories    |
| Simple Sugars       | 5.25% of calories | 22% of calories    |
| Cholesterol         | 0.75 ppm          | 600ppm             |
| Saturated Fat       | 0.2% of calories  | 14% of calories    |
| Sodium              | 0.72 mg/kCal      | 0.30 mg/kCal       |
| Crude Fiber         | > 6 %             | 6.1%               |
| Caloric Density     | 3.43 kcal/g       | 3.56 kcal/g        |

# **Supplementary Table S6.**

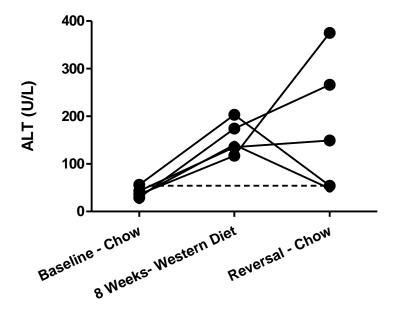
# Basic demographics of young and old monkeys evaluated in Study 2.

|         | N  | Age            | BW             | Waist          | Glucose        | Insulin        | TPC           | ALT            | ALP            | LBP-1          | sCD14          |
|---------|----|----------------|----------------|----------------|----------------|----------------|---------------|----------------|----------------|----------------|----------------|
|         |    | years          | kg             | cm             | mg/dL          | $(\mu IU/L)$   | (mg/dL)       | (U/L)          | (U/L)          | ng/mL          | ng/mL          |
| Young   | 6  | 8.12<br>(1.27) | 5.2<br>(0.38)  | 30.9 (2.02)    | 78.8<br>(6.94) | 33.7<br>(15.2) | 135<br>(9.46) | 58.2<br>(0.93) | 83.5<br>(12.4) | 2.93<br>(1.15) | 2.13<br>(0.09) |
| Old     | 12 | 21.7<br>(0.68) | 5.34<br>(0.34) | 35.9<br>(1.62) | 63.1<br>(6.88) | 8.21<br>(2.76) | 158<br>(10.0) | 49.2<br>(5.83) | 92.2<br>(9.79) | 3.97 (0.78)    | 2.61 (0.13)    |
| p-value |    | < 0.001        | 0.80           | 0.04           | 0.17           | 0.04           | 0.08          | 0.41           | 0.60           | 0.53           | 0.02           |


## **Supplementary Table S7.**

Old monkeys in Study 2 had elevated baseline markers of microbial translocation (lipopolysaccharide binding protein 1 and soluble CD14 [LBP-1, sCD14]) which did not further elevate following 8 weeks consumption of a Western diet. \*p<0.05; \*p<0.10 Old vs Young (n=6/group) at baseline. Overall p-value is for ANCOVA.

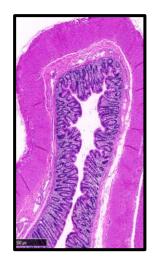
|                    | LBP-1 (ng/mL) |             | sCD14 (ng/mL) |             |  |
|--------------------|---------------|-------------|---------------|-------------|--|
|                    | Baseline      | Post-Diet   | Baseline      | Post-Diet   |  |
| Young Western Diet | 2.93 (1.15)   | 3.73 (1.49) | 2.13 (0.09)   | 1.81 (0.14) |  |
| Old Western Diet   | 5.15 (1.17)#  | 4.88 (1.03) | 2.85 (0.16)*  | 2.46 (0.25) |  |
| p-value            |               | 0.95        |               | 0.25        |  |


### **Supplementary Figure S1.**

There were significant site differences in the diversity of the microbiome with the ascending colon mucosal microbiome being significantly less diverse than that of feces, or samples from the lumen of the ascending colon ( $p=7.35 \times 10^{-6}$ ).



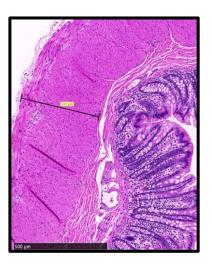
#### Supplementary Figure S2.


Liver alanine aminotransferase (ALT) levels in monkeys assessed in Study 2 had variable return to baseline values after the Western diet challenge was discontinued for 8 weeks and chow was consumed. Only 40% (2/5) females evaluated returned to baseline and 40% continued to show increasing hepatic damage. The broken line, (----), indicates a median value for age-matched monkeys from the Vervet Research Colony.



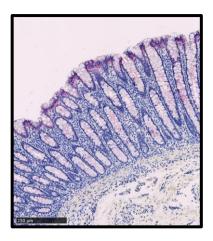
#### Supplementary Figure S3.

Example histology and measurements from Study 1. Overall structure of the colon is shown in panel A. An example of crypt depth and visualization used to manually count goblet cells shown in panel B. Panel C shows measurement of the muscularis layer thickness.


A.



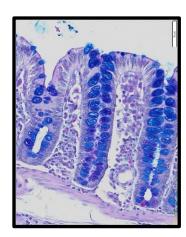
В.




C.




Representative immunostaining for occludin protein abundance is shown in panel D, and claudin-1 in panel E. Co-staining by periodic acid Schiff and Alcian blue for proteoglycan content of mucins is show in panel F.


D.



E.



F.

