## Supporting information SI Materials and Methods

Sequencing and variant calling. Genomic DNA was extracted from peripheral blood samples (Puregene, Qiagen) obtained from a series of genetically uncharacterized cases in the Dyskeratosis Congenita Registry (held at Barts and The London School of Medicine, London, UK), with written consent under the approval of our local research ethics committee (London - City and East). Exome data was processed and called jointly with a set of 2,500 WES internal control samples (UCL-ex consortium) using the recommendations from the Genome Analysis Toolkit (GATK v3.2) to minimize artefactual batch effects (1). All variants identified were validated by Sanger sequencing on a 3130xl Genetic Analyzer with a BigDye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems). Using a next generation sequencing (NGS) assay we targeted the coding regions and some 5'UTRs from 90 genes associated with genetic bone marrow failure syndromes (SI Appendix, Table S1). We used the Illumina TruSeq custom amplicon kit for library preparation and capture according to the manufacturer's instructions. The resultant targeted fragments were indexed by dual barcodes and then sequenced on the Illumina MiSeq platform. Read alignment, variant calling and annotation was performed using an in-house pipeline involving the Burrows-Wheeler aligner, the Genome Analysis Toolkit and ANNOVAR, respectively.

**Cell culture plasmids and transfection.** 293T, HeLa and A549 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) and lymphoblastoid lines (LCLs) acquired from ERCC6L2 mutated individuals and a FANCG mutated case were grown in RPMI. All culture media was supplemented with 10% (v/v) fetal bovine serum (FBS; HyClone), 100 IU/ml penicillin, and 100 mg/ml streptomycin (Invitrogen). Cells were maintained at 37°C in a humidified incubator with 5% CO<sub>2</sub>. To achieve a non-cycling phase, cells were serum starved (0.1%) for 48 hours and labelled with BrdU (Sigma) at 32 $\mu$ M/ml concentration for 15 mins and subsequently harvested for genomic DNA extraction using QiaDNA genomic DNA prep kit. 1 $\mu$ g of extracted genomic DNA was slot blotted on to nitrocellulose (NC) membrane and subsequently immunoprobed with mouse monoclonal BrdU antibody (Sigma). To determine loading controls Sybr Gold staining was performed on stripped NC membranes. For ectopic expression studies, cells were transfected with Lipofectamine 2000 (Invitrogen) in optiMEM (Invitrogen) following manufacturer's protocol.

**Cell viability analysis.** LCLs were treated with serial doses of either mitomycin C, phleomycin, irofulven, actinomycin D (Act-D), 5,6 Dichlorobenzimidazole 1- $\beta$ -D-ribofuranoside (DRB), and the DNA-PK inhibitor (NU7026) were dissolved in DMSO at indicated concentrations. Cell viability was assessed by neutral red dye uptake by live cells. All chemicals were obtained from Enzo Life Sciences and Sigma Aldrich. All readings were

normalized to the untreated sample. We calculated statistical significance by comparing the linear regression of the curves with GraphPad Prism 5 software (GraphPad).

**Immunocytochemistry, imaging and analysis.** In brief, after appropriate treatment, LCLs were subjected to cytospin on a poly-D lysine coated slides (Sigma) before fixation. After fixation with 4% PFA, cells were permeabilized with 0.1% Triton X-100 (TX100) in PBS, quenched in 50 mM NH<sub>4</sub>Cl, and blocked in 10% goat serum and 1% BSA in PBS containing 0.05% TX100 for 1 hour. Cells were incubated in corresponding primary antibodies followed by Alexa Fluor 488/568 conjugated secondary antibodies (Invitrogen) in blocking solution. Cells were washed three times in PBS containing 0.05% TX100 between primary and secondary antibody incubations and mounted with vectashield containing DAPI (Vector Labs). For DNA-RNA hybrid (R-loop) S9.6 antibody was used at 1:200 dilution in blocking solution (Enzo Lifesciences). For RNase H treatment, cells were treated with RNase H (New England Biolabs) for 3 hours at 37°C post fixation, followed by incubation with S9.6 antibody. A Zeiss LSM700 confocal microscope with ZEN software was used and 63X captured images were acquired. Intensity per nucleus was determined using Image J (v 1.47). The DAPI signal was used to create a mask of the nucleus.

**Transcription assay in intact cells.** Inhibition of transcription after treatment with either irofulven, ActD and DRB was assessed with the Click-it RNA Imaging Kit and Alexa Fluor 488 azide (Invitrogen). LCLs were grown in 96 wells and following treatment with aforementioned compounds for 3 hours. Cells were then washed in PBS three times and incubated with 1mM 5-ethynlyl uridine (5-EU) for 15 min before fixation with 4% paraformaldehyde at specific time points. Click reactions were performed in accordance with the manufacturer's instructions. The fluorescence read out was measured with standard 480/520 nm excitation / emission wavelengths with the use of a FLUOROstar Optima plate reader (BMG Labtech).

**Western Blots.** For western blot analysis, whole cell protein extracts were prepared by lysing washed cells in denaturing buffer (9 M urea, 150 mM 2-mercaptoethanol, 50 mM Tris-HCl pH 7.3) and subsequently sonicated to shear genomic DNA. Total and phosphorylated forms of DNA-PK and RNA polymerase were separated on 3-8% Tris glycine mini gels (Life Technologies). For all other proteins, 4-12% NuPAGE Bis-Tris mini gels (Life Technologies) were used. Gels were transferred onto PVDF membrane (GE Healthcare). Blotting was performed using primary antibodies and the corresponding alkaline phosphatase conjugated secondary antibodies supplied in the WesternBreeze chemiluminescent kit (Thermo Fisher).  $\beta$ -actin antibody was used as a loading control. We performed semi-quantitative analysis of raw immunoblots by scanning the colorimetric blots at 600 dpi resolution to TIFF format files,

which we subjected to densitometry analysis software (GelPro) to identify quantitative changes in protein levels.

**Cell cycle analysis**. LCLs were treated with DMSO or irofulven for 3 hours, washed with PBS containing 2% FBS and left to grow in complete media. The following day, cells were re-suspended in 0.5 ml PBS with 2% FBS and fixed with ice cold 70% ethanol. Cells were then washed with PBS, incubated with 2 M HCl for 30 min, washed twice with PBS containing 0.5% Tween-20 and 1% BSA, and subsequently stained with propidium iodide solution (PBS, 0.5% Tween-20, 1% BSA, 20 mg/ml propidium iodide, 250 mg/ml RNase A) for 30 min at 37°C. Cell cycle profiles were analyzed using ACEA Novocyte (ACEA Biosciences) and NovoExpress<sup>™</sup> software.

Mass spectrometry, statistical analysis and data visualization. Following coimmunoprecipitation with GFP-TRAP agarose beads, immobilized protein complexes were digested on agarose beads using trypsin (Sigma). Desalting and enrichment steps on the resultant peptides were conducted as previously described (2). LC-MS/MS analysis of peptides was performed in an Orbitrap mass spectrometer (Q-Exactive Plus). The Q-Exactive plus was operated in data dependent mode with one survey MS scan followed by 15 MS/MS scans. The full scans were acquired in the mass analyzer at 375-1500 m/z with the resolution of 70000, and the MS/MS scans were obtained with a resolution of 17500. Peptides were identified using the Mascot search daemon (v.2.5.0), whereby sequences were searched against the SwissProt human protein database (mass windows were 10 ppm and 25 mmu for parent and fragment mass to charge values, respectively). Variable modifications included in searches were oxidation of methionine, pyro-glu (N-term) and phosphorylation of serine, threonine and tyrosine. Peptide quantification was carried out using PESCAL software, as described by Casado et al (3). Quantitative data were normalized in Excel, following which fold changes in peptide intensity and peptide numbers were calculated between the control GFP and GFP-ERCC6L2 pulldown experiments. The statistical significance of differences between conditions were assessed by Student's t-test. Network graphs depicting ERCC6L2 experimental interactome were constructed using the Cytoscape software package [v3.5.1(4)] and selected ontologies were derived from UniProt Knowledgebase lists using experimental evidence codes only (5). For generating the cytoscape map, the protein spheres (nodes) were weighted based on average max intensity and the font size of protein names was weighted on spectral counts. The thickness of the lines (edges) that linked proteins to ERCC6L2 were weighted on peptide numbers and the protein spheres (nodes) distance from ERCC6L2 were based on Pearson's correlation

scores. Subsequently proteins were grouped by ontologies and then by overlapping ontologies.

Chromatin Immunoprecipitation (ChIP) PCR and RTPCR. ChIP was preformed using Zymo-Spin<sup>™</sup> ChIP kit. Briefly 5 x 10<sup>6</sup> 293T cells were cross linked using 0.75% paraformaldehyde for 10 minutes and quenched by addition of 2.5M glycine. ChIP extracts were prepared following kits instructions. Sonication was performed on ice, using the Bioruptor instrument (Diagenode) that was optimized to produce DNA fragments ranging between 100 and 1,000 base pairs. ChIP grade antibodies against RNA Pol-II (Abcam), serine-2 RNA Pol-II CTD (Abcam), DNA-PK (Cell Signalling) and pDNA-PKcs S2056 (Abcam), were used at 3 µg/each IP. After IP, reverse cross-linking was performed and the ChIP DNA was purified and concentrated as instructed in the kit (Zymo research). Total sonicated genomic and ChIP DNA were PCR amplified using Q5 polymerase and specific primers for MYC, FOS and JUN gene bodies as mentioned previously (6). For RTPCR total RNAs from LCLs, A549 and CD34<sup>+</sup> hematopoietic progenitors were extracted using Trizol and further purified using the RNeasy kit (QIAGEN). Oligo (dT)<sub>25</sub> coated dyna beads were used specifically for pull down of poly(A) RNA. Equivalent amounts (~100 ng) of purified RNA were used as a template to synthesize cDNA using a mixture of random hexamers and Oligo (dT)<sub>25</sub> primers (1:1) and Superscript III reverse transcriptase (Invitrogen) according to the manufacturer's protocol. Specific primers were used for detection of ERCC6L2 short (forward TTGGGAACTGTGGAGGAAATC; reverse CTCTGAGATGGAGGTAGCAG) and long isoform (forward TTGGGAACTGTGGAGGAAAT; reverse TGATCCCTGCTTCTACTTGG) transcripts in these cell types.

**Telomere length measurement.** Telomere lengths were measured using the monochrome multiplex quantitative PCR method modified from Cawthon (3) as described in Walne et al (7). Briefly, in each well, amplification of telomeric DNA (T) and a single copy gene (S) were quantified against standard curves obtained from the dilution of a reference DNA sample. The T/S ratio, obtained in triplicate for each sample, is proportional to the telomere length. This ratio was normalized to the T/S ratio of a second reference sample that was run on every plate to give a relative T/S ratio.

### Statistics

Statistical analysis was performed with GraphPad Prism software (version 7), and a p value < 0.05 was considered statistically significant. In line graphs, for each experimental data set, a linear regression was conducted to determine the best-fit line describing the data from each independent experiment. The overall significance of cytotoxicity (Fig. 2*A*-*F* were

determined with one-way ANOVA with post Tukey's test on the slopes of the regression lines from each data set (n = 3 independent experiments performed in octuplicate). In bar graphs, a Mann-Whitney test was used to determine significant differences in between control and patient cell lines for both RNA Pol-II S2 CTD and DNA-PK serine 2056 phosphorylation level that were analyzed by GelPro densitometry software (Fig. S5*A and B*).

## **SI Figures**

Fig. S1.



**Fig. S1.** Sanger sequencing traces of disease-causing variants in *ERCC6L2* (NM\_020207.4) from each index case of the families, as indicated.

| Fig. | S2. |
|------|-----|
|------|-----|

| Human   | :          | KQQLHCVVV  | S  | INAK |
|---------|------------|------------|----|------|
| Monkey  | :          | KQQLHCVVV( | SI | INAK |
| Cow     | :          | KQQLHCVVV  | S  | INAK |
| Camel   | :          | KQQLHCVVV  | S  | INAK |
| Pig     | :          | KQQLHCVVV  | S  | INAK |
| Horse   | :          | KQQLHCVVV  | S  | INAK |
| Mouse   | :          | KQQLHCVVV  | S  | INAK |
| Rat     | :          | KQQLHCVVV  | S  | INAK |
| Frog    | :          | KQQLHCVVV  | S  | INAK |
| Chicker | <b>n</b> : | KQQLHCAVV  | S  | INAK |
|         |            | *****:**   | *  | ***  |

**Fig. S2.** Conservation of serine 669 residue in ERCC6L2. The alignment of serine 669 residue of human ERCC6L2 with indicated vertebrate species was generated with ClustalW. Asterisks indicate positions that have a single fully conserved residue and colons indicate conservation between groups of strongly similar properties

#### Fig. S3.



**Fig. S3.** Response to irofulven, ActD and DRB treatment in relevant LCLs using the ClickiT® RNA Assay. LCLs were treated with the indicated amounts of each drugs for 3 hours, followed by a 1hour incubation with 5-EU. Cells were then fixed and permeabilized and the 5-EU incorporated into newly synthesized RNA was detected using the green-fluorescent Alexa Fluor® 488 azide, using fluorescent plate reader at relevant exciting and emission filters. Error bars represent standard errors calculated between octuplets in each individual experiment (n=2 independent experiments).



**Fig. S4.** Using the Cytoscape plug-in unit, the ERCC6L2 interaction landscape is over represented in clustered modules defining protein classes. The clusters display ERCC6L2 interaction with a network of proteins involved in DNA repair, RNA processing, mitosis and mitochondrial biogenesis.



**Fig. S5.** (A) The bar graph represents quantified RNA Pol-II serine-2 phosphorylation levels, normalized to beta actin. Error bars represent the SEM (Mann-Whitney test), derived from data obtained from two independent experiments. (B) Densitometric analysis of the data in panel C shows the increase in serine-2065 phosphorylation of DNA-PK at the indicated time points after irofulven exposure in patients' cells compared control.

Fig. S6.



**Fig.S6.** Confocal images of the immunostaining normal control and patient cells with S9.6 antibody, with and without prior treatment with RNase H. DNA-RNA hybrids (R-loops) stained by S9.6 antibody are indicated in red and DAPI staining cell nuclei in blue. Images are representative of cells taken from 10 different fields of view (n=2 experiments, performed in triplicate).

Fig. S7.



**Fig. S7.** Cells from three controls and three patients were maintained in 15% FBS (cycling) or grown to confluence and maintained in 0.1% FBS (non-cycling). DNA synthesis was determined by detecting the level of BrdU incorporation into genomic DNA (top panel). Immuno-slot blots were stained with Sybr Gold to ensure equal loading of genomic DNA.





**Fig. S8.** Immunoblotting panels show levels of total and phosphorylated serine 2056 forms of DNA-PK and the loading control  $\beta$ -Actin in control and patients' cells before (-) and after (+) NU7026 treatment.

```
Fig.S9.
```



**Fig. S9.** (A) Age adjusted telomere length values ( $\Delta$ -tel) were measured by subtracting the observed T/S ratio from the expected T/S ratio, using the equation derived from the line of best fit through the plot of T/S ratios from healthy control samples against age. Patients with TERC variants are included as a group with known short telomeres. Centiles were calculated from the control  $\Delta$ -tel values as follows: 99th centile = 0.95, 90th centile = 0.44, 50th centile = -0.07, 10th centile = -0.33, 1st centile = -0.52. The different genotypes are represented as follows, TERC: black circles (n=44); ERCC6L2 cases: squares (n=10); controls: grey triangles (n=218). Colours indicate cases in green: family1; blue: family 2; purple: family3; orange: family 4; black: family 5; grey: cases from Tummala et al, 2016<sup>2</sup>. (B) Telomere lengths of affected cases from family 2 were measured by automated multicolor flow-FISH and depicted as percentiles by calculating a reference range for telomere length over age in lymphocytes from 400 healthy individuals (Repeat Diagnostics, Vancouver). Affected cases (indicated by red circles) show telomere lengths below first percentile for age in lymphocytes.

Fig. S10.



**Fig. S10.** ERCC6L2 at the nexus of transcription and the DNA damage response: RNA Pol-II proceeds along its DNA coding template, releasing the mRNA for processing. ERCC6L2:DNA-PK:RNA Pol-II complex regulates transcription elongation and accurate termination upon DNA damage. Loss of ERCC6L2 function leads to transcription elongation defects due to R-loop accumulation. Encountering R-loops stalls transcription and initiating DNA damage response (DDR). Presence of ERCC6L2 inhibits R loop formation and DNA damage response. **Table S1.** Current gene list (n=90) that was used for the characterisation of new cases with bone marrow failure.

| HUGO     | Transcript ID   | HUGO   | Transcript ID   | HUGO   | Transcript ID   |
|----------|-----------------|--------|-----------------|--------|-----------------|
| ACD      | ENST00000393919 | FANCM  | ENST0000267430  | RPL11  | ENST00000374550 |
| ANKRD26  | ENST00000376087 | G6PC   | ENST00000253801 | RPL15  | ENST00000307839 |
| BRCA1    | ENST00000471181 | G6PC3  | ENST0000269097  | RPL26  | ENST00000584164 |
| BRCA2    | ENST00000544455 | GATA1  | ENST00000376670 | RPL35A | ENST00000464167 |
| BRIP1    | ENST00000259008 | GATA2  | ENST00000341105 | RPL5   | ENST00000370321 |
| C15ORF41 | ENST0000566621  | GFI1   | ENST00000370332 | RPS10  | ENST00000326199 |
| CDAN1    | ENST0000356231  | GRHL2  | ENST00000251808 | RPS17  | ENST00000330244 |
| CEBPA    | ENST00000498907 | HAX1   | ENST00000328703 | RPS19  | ENST00000598742 |
| CSF3R    | ENST00000373103 | HOXA11 | ENST0000006015  | RPS24  | ENST00000440692 |
| CTC1     | ENST00000315684 | JAGN1  | ENST00000307768 | RPS26  | ENST00000356464 |
| CXCR4    | ENST00000409817 | KIF23  | ENST0000260363  | RPS28  | ENST0000600659  |
| DDX41    | ENST00000507955 | KLF1   | ENST0000264834  | RPS29  | ENST00000396020 |
| DKC1     | ENST0000369550  | LIG4   | ENST00000356922 | RPS7   | ENST00000304921 |
| DNAJC21  | ENST00000382021 | MAD2L2 | ENST0000235310  | RTEL1  | ENST00000508582 |
| DNAJC3   | ENST0000602402  | MECOM  | ENST0000264674  | RUNX1  | ENST00000300305 |
| EGFR     | ENST0000275493  | MPL    | ENST00000372470 | SAMD9  | ENST00000379958 |
| ELANE    | ENST00000590230 | MYSM1  | ENST00000472487 | SAMD9L | ENST00000318238 |
| ERCC4    | ENST00000311895 | NAF1   | ENST00000274054 | SBDS   | ENST00000246868 |
| ERCC6L2  | NM_020207.4*    | NHP2   | ENST00000274606 | SEC23B | ENST00000336714 |
| ETV6     | ENST00000396373 | NOP10  | ENST00000328848 | SLX4   | ENST00000294008 |
| FANCA    | ENST00000389301 | NPM1   | ENST0000296930  | SRP72  | ENST00000342756 |
| FANCB    | ENST00000398334 | PALB2  | ENST0000261584  | TAZ    | ENST00000601016 |
| FANCC    | ENST0000289081  | PARN   | ENST00000437198 | TERC   | ENST00000363312 |
| FANCD2   | ENST0000287647  | PAX5   | ENST00000358127 | TERT   | ENST00000310581 |
| FANCE    | ENST00000229769 | RAD51  | ENST00000382643 | TINF2  | ENST00000267415 |
| FANCF    | ENST00000327470 | RAD51C | ENST00000337432 | TP53   | ENST00000269305 |
| FANCG    | ENST00000378643 | RBM8A  | ENST00000583313 | UBE2T  | ENST00000367274 |
| FANCI    | ENST00000310775 | RECQL4 | ENST00000428558 | USB1   | ENST00000219281 |
| FANCL    | ENST00000402135 | RMRP   | ENST0000602361  | VPS45  | ENST00000369130 |
| XRCC2    | ENST00000359321 | WRAP53 | ENST00000316024 | WAS    | ENST00000376701 |

 Table S2. ERCC6L2 variants associated with bone marrow failure identified in this study.

| Patient ID      | P1            | P2          | P3                | P4               | P5                  |
|-----------------|---------------|-------------|-------------------|------------------|---------------------|
| Nucleic acid    | c.2767delG    | c.2006G>A   | c.2189delG        | c.3442_3443delAT | c.2952_2956delAAAAG |
| change          | homozygous    | homozygous  | c.3333_336delTCAA | c.3796C>T        | homozygous          |
| Amino acid      | p.Glu923Argfs | p.Ser669Asn | p.Gly730Aspfs*50  | p.Met1148Glufs*7 | p.Lys985Hisfs*3     |
| substitution    | *8            |             | p.Asn1111Lysfs*12 | p.Arg1266*       |                     |
| GNOMAD allele   | NR            | NR          | NR                | 4/242698         | NR                  |
| frequency       |               |             | NR                | 4/271282         |                     |
| Previously      | No            | No          | Yes <sup>4</sup>  | No               | No                  |
| reported in BMF |               |             | No                | Yes <sup>4</sup> |                     |
| CADD score      | 1.4           | 20.7        | 20.3              | 35               | 14.4                |
|                 |               |             | 11.3              | 38               |                     |

GNOMAD, Genome Aggregation Database; CADD, Combined Annotation Dependent Depletion (PHRED score) that determines deleteriousness of single nucleotide variants as well as insertion/deletions; NR, not reported.

| Family                          | 1                | 2                  | 2                  | 3                | 4         | 4                | 4         | 5                |
|---------------------------------|------------------|--------------------|--------------------|------------------|-----------|------------------|-----------|------------------|
| Index case                      | P1               | P2                 |                    | P3               |           | P4               |           | P5               |
| Amino acid                      | Glu923fs         | Ser699Asn          | Ser699Asn          | Gly730fs         | Met1148fs | Met1148fs        | Met1148fs | Lys985fs         |
| substitution                    | hom              | hom                | hom                | Asn1111fs        | Arg1266*  | Arg1266*         | Arg1266*  | hom              |
| Sex                             | F                | М                  | F                  | F                | F         | М                | F         | М                |
| Ethnic origin                   | Pk               | Pk                 | Pk                 | UK               | Ire       | Ire              | Ire       | Sy               |
| Age <sup>a</sup>                | 8                | 13                 | 3                  | 17               | 18        | 2                | 13        | 12               |
| Parents first cousins           | Yes              | Yes                | Yes                | No               | No        | No               | No        | No               |
| Bone marrow failure             | Yes <sup>b</sup> | Yes <sup>c</sup>   | Yes <sup>d</sup>   | Yes <sup>e</sup> | Yes       | Yes <sup>f</sup> | Yes       | Yes <sup>g</sup> |
| MDS and/or AML                  | No               | No                 | No                 | No               | No        | Yes              | No        | Yes              |
| Hemoglobin (g/l)                |                  | 70                 | 112                | 120              | 119       | 97               | 127       | 81               |
| Wbc (x10 <sup>9</sup> /l)       |                  | 2.0                | 8.6                | 3.5              | 2.4       | 3.0              | 3.9       | 4.9              |
| Platelets (x10 <sup>9</sup> /l) |                  | 58                 | 131                | 90               | 166       | 12               | 85        | 102              |
| Learning                        | No               | No                 | No                 | No               | No        | No               | No        | Yes              |
| difficulties/DD                 |                  |                    |                    |                  |           |                  |           |                  |
| Microcephaly                    | No               | No                 | No                 | Yes              | No        | No               | No        | No               |
| Other features                  | No               | Yes <sup>h</sup>   | No                 | Yes <sup>i</sup> | No        | Yes <sup>j</sup> | No        | Yes <sup>k</sup> |
| Chromosomal                     | Normal           | Normal             | Normal             | Normal           | ?         | Normal           | ?         | Normal           |
| breakage <sup>l</sup>           |                  |                    |                    |                  |           |                  |           |                  |
| Telomere length <sup>m</sup>    | Normal           | Short <sup>n</sup> | Short <sup>n</sup> | Normal           | Normal    | Normal           | Normal    | Normal           |

## Table S3. Features of patients with biallelic ERCC6L2 variants

<sup>a</sup>In years, at investigation; <sup>b</sup>anemia and hypocellular bone marrow; <sup>c</sup>hypocellular bone marrow; <sup>d</sup>investigated as a potential bone marrow donor for her older brother and was found to have a raised hemoglobin F at 2.6% and a hypocellular bone marrow for her age; <sup>e</sup>macrocytosis (mean corpuscular volume of 109 fentolitres); <sup>f</sup>this patient's bone marrow hypoplasia progressed to MDS and AML [complex karyotype including del(5) (q11.2q31), -18, +8] leading to fatal complications; <sup>g</sup>hypocellular bone marrow with tri-lineage dysplasia, monosomy 7 and trisomy 20; <sup>h</sup>failure to thrive, thin teeth, muscle pain; <sup>i</sup>delayed switch to adult teeth; <sup>j</sup>arterio-venous malformation; <sup>k</sup>café au lait pigmentation, leucoplakia, low birth weight, short stature; <sup>l</sup>after treatment of peripheral blood lymphocytes with diepoxybutane or mitomycin C; <sup>m</sup>age adjusted telomere length measurements showed a considerable range in the patient group (*SI Appendix*, Fig. S8A); <sup>n</sup>the index case and the affected sister from family 2 both have very short telomeres, as demonstrated by flow-FISH analysis (*SI Appendix*, Fig. S8B). Hom, homozygous; F, female; M, male; Pk, Pakistani; Ire, Irish; Sy, Syrian; MDS, myelodysplasia; AML, acute myeloid leukemia; Wbc, white blood cell count; DD, developmental delay; ?, unknown;

# Table S4. ERCC6L2 interaction partners

| Protein sorted by<br>Max spectral counts | R - pearson<br>correlation<br>(sum of<br>peptide<br>intensity<br>versus<br>ERCC6L2<br>intensity) | Max<br>spectral<br>counts | Unique<br>peptides | MASCOT   | Max intensity<br>values | Log2 fold changes<br>in intensity<br>(ERCC6L2 Ab vs<br>control) |
|------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|--------------------|----------|-------------------------|-----------------------------------------------------------------|
| ERCC6L2_HUMAN                            | 1                                                                                                | 423                       | 138                | 22996.39 | 161195483.78            | 11.7900                                                         |
| PRKDC_HUMAN                              | 0.9999                                                                                           | 138                       | 105                | 23361.62 | 9742436.36              | 5.4364                                                          |
| HNRPM_HUMAN                              | 0.9974                                                                                           | 112                       | 60                 | 11211.97 | 6054238.48              | 4.8041                                                          |
| DYHC1_HUMAN                              | 0.9989                                                                                           | 94.5                      | 86                 | 17672.04 | 4740097.01              | 4.6872                                                          |
| HS71L_HUMAN                              | 0.9993                                                                                           | 90                        | 13                 | 5020.98  | 14687658.12             | 4.2540                                                          |
| FAS_HUMAN                                | 0.9995                                                                                           | 77                        | 61                 | 13230.86 | 6933448.21              | 4.2745                                                          |
| DDX3Y_HUMAN                              | 0.9999                                                                                           | 74                        | 18                 | 4389.07  | 5432500.44              | 4.7960                                                          |
| DHX9_HUMAN                               | 0.9956                                                                                           | 69.5                      | 47                 | 8997.90  | 5579611.35              | 5.0394                                                          |
| IF4A2_HUMAN                              | 0.9970                                                                                           | 67.5                      | 17                 | 3703.57  | 3642035.71              | 4.0530                                                          |
| PARP1_HUMAN                              | 0.9996                                                                                           | 67                        | 44                 | 9659.29  | 5015744.27              | 3.8313                                                          |
| HSP72_HUMAN                              | 0.9990                                                                                           | 67                        | 12                 | 4308.64  | 13801594.45             | 3.9654                                                          |
| TBAL3_HUMAN                              | 0.9916                                                                                           | 64.5                      | 5                  | 1038.95  | 4753808.82              | 2.5872                                                          |
| POTEI_HUMAN                              | 0.9990                                                                                           | 63                        | 2                  | 2101.91  | 9007619.11              | 2.7111                                                          |
| NONO_HUMAN                               | 0.9993                                                                                           | 56                        | 27                 | 4624.00  | 5014815.63              | 4.1968                                                          |
| CLH1_HUMAN                               | 0.9988                                                                                           | 54                        | 40                 | 8845.20  | 4161084.87              | 4.8698                                                          |
| ADT1_HUMAN                               | 0.9914                                                                                           | 54                        | 8                  | 3157.71  | 6777985.08              | 3.7165                                                          |
| TCPB_HUMAN                               | 0.9937                                                                                           | 53                        | 35                 | 7097.82  | 2645043.70              | 3.7473                                                          |
| HSP76_HUMAN                              | 0.9968                                                                                           | 51.5                      | 5                  | 3658.75  | 14490604.64             | 4.4314                                                          |
| ATPB_HUMAN                               | 0.9994                                                                                           | 49                        | 27                 | 6835.88  | 4495716.91              | 3.8664                                                          |
| EF1A3_HUMAN                              | 0.9962                                                                                           | 48                        | 8                  | 4913.56  | 7480291.97              | 4.4300                                                          |
| EFTU_HUMAN                               | 0.9982                                                                                           | 46.5                      | 31                 | 6648.13  | 3568254.66              | 4.3308                                                          |
| HNRPK_HUMAN                              | 0.9910                                                                                           | 44.5                      | 25                 | 4907.33  | 3231566.73              | 3.3034                                                          |
| HSP7C_HUMAN                              | 0.9987                                                                                           | 44                        | 28                 | 8306.30  | 6129648.60              | 5.4232                                                          |
| RS4Y1_HUMAN                              | 0.9988                                                                                           | 43                        | 7                  | 1682.61  | 3972654.45              | 3.2803                                                          |
| ACTG_HUMAN                               | 0.9973                                                                                           | 42                        | 7                  | 7532.53  | 20447353.46             | 3.8615                                                          |
| ATPA_HUMAN                               | 0.9995                                                                                           | 41.5                      | 27                 | 7557.54  | 5379053.41              | 3.7949                                                          |
| TCPG_HUMAN                               | 0.9944                                                                                           | 41.5                      | 32                 | 6047.20  | 4306617.98              | 3.3484                                                          |
| VIME_HUMAN                               | 0.9996                                                                                           | 40.5                      | 29                 | 7359.83  | 3718021.60              | 5.1741                                                          |
| C1TC_HUMAN                               | 0.9976                                                                                           | 40                        | 29                 | 8488.16  | 3059957.29              | 3.5924                                                          |
| LPPRC_HUMAN                              | 0.9998                                                                                           | 40                        | 32                 | 7534.06  | 1344421.93              | 4.0167                                                          |
| IF4A1_HUMAN                              | 0.9941                                                                                           | 39.5                      | 17                 | 7001.82  | 3774115.16              | 5.0256                                                          |
| MDN1_HUMAN                               | 0.9962                                                                                           | 39.5                      | 40                 | 6966.04  | 1286640.50              | 11.2869                                                         |
| KPYM_HUMAN                               | 0.9982                                                                                           | 38                        | 22                 | 7088.50  | 7649329.76              | 3.7723                                                          |
| H2A2B_HUMAN                              | 0.9944                                                                                           | 37.5                      | 1                  | 453.02   | 22964759.70             | 3.7423                                                          |
| RS3_HUMAN                                | 0.9996                                                                                           | 37                        | 20                 | 4761.26  | 4860490.24              | 3.5947                                                          |
| SYEP_HUMAN                               | 0.9954                                                                                           | 36                        | 30                 | 6553.11  | 1862515.44              | 4.8846                                                          |
| RGPD8_HUMAN                              | 0.9932                                                                                           | 36                        | 4                  | 931.21   | 1961381.74              | 4.5805                                                          |
| TCPD_HUMAN                               | 0.9965                                                                                           | 35.5                      | 24                 | 5681.03  | 3189772.42              | 3.8360                                                          |
| HS905_HUMAN                              | 0.9907                                                                                           | 35                        | 8                  | 1002.09  | 3261098.54              | 4.2883                                                          |

| TCPQ_HUMAN  | 0.9921 | 32.5 | 26 | 7278.99 | 2908589.45 | 2.4269  |
|-------------|--------|------|----|---------|------------|---------|
| RS9_HUMAN   | 0.9935 | 32.5 | 15 | 3707.51 | 4628802.59 | 4.2591  |
| XPO1_HUMAN  | 0.9974 | 32   | 28 | 4282.20 | 1602533.82 | 3.4011  |
| 1A80_HUMAN  | 0.9954 | 32   | 1  | 210.03  | 1538194.88 | 11.5446 |
| PHB2_HUMAN  | 0.9996 | 31.5 | 20 | 5297.90 | 1971810.53 | 3.9401  |
| PUR9_HUMAN  | 0.9929 | 31.5 | 22 | 4299.21 | 1691924.58 | 4.3912  |
| HS90A_HUMAN | 0.9942 | 31   | 14 | 8757.32 | 3475356.80 | 4.1393  |
| PYR1_HUMAN  | 0.9917 | 31   | 31 | 6479.46 | 1631566.75 | 4.2555  |
| EF2_HUMAN   | 0.9969 | 31   | 23 | 6217.34 | 2299927.10 | 2.5384  |
| SF3B1_HUMAN | 0.9998 | 31   | 21 | 5055.54 | 1881935.20 | 6.5578  |
| H90B3_HUMAN | 0.9992 | 31   | 6  | 3714.42 | 2901292.32 | 3.3335  |
| EIFCL_HUMAN | 0.9954 | 31   | 15 | 1853.47 | 1997407.36 | 11.9214 |
| COPA_HUMAN  | 0.9997 | 29.5 | 26 | 5755.42 | 1849889.02 | 5.4076  |
| P5CS_HUMAN  | 0.9985 | 29.5 | 23 | 5060.39 | 1958550.11 | 5.0331  |
| SERA_HUMAN  | 0.9935 | 29.5 | 17 | 4945.83 | 2762218.11 | 3.0590  |
| SMC3_HUMAN  | 0.9963 | 29   | 28 | 5111.24 | 1314229.68 | 6.5629  |
| TCPH_HUMAN  | 0.9938 | 29   | 21 | 4420.14 | 2369583.14 | 4.3817  |
| XPO2_HUMAN  | 0.9934 | 29   | 19 | 4023.92 | 3057455.38 | 4.5438  |
| RAB43_HUMAN | 0.9958 | 28.5 | 1  | 273.72  | 8063020.50 | 3.2597  |
| GBLP_HUMAN  | 0.9956 | 28   | 13 | 3906.20 | 2568293.04 | 3.6904  |
| RS3A_HUMAN  | 0.9941 | 28   | 18 | 3861.90 | 3450186.35 | 2.6445  |
| RS16_HUMAN  | 0.9997 | 28   | 10 | 2428.72 | 2985909.03 | 4.7129  |
| EIF3A_HUMAN | 0.9938 | 27   | 21 | 3912.72 | 1038788.79 | 2.4391  |
| DDX17_HUMAN | 0.9934 | 26.5 | 20 | 6728.10 | 2042982.74 | 3.9320  |
| SYDC_HUMAN  | 0.9962 | 26.5 | 22 | 5806.36 | 1865722.15 | 4.3155  |
| NU205_HUMAN | 0.9987 | 26.5 | 19 | 4781.08 | 1159387.93 | 5.0363  |
| MCM7_HUMAN  | 0.9968 | 26.5 | 23 | 4147.00 | 1577095.79 | 5.3619  |
| RAB15_HUMAN | 0.9986 | 26.5 | 3  | 895.53  | 2657796.78 | 3.5690  |
| MCM2_HUMAN  | 0.9978 | 26   | 22 | 5276.20 | 2244969.76 | 4.9467  |
| SMC1A_HUMAN | 0.9969 | 26   | 22 | 4532.82 | 1564871.69 | 5.5565  |
| IRS4_HUMAN  | 0.9977 | 26   | 18 | 4453.14 | 1062141.45 | 4.3266  |
| RBM14_HUMAN | 0.9949 | 26   | 20 | 4094.97 | 1269001.05 | 4.3006  |
| H13_HUMAN   | 0.9908 | 26   | 5  | 2337.85 | 8484394.90 | 9.1535  |
| HS902_HUMAN | 0.9978 | 26   | 4  | 1728.89 | 4166611.10 | 4.1208  |
| PDC6I_HUMAN | 0.9958 | 25.5 | 26 | 5384.53 | 3140785.03 | 3.0418  |
| SMC2_HUMAN  | 0.9995 | 25.5 | 26 | 4630.41 | 2619909.97 | 4.2220  |
| SYYC_HUMAN  | 0.9961 | 25.5 | 21 | 4533.69 | 1629551.84 | 3.9763  |
| U520_HUMAN  | 0.9992 | 25.5 | 23 | 4454.53 | 755540.34  | 5.0469  |
| TBB8_HUMAN  | 0.9956 | 25.5 | 3  | 2763.72 | 3949762.63 | 4.2024  |
| USP9Y_HUMAN | 0.9991 | 25.5 | 10 | 1733.94 | 678750.49  | 10.3643 |
| H4_HUMAN    | 0.9982 | 25   | 11 | 3020.03 | 2944325.31 | 2.5660  |
| RL26_HUMAN  | 0.9979 | 25   | 8  | 2079.03 | 2749994.07 | 3.8152  |
| TBC3L_HUMAN | 1.0000 | 25   | 3  | 52.73   | 1342575.59 | 11.3483 |
| HUWE1_HUMAN | 0.9989 | 24.5 | 24 | 5178.44 | 685822.99  | 4.8118  |
| GCN1L_HUMAN | 0.9981 | 24.5 | 22 | 4564.17 | 614004.34  | 5.3828  |

| SYIC_HUMAN  | 0.9990 | 24.5 | 23 | 4325.47  | 1701082.41 | 5.9659 |
|-------------|--------|------|----|----------|------------|--------|
| FLNA_HUMAN  | 0.9910 | 24   | 23 | 7137.77  | 808133.29  | 2.2985 |
| SMCA5_HUMAN | 0.9945 | 24   | 20 | 4894.09  | 1009774.38 | 4.0065 |
| SYLC_HUMAN  | 0.9980 | 24   | 22 | 4672.98  | 1294757.22 | 4.0111 |
| TRAP1_HUMAN | 0.9962 | 23.5 | 19 | 5319.41  | 1802614.82 | 3.9355 |
| MATR3_HUMAN | 0.9913 | 23.5 | 20 | 4218.15  | 1218129.43 | 3.6961 |
| PHB_HUMAN   | 0.9966 | 23   | 17 | 4247.11  | 2523600.47 | 3.9495 |
| RUVB2_HUMAN | 0.9919 | 22.5 | 21 | 4468.58  | 766978.34  | 4.0745 |
| H2BFS_HUMAN | 0.9928 | 22.5 | 3  | 1882.00  | 2439421.24 | 4.2513 |
| HS90B_HUMAN | 0.9993 | 22   | 9  | 10483.35 | 1962966.30 | 3.9917 |
| IF2B1_HUMAN | 0.9971 | 22   | 14 | 4175.07  | 923732.63  | 3.3711 |
| MCM3_HUMAN  | 0.9922 | 22   | 17 | 4053.08  | 816993.63  | 3.4820 |
| VIGLN_HUMAN | 0.9988 | 22   | 21 | 3779.35  | 871168.65  | 4.6355 |
| RL4_HUMAN   | 0.9995 | 22   | 11 | 3324.31  | 2858824.94 | 4.2088 |
| KI67_HUMAN  | 0.9996 | 22   | 23 | 3324.07  | 1593813.25 | 5.1718 |
| RL13_HUMAN  | 0.9956 | 22   | 10 | 3118.53  | 1426783.90 | 2.8084 |
| LMNB1_HUMAN | 0.9982 | 21.5 | 17 | 5683.29  | 1008389.96 | 2.8124 |
| MCM6_HUMAN  | 0.9998 | 21.5 | 19 | 4475.73  | 1422480.62 | 5.0089 |
| SYVC_HUMAN  | 0.9983 | 21   | 17 | 3740.22  | 839646.92  | 4.3595 |
| TBA4B_HUMAN | 0.9940 | 21   | 3  | 510.60   | 2560793.64 | 5.2665 |
| EIF3E_HUMAN | 0.9999 | 20.5 | 14 | 3362.75  | 917753.71  | 4.4170 |
| RS2_HUMAN   | 0.9938 | 20.5 | 14 | 2548.98  | 2932423.54 | 4.0580 |
| RAB1C_HUMAN | 0.9983 | 20.5 | 6  | 1448.90  | 2225511.53 | 7.6244 |

List of proteins identified by mass spectrometry after GFP-IP using soluble cells extracts from 293T cells overexpressing GFP-ERCC6L2. Result columns show the average of two experiments, with the number of unique peptides identified, maximum spectral counts and the calculated MASCOT scores (that relate to confidence in peptide identification) for each individual protein, sorted by at maximum spectral counts. ERCC6L2 and PRKDC are highlighted in green.

| DNA repair  | RNA binding | Mitochondrial<br>biogenesis | Mitosis     | Other       |
|-------------|-------------|-----------------------------|-------------|-------------|
| ACTG_HUMAN  | ACTG_HUMAN  | ADT1_HUMAN                  | ACTG_HUMAN  | 1A80_HUMAN  |
| DDX17_HUMAN | DDX17_HUMAN | ATPA_HUMAN                  | CLH1_HUMAN  | COPA_HUMAN  |
| DYHC1_HUMAN | DDX3Y_HUMAN | ATPB_HUMAN                  | DYHC1_HUMAN | FLNA_HUMAN  |
| EF1A3_HUMAN | DHX9_HUMAN  | C1TC_HUMAN                  | EF2_HUMAN   | IRS4_HUMAN  |
| EF2_HUMAN   | EF1A3_HUMAN | FAS_HUMAN                   | H13_HUMAN   | PDC6I_HUMAN |
| EFTU_HUMAN  | EF2_HUMAN   | H90B3_HUMAN ?               | H2A2B_HUMAN | PYR1_HUMAN  |
| H13_HUMAN   | EFTU_HUMAN  | HS71L_HUMAN                 | KI67_HUMAN  | RAB15_HUMAN |
| H2A2B_HUMAN | EIF3A_HUMAN | HS905_HUMAN                 | MCM2_HUMAN  | RAB1C_HUMAN |
| H2BFS_HUMAN | EIF3E_HUMAN | HS90A_HUMAN                 | MCM3_HUMAN  | RAB43_HUMAN |
| H4_HUMAN    | EIFCL_HUMAN | HSP72_HUMAN                 | MCM6_HUMAN  | TBA4B_HUMAN |
| HS905_HUMAN | GCN1L_HUMAN | HSP76_HUMAN                 | MCM7_HUMAN  | TBC3L_HUMAN |
| HS90A_HUMAN | H13_HUMAN   | HSP7C_HUMAN                 | RS3_HUMAN   | USP9Y_HUMAN |
| HSP72_HUMAN | HNRPK_HUMAN | KPYM_HUMAN                  | SMC1A_HUMAN | VIGLN_HUMAN |
| HSP76_HUMAN | HNRPM_HUMAN | LPPRC_HUMAN                 | SMC2_HUMAN  |             |
| HUWE1_HUMAN | HS905_HUMAN | PHB_HUMAN                   | SMC3_HUMAN  |             |
| KI67_HUMAN  | IF2B1_HUMAN | PHB2_HUMAN                  | SMCA5_HUMAN |             |
| LMNB1_HUMAN | IF4A1_HUMAN | SERA_HUMAN                  | TBAL3_HUMAN |             |
| MATR3_HUMAN | IF4A2_HUMAN | SYEP_HUMAN                  | TBB8_HUMAN  |             |
| MCM2_HUMAN  | LPPRC_HUMAN | TCPB_HUMAN                  | TCPB_HUMAN  |             |
| MCM3_HUMAN  | MATR3_HUMAN | TRAP1_HUMAN                 | TCPH_HUMAN  |             |
| MCM6_HUMAN  | MDN1_HUMAN  | VIME_HUMAN                  | TCPQ_HUMAN  |             |
| MCM7_HUMAN  | NONO_HUMAN  |                             |             |             |
| NONO_HUMAN  | NU205_HUMAN |                             |             |             |
| PARP1_HUMAN | P5CS_HUMAN  |                             |             |             |
| POTEI_HUMAN | RBM14_HUMAN |                             |             |             |
| PRKDC_HUMAN | RL13_HUMAN  |                             |             |             |
| PUR9_HUMAN  | RS16_HUMAN  |                             |             |             |
| RGPD8_HUMAN | RS2_HUMAN   |                             |             |             |
| RS3_HUMAN   | RS3_HUMAN   |                             |             |             |
| RUVB2_HUMAN | RS3A_HUMAN  |                             |             |             |
| SMC1A_HUMAN | RS3A_HUMAN  |                             |             |             |
| SMC2_HUMAN  | RS4Y1_HUMAN |                             |             |             |
| SMC3_HUMAN  | RS9_HUMAN   |                             |             |             |
| SMCA5_HUMAN | SF3B1_HUMAN |                             |             |             |
|             | SYDC_HUMAN  |                             |             |             |
|             | SYEP_HUMAN  |                             |             |             |
|             | SYIC_HUMAN  |                             |             |             |
|             | SYLC_HUMAN  |                             |             |             |
|             | SYVC_HUMAN  |                             |             |             |
|             | SYYC_HUMAN  |                             |             |             |

| Table S5. Uniprot a | nalysis of ERCC6L2 interactors. |
|---------------------|---------------------------------|
|---------------------|---------------------------------|

| TCPD_HUMAN   |  |  |
|--------------|--|--|
| TCPG_HUMAN   |  |  |
| U520_HUMAN   |  |  |
| VIME_HUMAN ? |  |  |
| XPO1_HUMAN   |  |  |
| XPO2_HUMAN   |  |  |

The indicated protein identified by mass spectrometry in the ERCC6L2 interactome reveal the proteins involved in DNA repair, RNA binding and transport, mitochondrial biogenesis, mitosis and other miscellaneous functions.

| Table S6. Derivation of PRKDC peptide |
|---------------------------------------|
|---------------------------------------|

| Protein_id  | Peptide                          | MASCOT<br>score | m/z     | max<br>expectancy | pFDR | MS/MS<br>Ion<br>intensity | Retention<br>time<br>(mins) |
|-------------|----------------------------------|-----------------|---------|-------------------|------|---------------------------|-----------------------------|
| PRKDC_HUMAN | STVLTPMF<br>VETQASQG<br>TLQTR    | 143.45          | 1148.09 | 9.24E-14          | 0    | 94153.94                  | 112.11                      |
| PRKDC_HUMAN | KEEENASVI<br>DSAELQAY<br>PALVVEK | 120.7           | 878.12  | 1.74E-11          | 0    | 178713.97                 | 109.29                      |
| PRKDC_HUMAN | LLLQGEAD<br>QSLLTFIDK            | 109.71          | 952.52  | 1.13E-10          | 0    | 12078.68                  | 132.72                      |
| PRKDC_HUMAN | MEVQEQEE<br>DISSLIR              | 108.47          | 903.44  | 3.69E-10          | 0    | 60258.16                  | 108.55                      |
| PRKDC_HUMAN | LGASLAFN<br>NIYR                 | 105.27          | 669.86  | 3.97E-10          | 0    | 174160.18                 | 102.84                      |
| PRKDC_HUMAN | STVLTPMF<br>VETQASQG<br>TLQTR    | 101.21          | 765.73  | 1.56E-09          | 0    | 128241.33                 | 112.15                      |
| PRKDC_HUMAN | NLSSNEAIS<br>LEEIR               | 99.62           | 787.90  | 2.34E-09          | 0    | 351540.10                 | 94.70                       |
| PRKDC_HUMAN | TVGALQVL<br>GTEAQSSL<br>LK       | 98.59           | 908.01  | 9.20E-10          | 0    | 25216.13                  | 122.92                      |
| PRKDC_HUMAN | LTPLPEDN<br>SMNVDQD<br>GDPSDR    | 96.73           | 1158.01 | 6.47E-09          | 0    | 93946.71                  | 84.07                       |
| PRKDC_HUMAN | SDPGLLTN<br>TMDVFVK              | 96.14           | 818.92  | 5.36E-09          | 0    | 17183.13                  | 120.30                      |
| PRKDC_HUMAN | KQNNFSLA<br>MK                   | 92.63           | 590.81  | 1.03E-08          | 0    | 14505.01                  | 69.69                       |
| PRKDC_HUMAN | QMFLTQTD<br>TGDDR                | 90              | 772.34  | 4.92E-08          | 0    | 31423.28                  | 71.94                       |
| PRKDC_HUMAN | IMEFTTTLL<br>NTSPEGWK            | 84.45           | 992.49  | 9.46E-08          | 0    | 25471.14                  | 114.46                      |
| PRKDC_HUMAN | DVDFMYVE<br>LIQR                 | 83.28           | 764.38  | 9.33E-08          | 0    | 20125.39                  | 132.34                      |
| PRKDC_HUMAN | MSTSPEAF<br>LALR                 | 80.99           | 661.84  | 1.45E-07          | 0    | 76148.66                  | 112.96                      |
| PRKDC_HUMAN | ATQMPEG<br>GQGAPPM<br>YQLYK      | 78.54           | 1033.99 | 4.11E-07          | 0    | 82123.20                  | 93.51                       |
| PRKDC_HUMAN | IMEFTTTLL<br>NTSPEGWK            | 77.95           | 984.49  | 3.68E-07          | 0    | 20307.78                  | 128.66                      |
| PRKDC_HUMAN | LLALNSLYS<br>PK                  | 75.59           | 609.86  | 1.66E-07          | 0    | 84070.71                  | 104.04                      |
| PRKDC_HUMAN | MVSAVLNG<br>MLDQSFR              | 75.42           | 556.61  | 6.92E-07          | 0    | 6837.74                   | 126.53                      |
| PRKDC_HUMAN | TVGALQVL<br>GTEAQSSL<br>LK       | 75.29           | 605.68  | 1.97E-07          | 0    | 19009.12                  | 122.96                      |
| PRKDC_HUMAN | YNFPVEVE<br>VPMER                | 74.16           | 804.89  | 9.75E-07          | 0    | 292221.10                 | 110.29                      |
| PRKDC_HUMAN | DPESETDN<br>DSQEIFK              | 71.72           | 877.37  | 3.32E-06          | 0    | 15076.83                  | 79.07                       |
| PRKDC_HUMAN | MSTSPEAF<br>LALR                 | 69.93           | 669.84  | 1.98E-06          | 0    | 72375.50                  | 106.76                      |
| PRKDC_HUMAN | MVSAVLNG<br>MLDQSFR              | 69.19           | 834.42  | 2.73E-06          | 0    | 35592.90                  | 126.52                      |
| PRKDC_HUMAN | QITQSALLA<br>EAR                 | 68.43           | 642.35  | 1.64E-06          | 0    | 124802.37                 | 106.60                      |
| PRKDC_HUMAN | NLLTVTSS<br>DEMMK                | 65.31           | 742.85  | 6.51E-06          | 0    | 55958.00                  | 90.70                       |
| PRKDC_HUMAN | QGNLSSQV<br>PLK                  | 65.05           | 585.83  | 2.89E-06          | 0    | 37067.70                  | 105.00                      |
| PRKDC_HUMAN | MEVQEQEE<br>DISSLIR              | 65.05           | 602.62  | 8.66E-06          | 0    | 70710.13                  | 67.60                       |
| PRKDC_HUMAN | ATQQQHDF<br>TLTQTADG<br>R        | 62.49           | 959.46  | 3.49E-05          | 0    | 10603.05                  | 70.12                       |
| PRKDC_HUMAN | VVQMLGSL<br>GGQINK               | 61.92           | 722.40  | 7.91E-06          | 0    | 174075.32                 | 94.46                       |

| PRKDC_HUMAN | DVDFMYVE<br>LIQR           | 59.69 | 772.38 | 5.52E-05 | 0 | 8440.34   | 119.13 |
|-------------|----------------------------|-------|--------|----------|---|-----------|--------|
| PRKDC_HUMAN | hgdlpdiqi<br>K             | 58.75 | 568.31 | 1.75E-05 | 0 | 136324.36 | 83.82  |
| PRKDC_HUMAN | LPLISGFYK                  | 57.4  | 519.31 | 8.73E-06 | 0 | 77786.40  | 110.13 |
| PRKDC_HUMAN | MAVLALLA<br>K              | 56.64 | 465.30 | 1.29E-05 | 0 | 10934.87  | 122.13 |
| PRKDC_HUMAN | DPTVHDDV<br>LELEMDEL<br>NR | 56.16 | 714.00 | 7.72E-05 | 0 | 127124.61 | 113.65 |
| PRKDC_HUMAN | QNNFSLAM<br>K              | 55.1  | 526.76 | 5.59E-05 | 0 | 12838.92  | 85.18  |
| PRKDC_HUMAN | SMEEDPQT<br>SR             | 53.91 | 590.25 | 5.04E-05 | 0 | 6345.26   | 45.23  |
| PRKDC_HUMAN | IPALDLLIK                  | 52.46 | 498.33 | 5.68E-06 | 0 | 10131.39  | 118.82 |
| PRKDC_HUMAN | AALSALESF<br>LK            | 52.37 | 575.33 | 5.27E-05 | 0 | 50321.55  | 131.02 |

Mass spectrometry data were processed using Mascot Daemon software. All 39 peptides that matched to human DNA-PK had MASCOT scores >50. m/z represents mass divided by charge number and the m/z value is often considered to be the mass of a given peptide.

**Table S7.** ERCC6L2 interactors identified by MS with known implication in R-loop biology

| R-loop<br>processing<br>proteins | R - pearson<br>correlation | References                                                | Function                                                                                                               |
|----------------------------------|----------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ERCC6L2                          | 1.0000                     | This study                                                | DNA excision repair protein, involved in<br>transcription termination and R-loop<br>suppression                        |
| PRKDC_HUMAN                      | 0.9999                     | This study                                                | DNA-dependent protein kinase catalytic subunit<br>activity regulates transcription and supress R-<br>loop accumulation |
| PARP1_HUMAN                      | 0.9996                     | Cristina A et al., 2018                                   | Poly [ADP-ribose] polymerase 1 involved in<br>processing R-loops through its PARylation<br>activity                    |
| DHX9_HUMAN                       | 0.9956                     | Chakraborthy P et al.,<br>2011 Cristina A et al.,<br>2018 | ATP-dependent RNA helicase A involved in processing R-loops                                                            |
| BRCA2_HUMAN                      | 0.9935                     | Bhatia et al., 2014;<br>Shivji MKK et al., 2018           | Prevents R-loop accumulation                                                                                           |
| SETX_HUMAN                       | 0.9932                     | Skourti-Stathaki, et al.,<br>2011                         | Helicase involved in resolving R-loops during transcription termination                                                |
| AQR_HUMAN                        | 0.9931                     | Sollier J, et al., 2014                                   | Prevents R-loop accumulation                                                                                           |
| PCID2_HUMAN                      | 0.9777                     | Bhatia et al., 2014                                       | PCI domain-containing protein 2 interacts with<br>BRCA2 to suppress R-loops                                            |
| XRN2_HUMAN                       | 0.9465                     | Morales et al., 2016                                      | 5'-3' exoribonuclease 2 involved in transcription termination and R-loop suppression                                   |
| FIP1_HUMAN                       | 0.9001                     | Stirling et al., 2012                                     | Pre-mRNA 3'-end-processing factor involved in<br>R-loop suppression                                                    |

## SI References

- 1. Pontikos N, et al. (2017) Phenopolis: an open platform for harmonization and analysis of genetic and phenotypic data. Bioinformatics 33(15):2421-2423.
- Wilkes EH, Terfve C, Gribben JG, Saez-Rodriguez J, Cutillas PR. (2015) Empirical inference of circuitry and plasticity in a kinase signaling network. *Proc NatlAcad Sci U* S A 112(25):7719-7724.
- 3. Casado P, et al. (2013) Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. *Science signalling* 6(268):rs6.
- 4. Shannon P, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 13(11):2498-2504.
- 5. The UniProt Consortium. (2017) UniProt: the universal protein knowledgebase. *Nucleic Acids Res* 45(D1):D158-D169.

- 6. Bunch H, Lawney BP, Lin YF, et al. (2015) Transcriptional elongation requires DNA break-induced signalling. *Nat Commun* 16(6):10191.
- 7. Cawthon RM. (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. *Nucleic Acids Res* 37:e21.
- Chakraborty P, Grosse F. (2011) Human DHX9 helicase preferentially unwinds RNAcontaining displacement loops (R-loops) and G-quadruplexes. *DNA Repair (Amst)*. 10(6):654-665.
- Cristini A, Groh M, Kristiansen MS, Gromak N. (2018) RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage. *Cell Rep.* 23(6):1891-1905.
- Shivji MKK, Renaudin X, Williams ÇH, Venkitaraman AR. (2018) BRCA2 Regulates Transcription Elongation by RNA Polymerase II to Prevent R-Loop Accumulation. *Cell Rep.* 22(4):1031-1039.
- Skourti-Stathaki K, Proudfoot NJ, Gromak N. (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. *Mol Cell.* 42(6):794-805.
- 12. Sollier J, et al. (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. *Mol Cell* 56(6):777-785.
- 13. Bhatia V, et al. (2014) BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. *Nature*. 511(7509):362-365.
- 14. Stirling PC, et al (2012) R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. *Genes Dev.*, 26, 163–175.
- 15. Morales JC, et al (2016). XRN2 links transcription termination to DNA dam- age and replication stress. PLoS Genet. *12*, e1006107.