SUPPLEMENTAL MATERIAL

Table S1. Search strategy for Medline(R) (1946-most recent) and Embase (Embase+Embase Classic)

1	Human/				
2	(bibliography or case reports or clinical conference or conference abstract or conference				
	paper or conference proceeding or "conference review" or clinical trial, all or comment or				
	congresses or editorial or guideline or in vitro or letter or meta analysis or "review" or				
	systematic reviews).pt.				
3	1 NOT 2				
	Method terms				
4	exp Case-Control Studies/ or case control.mp.				
5	exp cohort studies/ or exp follow-up studies/ or exp longitudinal studies/ or exp prospective				
	studies/ or exp retrospective studies/ or cohort study.mp.				
6	4 or 5				
	Alcohol terms				
7	exp Alcohol Drinking/				
8	exp Alcoholic Intoxication/				
9	exp binge drinking/				
10	(alcohol* adj3 (drink* or consum* or intake)).mp.				
11	heavy drinking.mp.				
12	alcoholic beverages/				
13	OR/7-12				
	Disease terms				
14	hypertension/				
15	high blood pressure.mp.				
16	elevated blood pressure.mp.				
17	hypertens\$.tw.				
18	exp resistant hypertension/				
19	resistant hypertension.mp.				
20	OR/14-19				
21	3 AND 6 AND 13 AND 20				
22	remove duplicates from 21				

~ .	Bias due to	Bias in selection of participants	Bias in classification	Bias due to	Bias in measurement	Bias in selection of the reported	Overall risk of
Study Ascherio et al., 1996 ¹	confounding ++	into the study +	of exposures +	missing data +	of outcomes	result +	bias Moderate
Bae et al., 2014 ^{2*}	+++	++	+	+	++	+	Serious
Bai et al., 2017 ³		+	+	+++	+		Serious
	++					+	
Banda et al., 2010⁴	++	++	+	+	++	+	Moderate
Diederichs et al., 2016⁵	++	+	+	+	+	+	Moderate
Forman et al., 20096	+	+	+	++	++	+	Moderate
Fuchs et al., 2001 ⁷	++	+	+	+	+	+	Moderate
Halanych et al., 2010 ⁸	++	+	+	+	+	+	Moderate
Nakanishi et al., 2001 ⁹	++	++	+	+	+	+	Moderate
Nakanishi et al., 200210	++	++	+	+	+	+	Moderate
Niskanen et al., 200411	+	+	+	+	+	+	Low
Ohmori et al., 200212	++	+	+	+	+	+	Moderate
Okubo et al., 201413	++	+	+	++	+	+	Moderate
Onat et al., 200814	++	+	+	++	+	+	Moderate
Peng et al., 2013 ¹⁵	++	++	+	+	++	+	Moderate
Sesso et al., 200816	++	+	+	++	++	+	Moderate
Thawornchaisit et al., 2013 ¹⁷ ±	++	++	++	++	++	+	Moderate
Wang et al., 2011 ^{18*}	++	+	+	+	+	+	Moderate
Witteman et al., 1989 ¹⁹ , 1990 ²⁰	++	+	+	+	++	+	Moderate

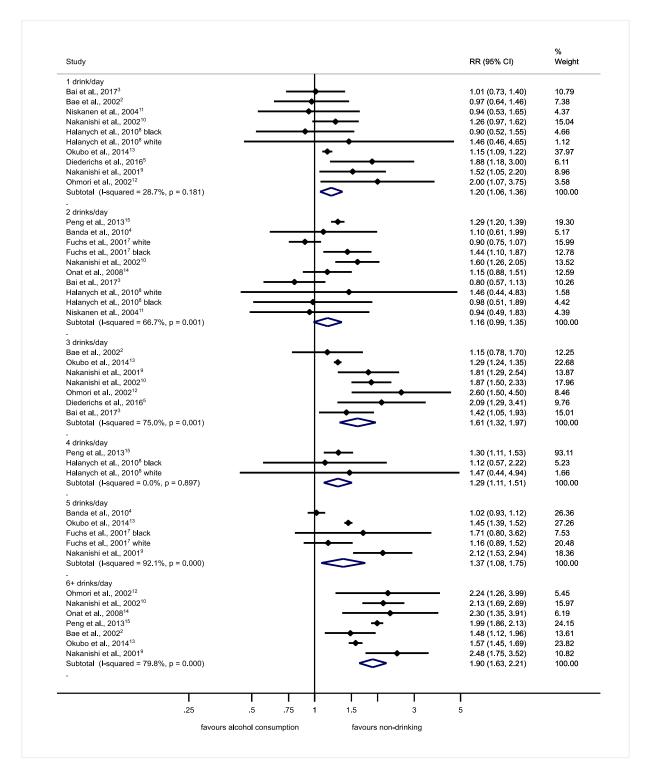
Table S2. The Risk Of Bias in Non-randomized Studies – of Interventions (ROBINS-I) assessment tool, modified version

*Nested-case-control studies. + = low risk of bias; ++ = moderate risk of bias; +++ = serious risk of bias.

± Only the relative risk for former drinkers was used.

% Study RR (95% CI) Weight Women Bai et al., 20173 0.82 (0.60, 1.12) 18.68 Wang et al., 2011¹⁸ white 1.02 (0.78, 1.35) 21.73 Wang et al., 2011¹⁸ black 1.20 (0.97, 1.47) 33.43 Halanych et al., 20108 white 0.59 (0.23, 1.52) 2.43 Halanych et al., 20108 black 1.27 (0.74, 2.17) 7.14 Thawornchaisit et al., 201317 1.14 (0.82, 1.59) 16.60 Subtotal (I-squared = 18.7%, p = 0.292) 1.06 (0.91, 1.23) 100.00 . Men Thawornchaisit et al., 201317 0.98 (0.74, 1.30) 42.98 Halanych et al., 20108 black 0.66 (0.26, 1.67) 7.18 Halanych et al., 2010⁸ white ➡ 2.75 (0.80, 9.46) 4.19 Ohmori et al., 200212 1.89 (0.72, 4.96) 6.68 ≻ Bai et al., 2017³ 0.94 (0.69, 1.28) 38.97 Subtotal (I-squared = 23.0%, p = 0.268) 1.02 (0.79, 1.33) 100.00 Overall (I-squared = 14.2%, p = 0.309) 1.04 (0.92, 1.18) Т .25 1.5 .5 .75

1


favours former drinking

favours lifetime abstention

3

Figure S1. Incidence of hypertension in former drinkers compared to lifetime abstainers at baseline by sex, 1989-2017

Figure S2. Incidence of hypertension in men by alcohol intake in standard drinks at baseline compared to abstainers, all studies, 1989-2017

1 standard drink = 12 grams pure ethanol per day.

Figure S3. Incidence of hypertension in women by alcohol intake in standard drinks at baseline compared to abstainers, all studies, 1989-2017

Study	RR (95% CI)	% Weight
1 drink/day		
Wang et al., 2011 ¹⁸ black	1.09 (0.93, 1.28)	8.75
Bai et al., 2017 ³	0.83 (0.50, 1.37)	1.75
Ascherio et al., 1996 ¹	0.94 (0.85, 1.03)	12.86
Witteman et al., 1989 ¹⁹	0.92 (0.84, 1.00)	13.36
Forman et al., 2009 ⁶	0.87 (0.84, 0.90)	16.06
Diederichs et al., 2016 ⁵	▲ 1.76 (1.09, 2.83)	1.90
Sesso et al., 2008 ¹⁶ ◆	0.96 (0.92, 1.00)	15.95
Wang et al., 2011 ¹⁸ white	0.96 (0.79, 1.16)	7.38
Halanych et al., 2010 ⁸ white	0.43 (0.24, 0.75)	1.40
Halanych et al., 2010 ⁸ black	0.87 (0.67, 1.12)	5.20
Okubo et al., 2014 ¹³	1.05 (1.00, 1.11)	15.39
Subtotal (I-squared = 81.2%, p = 0.000)	0.95 (0.89, 1.02)	100.00
2 drinks/day		
Ascherio et al., 1996 ¹	1.09 (0.96, 1.24)	13.24
Witteman et al., 1989 ¹⁹	1.13 (1.01, 1.26)	14.53
Fuchs et al., 2001 ⁷ black	0.91 (0.68, 1.22)	5.32
Fuchs et al., 2001 ⁷ white	0.91 (0.76, 1.08)	10.33
Onat et al., 2008 ¹⁴		1.54
Forman et al., 2009 ⁶ → → → → → → → → → → → → → → → → → → →	1.02 (0.96, 1.08) 0.39 (0.15, 0.99)	18.03 0.69
Diederichs et al., 2016 ⁵	→ 0.39 (0.15, 0.99) 1.81 (0.97, 3.35)	1.50
Halanych et al., 2010 ⁸ black	0.72 (0.43, 1.21)	2.08
Halanych et al., 2010 ⁸ white	0.25 (0.10, 0.64)	0.68
Sesso et al., 2008 ¹⁶	0.96 (0.87, 1.06)	15.42
Wang et al., 2011 ¹⁸ white	0.97 (0.85, 1.10)	13.07
Wang et al., 2011 ¹⁸ black	1.03 (0.71, 1.51)	3.56
Subtotal (I-squared = 54.7%, p = 0.009)	1.00 (0.92, 1.08)	100.00
3 drinks/day		
Ascherio et al., 1996 ¹	- 1.46 (1.21, 1.76)	20.41
Witteman et al., 1989 ¹⁹	— 1.47 (1.23, 1.76)	20.84
Okubo et al., 2014 ¹³	1.10 (1.03, 1.17)	30.14
Sesso et al., 2008 ¹⁶	1.10 (0.97, 1.25)	25.44
Bai et al., 2017 ³	1.16 (0.55, 2.45)	3.17
Subtotal (I-squared = 74.3%, p = 0.004)	1.24 (1.08, 1.43)	100.00
4 drinks/day		
Ascherio et al., 1996 ¹	1.32 (1.11, 1.57)	29.24
Witteman et al., 1989 ¹⁹	← 1.70 (1.46, 1.98)	32.77
Forman et al., 2009 ⁶	► 1.61 (1.42, 1.82)	37.99
Subtotal (I-squared = 60.3%, p = 0.081)	> 1.55 (1.35, 1.77)	100.00
5 drinks/day		
Okubo et al., 2014 ¹³	1.14 (0.93, 1.40)	39.66
Fuchs et al., 2001 ⁷ white	◆ 1.74 (1.11, 2.74)	26.01
Sesso et al., 2008 ¹⁶		34.33
Subtotal (I-squared = 74.6%, p = 0.019)	1.50 (1.06, 2.13)	100.00
6+ drinks/day		
Okubo et al., 2014 ¹³	— 1.29 (0.89, 1.87)	100.00
Subtotal (I-squared = .%, p = .)	> 1.29 (0.89, 1.87)	100.00
·		
.25 .5 .75 1 1.5	3 5	
favours alcohol consumption fav	ours non-drinking	

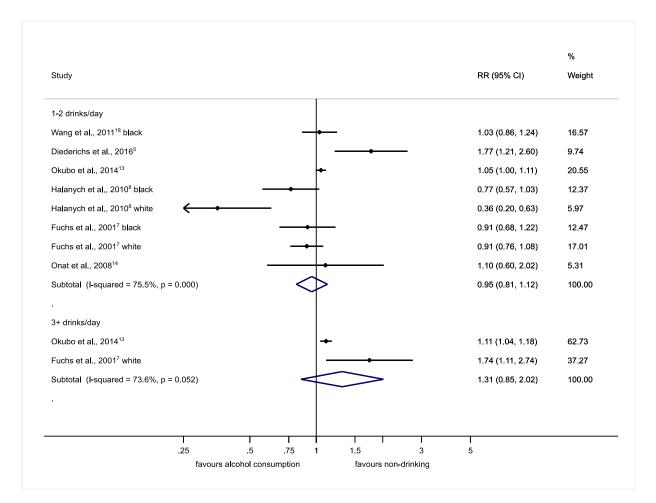

1 standard drink = 12 grams pure ethanol per day.

Figure S4. Incidence of hypertension in men by alcohol intake in standard drinks at baseline compared to abstainers in cohort studies with clinical measurement of blood pressure and low or moderate risk of bias, 1989-2017

Study				RR (95% CI)	% Weigh
1-2 drinks/day					
Okubo et al., 2014 ¹³	-	←		1.15 (1.09, 1.22)	19.16
Diederichs et al., 2016 ⁵				1.88 (1.18, 3.00)	3.92
Nakanishi et al., 2002 ¹⁰		—		1.42 (1.14, 1.76)	10.73
Nakanishi et al., 2001 ⁹	-	•		1.52 (1.05, 2.20)	5.61
Ohmori et al., 2002 ¹²	-	•		2.00 (1.07, 3.75)	2.35
Peng et al., 2013 ¹⁵				1.29 (1.20, 1.39)	18.41
Niskanen et al., 2004 ¹¹				0.94 (0.61, 1.45)	4.41
Halanych et al., 2010 ⁸ white		•		1.46 (0.61, 3.51)	1.28
Halanych et al., 2010 ⁸ black	+			0.93 (0.61, 1.42)	4.50
Fuchs et al., 2001 ⁷ white	_ +			0.90 (0.75, 1.07)	12.60
Fuchs et al., 2001 ⁷ black	.			1.44 (1.10, 1.87)	8.61
Onat et al., 2008 ¹⁴		♠		1.15 (0.88, 1.51)	8.42
Subtotal (I-squared = 64.3%, p = 0.001)		\diamond		1.23 (1.11, 1.36)	100.00
3-4 drinks/day				4 00 (4 04 4 05)	05.04
Okubo et al., 2014^{13}		•		1.29 (1.24, 1.35)	25.31
Nakanishi et al., 2001 ⁹				1.81 (1.29, 2.54)	13.33
Nakanishi et al., 2002 ¹⁰			-	1.87 (1.50, 2.33)	18.44
Ohmori et al., 2002 ¹²			•	2.60 (1.50, 4.50)	7.50
Diederichs et al., 2016 ⁵				2.09 (1.29, 3.41)	8.81
Peng et al., 2013 ¹⁵				1.30 (1.11, 1.53)	21.20
Halanych et al., 2010 ⁸ black			•	1.12 (0.57, 2.22)	5.40
Subtotal (I-squared = 74.6%, p = 0.001)		\sim		1.58 (1.32, 1.89)	100.00
- 5+ drinks/day					
Fuchs et al., 2001 ⁷ black	-+-	•		1.71 (0.80, 3.62)	4.04
Fuchs et al., 2001 ⁷ white	-+-	◆───		1.16 (0.89, 1.52)	14.16
Ohmori et al., 2002 ¹²			•	2.24 (1.26, 3.99)	6.12
Nakanishi et al., 2002 ¹⁰				2.13 (1.69, 2.69)	15.77
Onat et al., 2008 ¹⁴			◆	2.30 (1.35, 3.91)	6.89
Okubo et al., 2014 ¹³	1	—		1.51 (1.26, 1.80)	17.97
Peng et al., 2013 ¹⁵	1	+		1.99 (1.86, 2.13)	21.80
Nakanishi et al., 2001 ⁹			•	2.25 (1.67, 3.02)	13.26
Subtotal (I-squared = 71.0%, p = 0.001)		\diamond		1.82 (1.54, 2.15)	100.00
.25 .5	.75 1	1.5	3	5	
	onsumption		n-drinking		

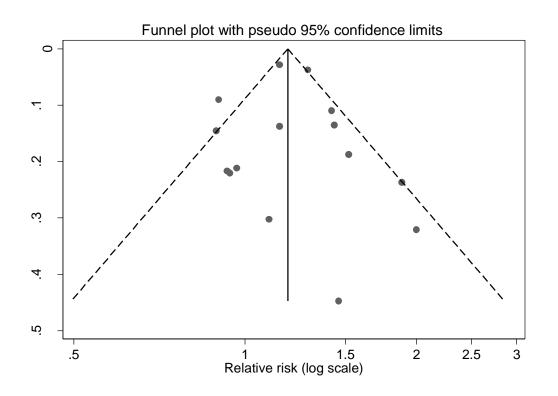
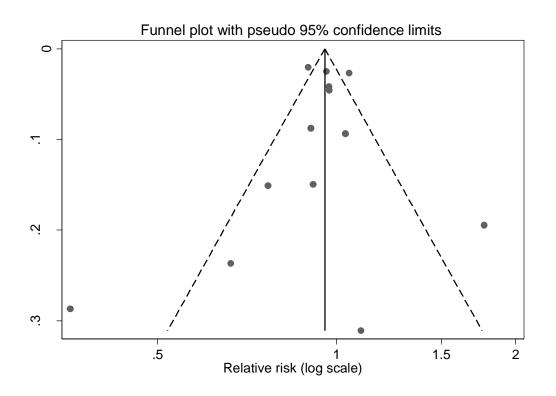
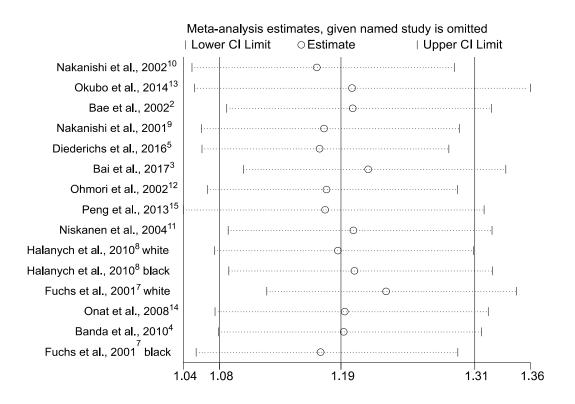
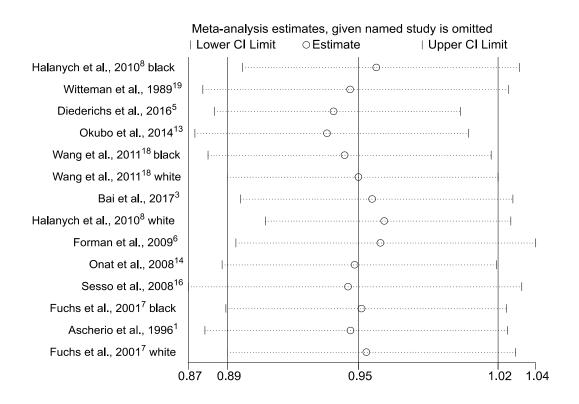

1 standard drink = 12 grams pure ethanol per day. RR = relative risk.

Figure S5. Incidence of hypertension in women by alcohol intake in standard drinks at baseline compared to abstainers in cohort studies with clinical measurement of blood pressure and low or moderate risk of bias, 1989-2017



1 standard drink = 12 grams pure ethanol per day.


Figure S6. Funnel plot for 1-2 drinks/day alcohol intake at baseline compared to abstainers in men, 1989-2017


Horizontal axis shows study effects (logRR), vertical axis shows study precision (standard error of RR). Each dot represents an individual study. Vertical line shows pooled effect (random-effect model). **Figure S7.** Funnel plot for 1-2 drinks/day alcohol intake at baseline compared to abstainers in women, 1989-2017

Horizontal axis shows study effects (logRR), vertical axis shows study precision (standard error of RR). Each dot represents an individual study. Vertical line shows pooled effect (random-effect model). **Figure S8.** Influence of omitting a single study for 1-2 drinks/day alcohol intake at baseline compared to abstainers in men, 1989-2017

Figure S9. Influence of omitting a single study for 1-2 drinks/day alcohol intake at baseline compared to abstainers in women, 1989-2017

Supplemental References:

1. Ascherio A, Rimm EB, Giovannucci EL, Colditz GA, Rosner B, Willett WC, Sacks F, Stampfer MJ. A prospective study of nutritional factors and hypertension among US men. Circulation. 1992;86:1475-1484

2. Bae JM, Ahn YO. A nested case-control study on the high-normal blood pressure as a risk factor of hypertension in Korean middle-aged men. J Korean Med Sci. 2002;17:328-336

3. Bai G, Zhang J, Zhao C, Wang Y, Qi Y, Zhang B. Adherence to a healthy lifestyle and a DASH-style diet and risk of hypertension in Chinese individuals. Hypertens Res. 2017;40:196-202

4. Banda JA, Clouston K, Sui X, Hooker SP, Lee CD, Blair SN. Protective health factors and incident hypertension in men. Am J Hypertens. 2010;23:599-605

5. Diederichs C, Neuhauser H. The incidence of hypertension and its risk factors in the German adult population: results from the German National Health Interview and Examination Survey 1998 and the German Health Interview and Examination Survey for Adults 2008-2011. J Hypertens. 2017;35:250-258

6. Forman JP, Stampfer MJ, Curhan GC. Diet and lifestyle risk factors associated with incident hypertension in women. JAMA. 2009;302:401-411

7. Fuchs FD, Chambless LE, Whelton PK, Nieto FJ, Heiss G. Alcohol consumption and the incidence of hypertension: The Atherosclerosis Risk in Communities Study. Hypertension. 2001;37:1242-1250

8. Halanych JH, Safford MM, Kertesz SG, Pletcher MJ, Kim YI, Person SD, Lewis CE, Kiefe CI. Alcohol consumption in young adults and incident hypertension: 20-year follow-up from the Coronary Artery Risk Development in Young Adults Study. Am J Epidemiol. 2010;171:532-539

9. Nakanishi N, Yoshida H, Nakamura K, Suzuki K, Tatara K. Alcohol consumption and risk for hypertension in middle-aged Japanese men. J Hypertens. 2001;19:851-855

10. Nakanishi N, Makino K, Nishina K, Suzuki K, Tatara K. Relationship of light to moderate alcohol consumption and risk of hypertension in Japanese male office workers. Alcohol Clin Exp Res. 2002;26:988-994

11. Niskanen L, Laaksonen DE, Nyyssonen K, Punnonen K, Valkonen VP, Fuentes R, Tuomainen TP, Salonen R, Salonen JT. Inflammation, abdominal obesity, and smoking as predictors of hypertension. Hypertension. 2004;44:859-865

12. Ohmori S, Kiyohara Y, Kato I, Kubo M, Tanizaki Y, Iwamoto H, Nakayama K, Abe I, Fujishima M. Alcohol intake and future incidence of hypertension in a general Japanese population: the Hisayama study. Alcohol Clin Exp Res. 2002;26:1010-1016

13. Okubo Y, Sairenchi T, Irie F, Yamagishi K, Iso H, Watanabe H, Muto T, Tanaka K, Ota H. Association of alcohol consumption with incident hypertension among middle-aged and older Japanese population: the Ibarakai Prefectural Health Study (IPHS). Hypertension. 2014;63:41-47

14. Onat A, Hergenc G, Dursunoglu D, Ordu S, Can G, Bulur S, Yuksel H. Associations of alcohol consumption with blood pressure, lipoproteins, and subclinical inflammation among Turks. Alcohol.. 2008;42:593-601

15. Peng M, Wu S, Jiang X, Jin C, Zhang W. Long-term alcohol consumption is an independent risk factor of hypertension development in northern China: evidence from Kailuan study. J Hypertens. 2013;31:2342-2347

16. Sesso HD, Cook NR, Buring JE, Manson JE, Gaziano JM. Alcohol consumption and the risk of hypertension in women and men. Hypertension. 2008;51:1080-1087

17. Thawornchaisit P, de Looze F, Reid CM, Seubsman SA, Sleigh AC. Health risk factors and the incidence of hypertension: 4-year prospective findings from a national cohort of 60 569 Thai Open University students. BMJ open. 2013; 3(6) pii: e002826 doi: 10.1136/bmjopen-2013-002826

18. Wang L, Manson JE, Gaziano JM, Liu S, Cochrane B, Cook NR, Ridker PM, Rifai N, Sesso HD. Circulating inflammatory and endothelial markers and risk of hypertension in white and black postmenopausal women. Clinical Chemistry. 2011;57:729-736

19. Witteman JC, Willett WC, Stampfer MJ, Colditz GA, Sacks FM, Speizer FE, Rosner B, Hennekens CH. A prospective study of nutritional factors and hypertension among US women. Circulation. 1989;80:1320-1327

20. Witteman JC, Willett WC, Stampfer MJ, Colditz GA, Kok FJ, Sacks FM, Speizer FE, Rosner B, Hennekens CH. Relation of moderate alcohol consumption and risk of systemic hypertension in women. Am J Cardiol. 1990;65:633-637