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Supplementary Information Text 

SI Methods 

Electrophysiological data collection. Parylene-coated tungsten electrodes were acutely inserted 

into target brain regions each day using a manual microdrive system. Neuronal activity was 

referenced to animal ground, amplified by a high-impedance headstage, filtered to extract spiking 

activity, digitized, and streamed to disk by an integrated electrophysiological system (Recorder or 

Omniplex, Plexon). The filtered signal was threshold-triggered to separate neuronal spikes from 

background noise, and individual spike waveforms were manually sorted offline into isolated 

neurons (Offline Sorter 3, Plexon). Neurons were included in analyses only for the duration of 

time in which they were well isolated from background noise and other neurons. 

Behavioral paradigm. Two adult rhesus macaques (Macaca mulatta), one male and one 

female, were trained to perform a cued multidimensional categorization task. All stimuli 

were displayed on a color-calibrated CRT monitor at 100 Hz vertical refresh rate. An 

infrared-based eye-tracking system (Eyelink II, SR Research) continuously monitored 

eye position at 240 Hz. Behavioral control was handled by the MonkeyLogic program 

(www.monkeylogic.net) (1). 

Each trial (Fig. 1A) was initiated when the animal fixated on a central dot (± 1.2° visual 

angle). Following a 500 ms fixation period, a centrally-presented visual cue (1000 ms) 

instructed the monkey to perform one of two task rules: color categorization (“greenish” 

vs. “reddish”) or motion categorization (“upward” vs. “downward”) of a subsequent 

centrally-presented colored, moving random-dot stimulus. Within each stimulus, all dots 

had the same color and moved in the same direction (100% coherence). The monkeys 

reported the stimulus category via a saccade towards a target to the left or right. The 

stimulus-response mapping for each task rule was fixed (color rule: greenishleft, 

reddishright; motion rule: upwardleft, downwardright). The monkeys were free to 

respond at any point (up to 3 s) after the random-dot stimulus onset.  

The cues were four different gray shapes; two of them instructed the color rule, while the 

other two instructed the motion rule (Fig. 1B). Using two distinct cues for each rule 

allowed dissociation of neural activity related to the visual cue shapes and the task they 

instructed. Each motion category consisted of two directions (Fig. 1C; upward: 90°, 30°; 

downward: -30°, -90°), and each color category consisted of two hues (greenish: 90°, 

30°; reddish: -30°, -90° hue angle; colors were defined in CIE L*a*b* space and had the 

same luminance and saturation). Additional tested values on one or more category 

boundaries were not included in the present analyses, as we focus here on unambiguously 

classifiable stimuli. 

The monkeys performed both categorization tasks with high accuracy: 94% correct on 

average for motion, 89% for color. Across all trials and sessions in the current dataset, the 

http://www.monkeylogic.net/


 

 

median reaction time was 274 ms, with only 1% of all responses occurring earlier than 

200 ms. 

General data analysis. For most analyses, spike trains were converted into smoothed rates 

via convolution with a Hann function (half-width 125 ms; nearly equivalent to a 50 ms 

SD Gaussian, but with finite extent). To summarize results, we pooled rates or other 

derived statistics within empirically-defined epochs of interest for each task domain and 

area. The start of each epoch was set by the onset latency of total explained variance for a 

given task variable and area (see “Variance-partitioning model” section below), as 

estimated by the time point where the population total variance first attained 25% of its 

maximal value across all time points. To capture the full temporal extent of relevant 

neural activity, without introducing confounding factors, the ends of cue/task epochs for 

all areas were set at the onset of the random-dot stimulus, and the ends of motion- and 

color-related epochs were set at the earliest 1 percentile of the distribution of all 

behavioral reaction times (200 ms). All analyses were performed using custom Matlab 

code. 

Hypothesis testing. All hypothesis tests used non-parametric bootstrap methods that do 

not rely on specific assumptions about the distributions of data values, unless otherwise 

noted. One-sample tests (Fig. 3B,E; 4B,E; 5B,E) resampled the statistic of interest with 

replacement 10,000 times from the neuronal population. The resulting distribution, offset 

by the actual observed statistic value, is an empirical estimate of the distribution of the 

statistic under the null hypothesis, and the one-tailed significance level was computed as 

the proportion of resampled values greater than the actual observed value. Two-sample 

tests (Fig. 3C,F; 4C,F; 5C,F) were computed similarly, but with separate bootstrap 

resampling from each compared population, evaluating the difference in the statistic of 

interest between populations, and computing the two-tailed significance level as the 

proportion of absolute resampled values exceeding the absolute observed value. All 

presented standard errors were estimated as the 68% confidence intervals across 

bootstrap samples. 

Variance-partitioning model. Our primary goal was to characterize the categoricality of 

the population of neurons in each cortical region—the degree to which they reflected the 

raw sensory stimuli or their abstracted categorical meaning. We quantified this by fitting 

each neuron’s spike rates, at each time point, with a linear model that partitioned rate 

variance across 𝑛 trials into between-category and within-category effects: 

𝐫𝐚𝐭𝐞 = βcue1𝐱cue1  + βcue2𝐱cue2 + βcue3𝐱cue3 
+ βmotion1𝐱motion1  + βmotion2𝐱motion2 + βmotion3𝐱motion3 
+βcolor1𝐱color1  + βcolor2𝐱color2 + βcolor3𝐱color3 
+βchoice𝐱choice + β0𝟏 

In this equation, 𝐫𝐚𝐭𝐞 ∈ ℝ𝑛×1 is a trial-length vector of spike rates for a given neuron and 

time point. For each task domain (rule cues, motions, and colors), the model included 

three orthogonal contrast terms (Fig. 2A). The first term 𝐱∗1 ∈ {−1,1}𝑛×1 (where * 

indicates cue, motion, or color) contrasted the two stimulus items (cue shapes, motion 

directions, or colors) in one categorical grouping (rule, motion category, or color 

category) against the two items in the other categorical grouping ([A or B] – [C or D] in 

Fig. 2A). That is, it was a length n vector with a value of 1 for each trial where the 



 

 

stimulus item was A or B, and –1 for each trial where the stimulus was C or D. Thus, it 

reflected the actual task-relevant grouping of stimulus items into categories, and its 

associated fitted scalar coefficient β∗1 ∈ ℝ captured between-category variance. The 

other terms 𝐱∗2, 𝐱∗3 ∈ {−1,1}𝑛×1 were contrasts between the two other possible, non-

task-relevant paired groupings of items ([A or C] – [B or D] and [A or D] – [B or C] in 

Fig. 2A). Thus, their associated coefficients β∗2, β∗3 ∈ ℝ together captured within-

category variance. The model also includes a term described below that accounted for 

behavioral choice (𝐱choice), and a constant term 𝟏 ∈ {1}𝑛×1 (i.e. an all-ones vector) and 

associated coefficient (β0) to account for the overall condition-independent mean rate. 

The effect of each model term was quantified in terms of its percent of total data variance 

explained, measured from the difference in residual variance between the full model and 

a reduced model with the given term deleted (2). Note that this is an extension of the 

analysis strategy used to model task rule coding in our previous publication (3) to all 

three categorical domains in this task. 

Across-trial mean neural responses for the four stimulus items in each domain (task cues, 

motions, or colors), for each neuron and time point, can be considered as four-

dimensional vectors within the four-dimensional vector space (ℝ4) of all possible sets of 

item responses. If the three contrast terms described above are also considered as four-

dimensional vectors (i.e. for items [A, B, C, D], 𝐱∗1 would be [1 1 -1 -1], 𝐱∗2 would be [1 

-1 1 -1], and 𝐱∗3 would be [1 -1 -1 1]), then along with the constant term ([1 1 1 1]), they 

constitute an orthogonal basis for this space. (This follows from the fact that they are 

mutually orthogonal and contain the same number of vectors as the dimension of the 

space (4)). This entails that any possible set of neural responses to the four items can be 

expressed as a linear combination of these terms. Hence, they capture all variance 

reflecting cue, motion, or color selectivity in the task. Since the first term (𝐱∗1) perfectly 

captures between-category variance, it follows that the other terms together capture all 

within-category variance. Thus, the three contrast terms partition the total variance in 

each task domain into between-category and within-category effects. 

Within the context of each task rule, motion and color categories were—by design—

inextricably linked with the monkey’s behavioral choice (e.g., for the color rule, greenish 

and reddish colors always mandated leftward and rightward saccades, respectively). For 

this reason, it is effectively impossible to dissociate category and choice effects within 

the context of each individual task rule, and to directly compare category effects across 

the two rules. When both rules are considered together, this identity link is broken, 

permitting dissociation of choice and category effects. However, there remains a partial 

(50%) correlation between choice and stimulus category. Therefore, it was critical to 

ensure that any activity reflecting choice (or subsequent motor preparation processes) 

was not spuriously interpreted as categorical coding. To partition out choice effects, we 

also included an additional model term 𝐱choice ∈ {−1,1}𝑛×1 contrasting the two possible 

behavioral choices, with a value of 1 for rightward and –1 for leftward saccades. Its 

associated coefficient βchoice accounted for any variance due to choice, and thus category 

effects are measured in terms of their additional variance explained once choice effects 

are already accounted for (2). Choice effects were analyzed in detail in our previous 

publication on this dataset (3), and were therefore not examined further in this work. 



 

 

Each model, 11 parameters in total, was fit via ordinary least squares separately for each 

neuron and time point. We used the bias-corrected ω2 formulation for explained variance 

(5). 

Categoricality index. For each task variable (task cues, motions, or colors), the sum of 

explained variances for all model three terms sets an upper bound for the between-

category variance alone—they can be equal only for a perfectly categorical population 

with zero within-category variance (Fig. 2B, top; simulated in Fig. S1A, right). A purely 

sensory-driven population would instead have equal variance for all three terms. For 

example, a neuron with a preferred response for only a single stimulus item would have 

equal variance for all three contrasts, as each item appears once in every contrast 

(simulated in Fig. S1A, left). A population of neurons with preferred responses for 

arbitrary pairs of stimulus items—without regard to the task-relevant groupings—would 

also have equal expected variance for all three contrasts (simulated in Fig. S1A, center). 

Thus, the mean of all three contrasts provides an expected lower bound for the between-

category variance in purely sensory populations (Fig. 2B, bottom). (Note that, for 

populations specifically encoding within-category differences, between-category variance 

can be less than the mean within-category variance.) 

To measure where neural populations fall between these extremes, we computed a 

“categoricality index" equal to the area between the between-category and sensory 

(lower-bound) time series, expressed as a fraction of the full area between the total 

(upper-bound) and sensory (lower-bound) time series (Fig. 2C). 

categoricalityIndex =
∫ (〈betweenCategory〉𝑝𝑜𝑝 − 〈sensory〉𝑝𝑜𝑝)

𝑡

∫ (〈total〉𝑝𝑜𝑝 − 〈sensory〉𝑝𝑜𝑝)
𝑡

 

Here, betweenCategory = 𝑣1 is the between-category (term 1) explained variance; 

total = 𝑣1 + 𝑣2 + 𝑣3 is the sum of explained variances for all three terms; and 

sensory = (1/3)(𝑣1 + 𝑣2 + 𝑣3) is the mean of explained variances across all three 

terms. Each quantity is computed separately for each neuron and time point. The means 

〈∙〉𝑝𝑜𝑝 are over all sampled neurons in each area’s population, and the integrals ∫ (∙)
𝑡

 are 

over all time points within a pre-defined epoch for each area and task domain. This index 

is a specific measure of how categorical a neural population is, and ranges from 1 for a 

perfectly categorical population to 0 for a purely sensory population. (Negative values are 

possible if within-category variance is greater than between-category variance, i.e. for 

populations that specifically reflect within-category differences.) 

In addition to the population categoricality index described above, we also computed 

indices for each individual neuron (Fig. S3). Here, all of the population means in the 

above equation were simply replaced by the corresponding quantities for each neuron. 

This analysis was restricted to neurons found to have significant total domain variance (p 

< 0.01; F-test), since the index is undefined—and the concept of categoricality is not 

meaningful—in the absence of any rate variance across the constituent items. 

The statistic of category information used in our previous publication (3) was a debiased 

version of the between-category variance, equal to the between-category variance (𝑣1) 

minus the mean within-category variance ((1/2)(𝑣2 + 𝑣3)). It can be shown that our 



 

 

categoricality index is equivalent to normalizing this statistic by the total domain variance 

(𝑣1 + 𝑣2 + 𝑣3): 

betweenCategory − sensory

total − sensory
=

𝑣1 − (1/3)(𝑣1 + 𝑣2 + 𝑣3)

(𝑣1 + 𝑣2 + 𝑣3) − (1/3)(𝑣1 + 𝑣2 + 𝑣3)
 

=
3𝑣1 − (𝑣1 + 𝑣2 + 𝑣3)

3(𝑣1 + 𝑣2 + 𝑣3) − (𝑣1 + 𝑣2 + 𝑣3)
 

=
2𝑣1 − 𝑣2 − 𝑣3

2𝑣1 + 2𝑣2 + 2𝑣3
 

=
𝑣1 − (1/2)(𝑣2 + 𝑣3)

𝑣1 + 𝑣2 + 𝑣3
 

Thus, our index can also be viewed as a normalized contrast of between-category and 

within-category variance. 

Neural simulations. To validate our analysis, we measured its properties on synthesized 

neural activity, where different coding attributes could be manipulated under 

experimental control. Note that the goal here is only to ensure the analysis behaves as 

expected in a simple, plausible toy model where ground truth is known, not to make any 

claims that our simulations accurately reflect actual cortical coding. We simulated 

populations of 200 neurons with Poisson rates modulated by both selectivity for 

categories and sensory tuning for stimulus items. Category selectivity in all task domains 

was simulated by a binary step function. A preferred Poisson rate was set for all items in 

one category, and a non-preferred rate for all items in the other category, with the 

preferred category randomized across simulated units. For task cues, stimulus tuning was 

simulated by setting a preferred rate for one or two cues randomly selected for each unit, 

without regard to categorical divisions. As a simple, plausible model of tuning for 

stimulus motion or color, we simulated each unit with a von Mises (circular Gaussian) 

tuning curve, with its center randomly oriented within the full range (0–360°) of motion 

directions or hue angles. In some simulations, we also modelled binary selectivity for 

behavioral choice (leftward vs. rightward saccades), with the preferred choice 

randomized across units. 

Simulations evaluated four distinct measures of categorical coding: the normalized 

categoricality index introduced here (Fig. S1A–D), raw between-category variance (Fig. 

S1E,F), the debiased between-category variance statistic used in our previous publication 

(3) (Fig. S1G,H), and the category preference index (Fig. S1I,J). 

In reported simulations, we expressed the tested selectivity in all population units, but 

manipulated its strength (the difference in Poisson rate between preferred and non-

preferred items). Similar results were obtained if strength was fixed and the proportion of 

units expressing the tested selectivity was manipulated instead. All of the presented 

results also generalize well from the specific population size, tuning functions, proportion 

of units expressing selectivity, and response model assumed in these simulations. We 

evaluated simulated populations under the same task structure and analysis as the real 

data, and report means and standard deviations across 100 independent simulations. 

These results are presented in the “Neural simulations” section of SI Results. 



 

 

Category/choice consistency analysis. As an additional control to show our results are not 

confounded by behavioral choice, we compared color and motion category preferences 

under the two task rules, where category and choice coding make clear, opposing 

predictions. We fit models containing only the motion and color between-category terms, 

separately for the motion and color rules (variables here have the same interpretation as 

in equation 1): 

𝐫𝐚𝐭𝐞 = βmotion1𝐱motion1 + βcolor1𝐱color1 + β0𝟏 

Two models were fit to each neuron’s spike rate pooled over the random-dot stimulus 

epoch. One model was fit to trials where the motion rule was instructed, another to trials 

where the color rule was instructed. For each term and task rule, we computed explained 

variance as above, but with a sign reflecting the preferred category: negative for neurons 

preferring downward motion or reddish color, and positive for upward motion or greenish 

color. Note that when a given task domain is task-relevant (i.e. motion during the motion 

rule, or color during the color rule), labeling by preferred category is equivalent to 

labeling by preferred choice (see “Variance-partitioning model” section above for 

details). 

Choice coding predicts consistent motion and color category preferences (signs and 

magnitudes) when they are each task-relevant based on the currently instructed rule (i.e. 

when they both map to the same choice and resulting saccade direction). Category coding 

instead predicts consistent motion category preferences across both task rules, and the 

same for color category preferences. Consistency is visualized with scatterplots and 

quantified with Spearman rank correlation for each of these conditions. These results are 

presented in the “Category/choice consistency analysis” section of SI Results. 

Preferred condition analysis. To qualitatively confirm our results using an alternative, 

more standard method of measuring category effects, we computed population average 

spike rates for preferred and non-preferred categories and stimulus items within each 

category. For each neuron and task variable, the preferred and non-preferred category 

(task rule, motion category, or color category) and the preferred and non-preferred 

constituent stimulus item within each category (rule cue, motion direction, or color) were 

determined from the average spike rate within the relevant time epoch for each area and 

task variable. Spike rate time series were averaged across the population of neurons in 

each area separately within each of the resulting four sorted conditions (preferred item in 

preferred category, non-preferred item in preferred category, preferred item in non-

preferred category, non-preferred item in non-preferred category). To avoid circularity in 

this analysis, we used a condition-balanced ten-fold cross-validation method. Preferred 

conditions were estimated from 90% of trials and the resulting sorting was used for 

population averaging of rate series across the remaining 10% of trials, with each partition 

having approximately balanced trial numbers across the four conditions. This was 

performed for each disjoint subset of 10% of trials, and the final presented results are the 

average of these ten cross-validation folds. 

In this analysis, the signature of categorical coding is a large difference in rate between 

the preferred and non-preferred category, with minimal rate differences between items 

within each category. For sensory representations, rate differences between and within 

categories would be of similar magnitude. Therefore, to summarize these results we 



 

 

computed a category preference index, a contrast index comparing differences in 

preference-sorted mean rates between categories vs. within categories. 

preferredCondIndex =
∫ (〈𝑑𝑏𝑒𝑡𝑤𝑒𝑒𝑛〉𝑝𝑜𝑝 − 〈𝑑𝑤𝑖𝑡ℎ𝑖𝑛〉𝑝𝑜𝑝)

𝑡

∫ (〈𝑑𝑏𝑒𝑡𝑤𝑒𝑒𝑛〉𝑝𝑜𝑝 + 〈𝑑𝑤𝑖𝑡ℎ𝑖𝑛〉𝑝𝑜𝑝)
𝑡

 

In this equation, 𝑑𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the difference in rate between the preferred category and the 

non-preferred category for each neuron,  

𝑑𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = (rate𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚 + rate𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚))/2 

− (rate𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚 + rate𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚))/2 

and 𝑑𝑤𝑖𝑡ℎ𝑖𝑛 is the difference in rate between the preferred item and the non-preferred 

item within each category, averaged across both categories, for each neuron. 

𝑑𝑤𝑖𝑡ℎ𝑖𝑛 = [(rate𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚 − rate𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚))

+ (rate𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚 − rate𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐶𝑡𝑔,𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝐼𝑡𝑒𝑚))]/2  

Both the between- and within-category differences were rectified at zero, as negative rate 

differences have little meaning in a preference-sorted analysis (these were rare, but 

possible because of the cross-validation procedure). These results are presented in the 

“Preferred condition analysis” section of SI Results. 

Population dimensionality analysis. To measure the dimensionality of population 

activity, we adapted a method developed by Machens and colleagues (6), and extended 

by Rigotti and colleagues (7). This method estimates the dimensionality of the space 

spanned by population activity vectors by determining the number of principal 

components required to describe them. Spike rates were computed within each of the 

time epochs enumerated above, and the resulting data for each area was pooled across all 

electrodes and recording sessions into “pseudo-populations”. To extrapolate results to 

larger neural populations, we generated artificial neurons via specific relabeling of 

conditions, under the assumption that the full underlying population likely includes 

neurons with similar activity distributions, but slight differences in tuning for rule cues, 

motion directions, and colors (7). Labels were swapped between the two visual cues 

associated with each task, between the two colors within each color category, and/or 

between the two directions within each motion category. Note that these label 

reassignments both maintain the semantic logic of the paradigm and would not alter the 

information carried by either sensory or categorical neurons, as estimated above. 

Artificial neural populations were generated by all permutations of performing each of 

these relabeling operations or not, resulting in a 64-fold multiplication of the actual 

populations (22 colors × 22 directions × 22 cues). Extrapolated populations of different 

sizes were generated by randomly subsampling from this full population of real and 

artificial neurons, separately for each cortical area. Dimensionality values obtained from 

analyzing only the actual recorded populations (Fig. 6A,C, squares) generally fell within 

the distribution of those obtained from the extrapolated populations, suggesting that this 

procedure did not substantially alter the results. 

For this analysis, we characterized neural activity within the full space of 64 task 

conditions (4 rule cues × 4 motion directions × 4 colors) and within the random-dot 

stimulus epoch, when all 64 conditions were differentiated. An additional analysis was 



 

 

performed within the reduced space of 16 motion directions × colors. To avoid PCA 

being dominated by a few highly active neurons, trial spike rates for each neuron were 

preprocessed by z-scoring them by the mean and SD across all trials, with a 

regularization constant of 0.1 added to each SD (7). For each area and extrapolated 

population size, the vector of mean spike rates across all neurons for each condition was 

computed, and the dimensionality of the space spanned by each resulting set of 64 neural 

population activity vectors was estimated as the number of their principal components 

(eigenvalues) significantly greater than the estimated distribution of principal 

components due to finite sampling noise. Noise was estimated by computing the 

difference between randomly chosen trials within each condition, weighted by its 

expected contribution to the estimated condition mean (6), and submitting the resulting 

set of 64 noise vectors to PCA. This procedure was repeated 1000 times, randomly 

sampling within-condition trial pairs each iteration, to generate a distribution of noise-

derived eigenvalues. Dimensionality was estimated as the number of data eigenvalues 

exceeding 95% of the distribution of first (largest) eigenvalues computed from the 

sampled noise (7). This entire procedure was repeated 50 times, selecting with 

replacement a different random subsample of area neurons in each iteration, to estimate 

bootstrap standard errors of the resulting dimensionality statistic. Qualitatively similar 

results were obtained using the method of Rigotti et al. 2013 based on the number of 

binary classifications that can be successfully decoded from population activity vectors. 

Cortical organization analysis. To quantitatively relate our results to classical models of 

large-scale cortical organization, we separately fit the 18 population summary values (6 

areas × 3 task variables) of total domain explained variance (i.e., sensory information; 

Fig. 7A) and categoricality index (Fig. 7B) with a simple two-predictor linear model: 

𝐬𝐮𝐦𝐦𝐚𝐫𝐲𝐕𝐚𝐥𝐮𝐞
= βℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐿𝑒𝑣𝑒𝑙𝐱ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐿𝑒𝑣𝑒𝑙

+ β𝑠𝑡𝑟𝑒𝑎𝑚𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒𝐱𝑠𝑡𝑟𝑒𝑎𝑚𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 + β0 

Here, 𝐬𝐮𝐦𝐦𝐚𝐫𝐲𝐕𝐚𝐥𝐮𝐞 ∈ ℝ18×1 is the vector of 18 summary values—total domain 

variances or categoricality indices. The first predictor 𝐱ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐿𝑒𝑣𝑒𝑙 ∈ ℝ18×1 was the 

Felleman and Van Essen hierarchical level of each area (MT,V4: 5; PIT,LIP: 7; FEF: 8; 

PFC: 10), estimated from the relative distribution of feedforward-type vs. feedback-type 

anatomical connections between areas (8). Its associated coefficient βℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐿𝑒𝑣𝑒𝑙 

accounts for any effects of each area’s hierarchical level on the given summary value. 

The second predictor 𝐱𝑠𝑡𝑟𝑒𝑎𝑚𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 ∈ {−1,0,1}18×1 reflected the expected functional 

congruence of each combination of task variable and area based on the classical divisions 

of visual areas and functions of the ventral and dorsal processing streams. It took a value 

of 1 for consistent combinations (e.g. MT and motion, V4 and color), and –1 for 

inconsistent ones (e.g. MT and color, V4 and motion). For this purpose, rule cue (shape) 

and color were designated as ventral stream domains, and V4 and PIT ventral stream 

areas. Motion direction was designated a dorsal stream domain, and MT, LIP, and FEF 

dorsal stream areas. Since PFC is thought to integrate across both streams (8, 9), all 

variable/area combinations involving it were set to zero for this predictor. To equate the 

range of stimulus information and categoricality index values across task variables, 

values across all areas for each variable were normalized to range from 0 to 1. Prior to 

this normalization, categorical information values were rectified at zero, thus equating 



 

 

areas that match the sensory-based prediction with those less than it (reflecting slight 

biases toward within-category selectivity). Each model (3 parameters in total) was fit via 

ordinary least squares, and evaluated by the variance explained by each of the two 

predictors. Errors and significance levels were estimated by bootstrapping these statistics 

over the contributing neurons 10,000 times. 

 

SI Results 

Neural simulations. To confirm that our analysis methods performed as expected, we first 

assayed their properties on synthesized neural activity with known ground truth (see 

“Neural simulations” section in SI Methods for details). The basic properties of all 

analyses considered here are summarized in Table S1. We first confirmed the 

categoricality index was ≈ 1 for populations of units with ideal binary category selectivity 

for task rules (Fig. S1A, right), and was ≈ 0 for populations with only sensory selectivity 

for single task cues (Fig. S1A, left) or for random pairs of cues (Fig. S1A, center). To 

examine this in more detail, we parametrically varied both the relative strength of 

simulated sensory and categorical signals (Fig. S1B–C, x-axis), and the overall strength 

of both signals in concert (i.e. simulated differences in spike rates between preferred and 

non-preferred conditions; Fig. S1B–C, color saturation). For task rule coding, we 

simulated sensory selectivity for random pairs of cues (Fig. S1B; results are similar for 

single-cue selectivity). For motion coding, we simulated Gaussian sensory tuning for 

motion direction (Fig. S1C; note that color and motion are treated identically in these 

simulations and results therefore generalize to both domains). These simulations 

confirmed that our categoricality index reliably reflected sensory/category relative 

strength (curves monotonically increase from left to right), but was relatively invariant to 

overall signal strength (different-color curves largely overlap). Finally, to confirm that 

our modeling procedure successfully partitioned category and choice effects, we 

simulated populations independently varying in both the relative weight of sensory and 

categorical motion signals (Fig. S1D, x-axis), and the strength of choice signals (Fig. 

S1D, color saturation). These simulations confirmed the categoricality index was also 

relatively insensitive to choice signal strength. As a positive control, we demonstrated 

that the variance explained by choice itself did indeed robustly reflect choice signal 

strength (Fig. S1D, inset). 

Raw between-category variance, in contrast, provides a biased and inconsistent measure 

of categoricality. As expected, between-category variance was high for a simulated 

population with ideal binary category selectivity for task rules (Fig. S1E, right). 

However, it also had non-zero values for populations with sensory selectivity for single 

task cues (Fig. S1E, left) or for random pairs of cues (Fig. S1E, center). Figure S1F 

shows that between-category variance conflates sensory/categorical relative strength with 

overall spike rates. Even purely sensory populations (Fig. S1F, leftmost points) have non-

zero values that increase proportionately to total signal strength. Results are similar for 

simulated sensory selectivity for single task cues, and for motion direction and color. 

Thus, the raw percent of variance explained by categories is an inadequate measure of 

population categoricality. 



 

 

In a previous publication, we proposed a debiased between-category variance statistic of 

categorical task rule information (3). This measure subtracts within-category variance 

from the raw between-category variance (see “Categoricality index” section in SI 

Methods for details), resulting in an expected value of zero for purely sensory 

representations. This was confirmed using the same set of simulations as above (gray bars 

in Fig. S1G; leftmost points in Fig. S1H). However, for populations with a mixture of 

sensory and categorical coding (right portion of Fig. S1H), this statistic is influenced by 

the overall signal strength. For any given value of sensory/categorical relative weight (x-

axis value) it is proportional to overall rate, and any given value of this statistic (y-axis 

value) might correspond to a wide range of combinations of categoricality and spike rate. 

Similar results obtained for other sensory domains. Thus, while this statistic provides a 

measure of category information that is unbiased for purely sensory activity, it does not 

in general unambiguously report population categoricality, as defined here. 

As an alternative method to measure population categoricality, we computed population 

average spike rates for preferred and non-preferred categories and within-category 

stimulus items. We summarized this analysis with a category preference index, a contrast 

index contrasting between-category and within-category differences in the preference-

sorted mean spike rates (see “Preferred condition analysis” section in SI Methods for 

details). Like the categoricality index, this statistic reports values ≤ 0 for sensory 

populations (Fig. S1I, left and center) and ~ 1 for categorical populations (Fig. S1I, 

right), and is relatively invariant to overall signal strength (Fig. S1J). 

Category/choice consistency analysis. As an additional control to show our results are not 

confounded by behavioral choice, we compared color and motion category preferences 

under the two task rules, where category and choice coding make clear, opposing 

predictions. Category preference was quantified by the between-category motor or color 

variance, with a sign reflecting the preferred category: negative for downward or reddish 

preferring, positive for upward or greenish preferring. Consider the comparison between 

motion category preference during the motion rule vs. color category preference during 

the color rule, i.e. when each category is task-relevant and drives behavioral choice (Fig. 

S5A and S5D–E, left). A neuron encoding choice would appear to have the same sign 

and magnitude of category preference for both conditions, as these would map to the 

same choice (saccade direction). A population dominated by choice selectivity would 

thus be expected to have a strong consistency of signed variance between these 

conditions, and we therefore refer to this comparison as “choice-consistent”. In contrast, 

category-selective populations would be expected to either carry information about only a 

single domain or have unrelated preferences across category domains, and thus have little 

consistency between these conditions. 

Now consider instead the comparison between motion category preference during the 

motion rule vs. during the color rule (Fig. S5B; Fig. S5D–E, center), or between color 

category preference during the motion rule vs. during the color rule (Fig. S5C; Fig. S5D–

E, right). A neuron encoding a given category across both rules would have the same sign 

and magnitude of preference in both conditions, and a population dominated by category 

selectivity would thus show strong consistency between these conditions. We therefore 

refer to these comparisons as “category-consistent”. In contrast, a choice-selective neuron 

would appear to carry category information only when the category was task-relevant, 



 

 

and a choice-dominated population would thus have inconsistent category preferences 

across task rules.  

To determine the type of coding that is dominant overall in each area, we plotted 

scatterplots and computed Spearman rank correlations across the entire sampled neural 

populations for each comparison above. For the choice-consistent comparisons, the 

scatterplots showed no obvious relationship between motion and color category 

preference (Fig. S5A), and their correlations were weak (Fig. S5D, left) and only 

significant for V4 (p = 0.002; p ≥ 0.01 for all other areas, permutation test). In contrast, 

the category-consistent comparisons had clear structure (Fig. S5B,C) and stronger 

correlations (Fig. S5D, center and right), which were significant for at least one category 

domain in all areas (p < 0.01, Bonferroni-corrected for two comparisons). This suggests 

that category signals are generally dominant over choice signals in the studied areas. Note 

that PFC, FEF, and to some extend LIP did have choice-consistent and category-

consistent correlations of similar magnitude. This suggests some heterogeneous mixture 

of category and choice effects in these populations, consistent with previous reports 

showing strong choice and saccade signals in these areas (3, 10, 11). 

As a final check that our main analysis specifically extracts category effects from these 

population mixtures, we repeated the correlation analysis for only the subset of neurons 

carrying significant category information across the full set of trials (p < 0.01, F-test on 

between-category variance for equation 1 model fit to stimulus epoch rates across both 

rules; Fig. S5A–C, colored dots). There is some circularity in this analysis, in that the 

criterion used to select neurons (significant category variance across all trials) is not 

entirely independent of the measure examined (signed category variance under each rule). 

However, we felt it was helpful to include these results to provide a complete picture of 

the data and analysis. For the subset of category-selective neurons, choice-consistent 

correlations remained weak (Fig. S5E, left) and were not significant any area (p ≥ 0.01), 

while correlations for the category-consistent conditions were uniformly strong (Fig. 

S5E, center and right). Together, these results provide another line of evidence that our 

main analysis correctly measured category signals, rather than confounded choice signals. 

Preferred condition analysis. To confirm our results using an alternative method of 

measuring category effects, we computed population average spike rates for preferred 

and non-preferred categories and stimulus items within each category (Fig. S6). These 

results were summarized with a category preference index, a contrast index comparing 

between-category to within-category differences in mean rates (see “Preferred condition 

analysis” section in SI Methods for details). The results indicated broad agreement with 

the categoricality index in the main text. For task cue coding in PFC and FEF, rate 

differences between the preferred and non-preferred task rules were considerably larger 

than between cues instructing the same rule (Fig. S6A), and their category preference 

indices were significantly greater than zero (Fig. S6B). LIP trended in the same direction, 

but unlike the main text analysis (Fig. 3E in the main text), it was not significant. For 

MT, V4, and PIT, between- and within-category differences were similar (Fig. S6A), and 

their indices were not significantly different from zero (Fig. S6B). For motion coding, 

only PFC, FEF, and LIP showed significant category preference indices (Fig. S6E). 

Again, this result was overall similar to the main text categoricality results, though in that 

case FEF failed to reach significance (Fig. 4E in main text). As for the categoricality 



 

 

index analysis (main text Fig. 5E), color coding exhibited a more categorical 

representation overall, with all areas except MT having significant category preference 

indices (Fig. S6H). Note that perfect alignment between results from these two methods 

would not be expected, due to their many salient differences (Table S1). In the preferred 

condition analysis, choice effects were not partitioned out, rate was not normalized (and 

thus high-rate neurons might contribute disproportionately), and overall domain variance 

was not normalized out. The fact that results were, nevertheless, generally quite similar 

with an arguably more standard method adds support to our main conclusions.  

Comparison with our previous results. Some of our results appear to be somewhat at odds 

with our prior publication on this dataset (3). In particular, it was previously claimed that 

V4 and PIT contained strong task rule signals (Fig. 2C in (3)), whereas we claim no 

significant task rule categoricality in these same areas (Fig. 3D,E). In part, this is due to 

differences in the studied neural signals—we analyzed isolated single neurons, whereas 

the previous study analyzed multi-unit signals. We repeated our analysis on multi-unit 

signals similar to those used previously (pooling together all threshold-crossing spikes on 

each electrode). Though results were generally quite similar (Fig. S4), multi-units 

produced a slightly more categorical rule cue representation in V4 and PIT (Fig. S4A), 

perhaps suggesting stronger signals for task rules exist in the smaller neurons likely to 

appear only in multi-unit signals.  

The primary difference, though, is in the specific questions addressed by each study and 

their resulting analytical strategies. Our previous study addressed the overall task rule 

information conveyed by each neural population. Thus, it used a debiased category 

variance statistic, equal to the difference between between-category variance and the 

mean within-category variance. This statistic is unbiased for purely sensory 

representations—it has an expected value of zero (simulated in Fig. S1G). But for 

populations with any mixture of category effects, it reflects both categoricality and total 

domain variance (simulated in Fig. S1H). Thus, it can be high for populations—like rule 

cue representations in V4 and PIT—with strong total domain variance, even if only a 

very small fraction of that variance is categorical. As expected, recomputing our main 

findings with this statistic produced quite different results from ours (Fig. S7), which 

qualitatively appear to look like a mixture of categoricality (Fig. 3E,4E,5E) and total 

domain variance (Fig. 3B,4B,5B). Here, we instead addressed how categorical neural 

representations are, independent of their overall information. Our categoricality index 

measures this (Fig. S1B,C) by normalizing total domain variance out of the above 

statistic. Under this statistic, V4 and PIT contain task cue representations that are only 

weakly categorical (Fig. 3D,E). Thus, we can reconcile results from the two studies by 

concluding that V4 and PIT contain strong information about task cues but only a small 

fraction of that information is categorical. In contrast, despite the weaker overall task cue 

information in PFC and FEF, a substantial fraction of that information reflects the learned 

task rule categories. This definition accords well with both intuitive notions of 

categoricality and those previously proposed (12, 13). 

 

  



 

 

 
 

Fig. S1. Validation of analysis methods with neural simulations. (A) Mean (± SD across 

independent simulations) categoricality index computed on simulated neural populations. 

Diagrams at top reflect simulated patterns of neural activity across the four task cues—white 

indicates non-preferred responses, blue indicates preferred responses consistent with task rule 

coding, and gray indicates preferred responses inconsistent with task rules. Results for three 

simulated populations are shown: one with sensory selectivity for single task cues (left), one with 

sensory selectivity for random pairs of cues (center), and one with pure categorical selectivity for 

pairs of cues that map to the same task rule (right). The categoricality index veridically reports 

values of ~0 for the two sensory populations and ~1 for the categorical population. (B–C) Mean 

(± SD) categoricality index for simulated populations parametrically varying in the relative 

strength of sensory and categorical signals (x-axis) and in the overall strength of both signals in 

concert (rate difference between preferred and non-preferred conditions; color saturation of 

plots). Results are shown for simulations with sensory selectivity for random pairs of task cues 

(B), and sensory tuning for motion direction (C). In all cases, index values reliably reflect 

sensory/categorical relative strength (curves monotonically increase from left to right), but are 

relatively insensitive to overall signal strength (different-color curves are mostly overlapping). 

(D) Mean (± SD) categoricality index for simulated populations parametrically varying in the 

relative strength of sensory and categorical motion signals (x-axis) and in the strength of signals 

for behavioral choice (rate difference between left and right saccades; color saturation of plots). 

Index values are not confounded by choice effects. Inset: The variance attributed to choice does 

reliably track choice signals, as expected. (E–F) Mean (± SD) raw task-rule between-category 

variance, under the same simulations as in A and B. Raw between-category variance has non-zero 

values for purely sensory populations (E, left and center) and is proportional to total signal 

strength (vertical shift of curves in F), indicating it is a biased measure of categoricality, which is 

confounded with global changes in spike rates. (G–H) Mean (± SD) debiased task-rule between-

category variance, under the same simulations as in A and B. This is the statistic used to measure 

task rule information in our previous publication from this dataset (3), and is equal to between-



 

 

category variance minus the mean within-category variance. This statistic is ~0 for purely sensory 

populations (G, left and center), indicating that it successfully removed the bias in the raw 

variance. However, for populations with a mixture of category effects, it reflects both 

categoricality and overall spike rates (vertical offset of curves in H). (I–J) Mean (± SD) task-rule 

category preference index, under the same simulations as in A and B. Like the categoricality 

index, this statistic reports values ≤ 0 for sensory populations (I, left and center) and ~ 1 for 

categorical populations (I, right), and is relatively invariant to overall signal strength (J). 

 

  



 

 

 

Fig. S2. Task rule cue coding during stimulus period. (A) Population mean (± SEM) total rule cue 

variance (cf. Fig. 3A) during the random-dot stimulus period. Cue information in visual areas V4, 

PIT, and MT drops toward baseline soon after cue offset. (B) Summary (across-time mean ± 

SEM) of total stimulus-period rule cue variance for each area (cf. Fig. 3B). All areas retain 

significant cue information during the stimulus period (p < 0.01). (C) Indicates which regions 

(rows) had significantly greater cue information than others during the stimulus period (cf. Fig. 

3C). (D) Mean (± SEM) between-category rule cue variance (task rule information). (E) 

Stimulus-period task rule categoricality index (± SEM) for each area (cf. Fig. 3E). PFC, FEF, and 

LIP remain significantly categorical (p < 0.01)—they continue to convey task rule information 

through the stimulus period. (F) Indicates which regions (rows) had significantly greater task rule 

categoricality indices than others (columns; p < 0.01; cf. Fig. 3F). 

  



 

 

 

Fig. S3. Distribution of single-neuron categoricality. (A) Population distributions of rule cue 

categoricality indices computed on single neurons in each area. (B) Population distributions of 

motion categoricality indices computed on single neurons in each area. (C) Population 

distributions of color cue categoricality indices computed on single neurons in each area. For all 

three domains, areas with high population categoricality indices (cf. Fig. 3E,4E,5E) have a large 

proportion of nearly purely categorical single neurons (index ≈ 1). However, in almost all cases 

(except for PIT color coding) there also remains a residual subpopulation of sensory-driven 

neurons (index ≈ 0), as well as single neurons whose activity reflects a mixture of between-

category and within-category effects (0 ≤ index ≥ 1). 

  



 

 

 

Fig. S4. Main results are similar for multi-unit signals. (A) Population mean (± SEM) multi-unit 

between-category rule cue variance (cf. Fig. 3D). Multi-unit signals were computed by pooling 

together all threshold-crossing spikes on each electrode. (B) Summary (± SEM) of multi-unit rule 

cue categoricality index (cf. Fig. 3E). (C) Cross-area significance matrix for multi-unit rule cue 

categoricality indices (cf. Fig. 3F). (D) Population mean (± SEM) multi-unit between-category 

motion variance (cf. Fig. 4D). (E) Summary (± SEM) of multi-unit motion categoricality index 

(cf. Fig. 4E). (F) Cross-area significance matrix for multi-unit motion categoricality indices (cf. 

Fig. 4F). (G) Population mean (± SEM) multi-unit between-category color variance (cf. Fig. 5D). 

(H) Summary (± SEM) of multi-unit color categoricality index (cf. Fig. 5E). (I) Cross-area 

significance matrix for multi-unit color categoricality indices (cf. Fig. 5F). 

  



 

 

 

Fig. S5. Category/choice consistency analysis. (A) Signed motion variance for each area neuron 

under the motion rule (x-axis) vs. color variance under the color rule (y-axis), i.e. when each 

category domain is task-relevant and drives behavioral choice. The sign for each neuron’s data 

point reflects its preferred category—negative for downward-preferring or reddish-preferring, and 

positive for upward-preferring or greenish-preferring. Neurons with significant between-category 

motion or color variance (p < 0.01; F-test) from the full-session analysis are colored in, while 

non-significant neurons are light gray. Neurons coding for behavioral choice (or subsequent 

motor preparation processes) would appear to have consistent motion and color category 

preferences, and thus would lie near the positive diagonal. (B) Signed between-category motion 

variance, measured separately within the motion (x-axis) and color rule (y-axis) trials. Signs 

reflect preferred motion categories—negative for downward-preferring, and positive for upward-

preferring. Neurons with significant motion variance are colored in. Neurons coding for the same 

motion category irrespective of the task rule in effect would have consistent values and lie near 

the positive diagonal. (C) Signed between-category color variance, under the motion (x-axis) and 

color (y-axis) rules. Signs reflect preferred color categories—negative for reddish-preferring, and 

positive for greenish-preferring. Neurons with significant color variance are colored in. Neurons 

coding for the same color category irrespective of task rule would have consistent values and lie 

near the positive diagonal. (D) Spearman rank correlations for all neurons in each scatterplot in 

panels A–C (x-axis). Circles indicate significant correlations (p < 0.01; permutation test). Choice 

coding predicts stronger correlations for the motion/color (left, panel A) condition. Categorical 

coding predicts stronger correlations for the motion/motion (center, panel B) and color/color 

(right, panel C) conditions. Results are consistent with categorical coding dominating the overall 

population in most studied areas, except for PFC and FEF, which appear to contain a 

heterogeneous mixture of category and choice effects. (E) Correlations for only significant 

categorical neurons in each scatterplot in panels A–C (x-axis). Predictions are same as in D. All 

areas exhibit correlation patterns consistent with categorical, rather than choice, coding. This 



 

 

confirms that our variance-partitioning model successfully recovers categorical coding, 

unconfounded by choice signals. 

  



 

 

 

Fig. S6. Preferred condition spike density analysis. (A) Population mean spike rates for preferred 

(colored lines) and non-preferred (light gray lines) task rules, and for preferred (solid lines) and 

non-preferred (dashed lines) rule cues within each task rule. This is plotted separately for each 

studied area as a function of within-trial time (referenced to the onset of the random-dot 

stimulus). Distinct subsets of trials were used to estimate preferred conditions and compute mean 

rates with the estimated sorting, to avoid circularity in the analysis. Note that rates for some areas 

exceed the plotting range outside the time epoch of interest here (the rule cue period). Broadly 

consistent with the analyses in the main text, rate differences for cues instructing the same task 

were small compared to differences between tasks in PFC and FEF, whereas for visual areas MT, 

V4, and PIT these differences were of comparable size. (B) Task rule category preference index 

(± SEM) for each area, which summarizes results in (A) by contrasting between-category and 

within-category population rate differences (cf. Fig 3E in the main text). Only PFC and FEF had 

index values significantly greater than zero (p < 0.01, asterisks). (C) Indicates which regions 

(rows) had significantly greater task rule preferred condition indices than others (columns; p < 

0.01, dots; cf. main text Fig. 3F). (D) Mean spike rates for preferred (colored lines) and non-

preferred motion categories (light gray lines), and for preferred (solid) and non-preferred (dashed) 

directions within each motion category. Between-category rate differences were large compared 

to within-category differences in PFC, FEF, and LIP, whereas for visual areas MT, V4, and PIT 

these differences were comparable. (E) Motion category preference index (± SEM) for each area, 

summarizing results in (D). (cf. main text Fig 4E). PFC, FEF, and LIP had index values 

significantly greater than zero (p < 0.01, asterisks). (F) Indicates which regions (rows) had 

significantly greater motion preferred condition indices than others (columns; p < 0.01, dots; cf. 

main text Fig. 4F). (G) Mean spike rates for preferred (colored lines) and non-preferred color 

categories (light gray lines), and for preferred (solid) and non-preferred (dashed) colors within 

each color category. Between-category rate differences were large compared to within-category 

differences in FEF, PIT, and PFC, but less so for areas MT, V4, and LIP. (H) Color category 

preference index (± SEM) for each area, summarizing results in (G). (cf. main text Fig 5E). FEF, 



 

 

PIT, PFC, LIP, and V4 all had index values significantly greater than zero (p < 0.01, asterisks). 

(I) Indicates which regions (rows) had significantly greater color preferred condition indices than 

others (columns; p < 0.01, dots; cf. main text Fig. 5F). 

  



 

 

 

Fig. S7. Debiased category variance results (cf. Siegel et al. 2015). (A) Population mean (± SEM) 

debiased rule cue category variance, the statistic used to measure task rule information in our 

previous publication from this dataset (3). As expected, results under this statistic look quite 

different and appear to reflect both task cue categoricality per se (cf. Fig. 3D) as well as the 

overall information about task cues (cf. Fig. 3A). (B) Summary (± SEM) of debiased rule cue 

category variance (cf. Fig. 3B,E). (C) Cross-area significance matrix for rule cue category 

variance (cf. Fig. 3C,F). (D) Population mean (± SEM) debiased motion category variance (cf. 

Fig. 4A,D). (E) Summary (± SEM) of debiased motion category variance (cf. Fig. 4B,E). (F) 

Cross-area significance matrix for motion category variance (cf. Fig. 4C,F). (G) Population mean 

(± SEM) debiased color category variance (cf. Fig. 5A,D). (H) Summary (± SEM) of debiased 

color category variance (cf. Fig. 5B,E). (I) Cross-area significance matrix for color category 

variance (cf. Fig. 5C,F). 

  



 

 

Table S1. Comparison of properties of analysis methods used. Table compares basic properties of 

all analysis methods examined in this paper. A green check indicates the given analysis features 

the given property; a red x indicates it does not. Analyses listed in table rows are: the 

categoricality index, proposed in this paper (main text Fig. 3E,4E,5E; simulations in Fig. S1A–

D); raw between-category variance (main text Fig. 3D,4D,5D; simulations in Fig. S1E,F); the 

debiased category variance statistic, proposed in Siegel et. al 2015 (Fig. S7; simulations in Fig. 

S1G,H); the category preference index (Fig. S6; simulations in Fig. S1I,J).  
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