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Methods 
 
We performed molecular dynamics simulations for a system composed of one copy of the 
interphase human chromosome 17 interacting with one copy of the interphase human 
chromosome 18. The chromosomes were modeled using the Minimal Chromatin Model 
described below. Each bead in the Minimal Chromatin Model represents a genomic 
segment spanning 50 Kb of DNA resulting in 1626 beads for chromosome 17 and 1564 
for chromosome 18. 

Hi-C data from Rao et al. (1) were used in (2) to train the empirical energy function of 
MiChroM in order to correctly characterize the structural features of human 
lymphoblastoid cells in interphase (cell line GM12878).  Chromatin types annotations 
and loops locations, which are input to MiChroM, were also obtained for these cells from 
reference (1). The Gene Expression Omnibus (GEO) accession number for the data sets 
used for the training is GSE63525.   

 

Minimal Chromatin Model (MiChroM) 

 
All simulations methods in this manuscript are the same as those used in references (2, 
3).   
 
 
Minimal Chromatin Model Energy Function 
 
The MiChroM energy function is: 

 

UMiChroM
!r( ) =UHP

!r( ) + α kl f rij( )
i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑ + χ ⋅ f rij( )
 i, j( )∈ Loops Sites{ }

∑ + γ d( ) f ri, i+d( )
i
∑

d=3

500

∑
k≥l

k ,l  ∈ Types

∑

 
 with the contact function: 

f rij( ) = 12 1+ tanh µ rc − rij( )⎡⎣ ⎤⎦( )
 

and with parametersµ = 3.22  and rc = 1.78 . 
 
	  



	

	

Parameter Set 
 
The parameters α ’s governing the type-to-type interactions are:  
 A1 A2 B1 B2 B3 NA 

A1 -0.268028 -0.274604 -0.262513 -0.258880 -0.266760 -0.225646 

A2 -0.274604 -0.299261 -0.286952 -0.281154 -0.301320 -0.245080 

B1 -0.262513 -0.286952 -0.342020 -0.321726 -0.336630 -0.209919 

B2 -0.258880 -0.281154 -0.321726 -0.330443 -0.329350 -0.282536 

B3 -0.266760 -0.301320 -0.336630 -0.329350 -0.341230 -0.349490 

NA -0.225646 -0.245080 -0.209919 -0.282536 -0.349490 -0.255994 

 
The parameter χ  governing the loop interactions is equal to -1.612990. 
 
Ideal Chromosome Term 
 
The Ideal Chromosome Potential is: 

γ d( ) = γ 1
log d( ) +

γ 2
d
+ γ 3
d 2

 

 
with parameters γ 1 = −0.030 , γ 2 = −0.351 , γ 3 = −3.727 . 
 
Homopolymer Model 
 
The homo-polymer potential  UHP

!r( )  models a generic polymer and consists of the 
following five terms, UFENE , UAngle , Uhc , Usc  and .   
 

 

UHP
!r( ) = UFENE ri,i+1( )

i∈ Loci{ }
∑ + Uhc ri,i+1( ) + UAngle θi( )

i∈ Angles{ }
∑

i∈ Loci{ }
∑

+ Usc ri, j( )
i, j∈ Loci{ }
j>i+2

∑ + Uc
!ri( )

i∈ Loci{ }
∑  

 
UFENE  (Finite Extensible Nonlinear Elastic potential) is the bonding potential applied 
between two consecutive monomers: 

 UFENE ri, j( ) = − 1
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A hard-core repulsive potential 
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is added between bonded monomers to avoid overlap.  
A three-body term is applied to three consecutive monomers in the following form 
 

  
 

where θi  is the angle defined by the two vectors  
!ri,i+1  and  

!ri,i−1 . 
 All non-bonded pairs interacts through a soft-core repulsive interaction  
 

  

 

The Lennard-Jones potentialULJ ri, j( ) = 4ε σ
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 is capped off at a finite 

upper magnitude, allowing for chain crossing at finite energetic cost. r0  is chosen as the 

distance at which ULJ ri, j( ) = 12 Ecut . Allowing occasional chain crossing is essential to 

model the action of topoisomerases. 
The potential Uc  restricts the chromosome in a spherical region. The spherical wall is 
included to mimic a similar confinement experienced by chromosomes inside the cell. 
Each monomer i  of the chromosome interacts with its nearest point on the wall  

!rnp  

through the potential . 
  

UAngle θi( ) = ka 1− cos θi −θ0( )⎡⎣ ⎤⎦
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Molecular Dynamics Simulations 
 
First, we condense the polymer from an extended configuration initialized as a straight 
line. To condense the polymers, we perform 2x104 step MD simulation under the 
potential energy function  

 

 

UEq
!r( ) = UFENE ri,i+1( )

i∈ Loci{ }
∑ + Uhc ri,i+1( ) + UAngle θi( )

i∈ Angles{ }
∑

i∈ Loci{ }
∑

+ Usc ri, j( )
i, j∈ Loci{ }
j>i+2

∑ + 1
2
KEq Rg − R

0
g( )2  

 
which is the homopolymer potential with an additional harmonic bias on the radius of 
gyration Rg . We set KEq = 200ε /σ

2  and R0g = 1 . There is no spherical confinement in 
this phase of the simulation. Then, from these condensed polymer configurations, we 
perform 20 million steps of equilibration with the potential energy function  UHP

!r( ) , 
which now also includes the confinement potential. The radius of the confinement 
potential was set to reproduce a volume ratio of 0.1. 
 
All chromosome simulations were performed using the molecular dynamics package 
LAMMPS (4).  In reduced units the simulation parameters that were used are: 
 

ka = 2ε kb =
30ε
σ 2 Ecut = 4ε ε = KBT

R0 = 1.5σ σ = 1 θ0 = π
 

 
Simulations were maintained at a constant temperature T = 1.0 via Langevin dynamics 
(5) with a damping time of 10.0τ , where τ  is the unit of time. Using Einstein’s relation 

this damping time results in a diffusion coefficient of for the free bead.  
A time step Δt = 0.01τ  was used for the simulation. The system was simulated for 
approximately 25 x 106 time steps. Configurations were recorded each 10 time steps (i.e. 
each 0.1τ ) leading to a total of 2.5 x 106 configurations sampled. The total angular 
momentum was restrained to be zero to eliminate rigid rotations of the system. An 
equilibration of 106 time steps at high temperature (T=10) was performed before starting 
sampling chromosome conformations.  
 
Physical Units 
 
The unit of length in simulations can be calibrated by using available FISH data of 
human lymphoblastoid cells as was done in (3).  Using this information we found that the 
unit of length σ in our model corresponds to 0.165µm, meaning that one bead has a radius 
of about 825Å. With this calibration, the chromatin density in our simulations is 0.002 

10 σ
2

τ



	

	

bp/nm3, which in is excellent agreement with previously reported estimates (6), 
especially when considering the variability in size between cell types and even within a 
homogeneous cell population.  
Using the Einstein-Stokes relation we calculate the diffusion coefficient of a bead  
D = KBT / 6πηr   as that of a sphere of radius r = 0.0825µm immersed in water at 
298.15K. Using the viscosity of water η = 8.9 x 10−4  Pa ⋅s  we obtain the diffusion 
coefficient of 2.97 µm2/s. Comparing this latter estimate for the diffusion coefficient of 
the free bead with the previous estimate of the same quantity in reduced units (
D = 10σ 2 /τ ) we obtain that the unit of time τ in our simulations corresponds to 
approximately 0.1 seconds. The time step used in the simulations then corresponds to 

.	
	
Rouse mode analysis of chromosomal chains  
 
This section is devoted to the quantitative determination of Rouse modes from the 
molecular dynamics simulation data. To this end we start from the known exact solution 
of the Rouse model for simple Gaussian chains.  The effective Hamiltonian for a 
Gaussian chain is: 

 

𝐻(𝑟!) =
3𝑘!𝑇
2𝜎! 𝑟!!! − 𝑟! !

!!!

!!!

      

 
Where 𝑟! are positions of monomers connected by springs with equilibrium bond length 
𝜎. The entire chain is embedded in thermal bath with temperature T, which results in the 
following equation for each monomer: 

 
𝑑
𝑑𝑡 𝑟! =  −𝜁 

𝜕𝐻
𝜕𝑟!

+ 𝜂!(𝑡) 

 
Where 𝜂!  are stochastic displacements, which are related to the temperature of the heat 
bath via fluctuation dissipation theorem. Fourier transformation of the monomer 
coordinates yields the Rouse modes: 

 

𝑋! 𝑡 =  
2
𝑁

!/!

 𝑟! cos
𝑝𝜋
𝑁 (𝑖 − 1/2) ,   𝑝 = 0,1,2,…𝑁 − 1

!!!

!!!

 

 
Using this definition of Rouse modes, one can compute the same quantity for the 
MiChroM chains using simulation data. For the chains obeying Rouse dynamics the 
following exact result holds: 

 

𝑋! 𝑡 𝑋! 0 = 𝑋!! exp −
𝑡
𝜏!

 

 

 Δt ∼1ms



	

	

Where the amplitude is given by 𝑋!! = 𝐴 !
!!

 and relaxation times 𝜏! = 𝐵 !
!

!
  

with A and B being constants. The angular brackets denote ensemble average. Both 
amplitude and relaxation time show inverse quadratic dependence on mode number. The 
rouse modes extracted from MiChroM simulation data fit Rouse model imperfectly by 
showing significant deviations from theoretical predictions for the long wavelength 
modes N/p>>1. In particular the autocorrelation function of Rouse modes for the 

MiChroM chains is better fitted by stretched exponential 𝑋! 𝑡 𝑋! 0 = 𝐶 exp − !
!!

!!
 

with varying exponents 𝛽!. To make connections with rouse mode relaxation times we 

compute effective relaxation times of MiChrom chain 𝜏!
!"" = exp − !

!!

!!!
! =

!!
!! 
𝛤(𝛽!!!) where 𝛤(𝑥) stands for gamma function. The effective relaxation times exhibit 

two different power law scaling: ~p-0.5  for first few modes (p=1-15) and ~p-1.7  for the 
rest. Using p=15 we can estimate the size and time scale associated with the power law 
crossover. Length scale corresponding to crossover is L=(N/p)σ = 18 µm and time scale 
𝜏!"#$$ = 𝜏!"

!"" = 0.3 s. 
 
  



	

	

 
 
 
 
 
 
 
 
 
 
 
 

 
 

	 	
Figure S1:  Radial distribution function of chromosomal loci. 	



	

	

	

Figure S2:  Autocorrelation function of Rouse modes. Inset on the left shows the 
short time behavior of Rouse mode autocorrelation functions. Inset on the right 
shows the stretched exponential fits to the Rouse mode autocorrelation functions for  
p=1, p=5 and p=25. 	

	
	 	
	
	

	

	

	
	

	 	
	
	

Figure S2:  Autocorrelation function of Rouse modes. 	



	

	

	
Figure S3: Spatial autocorrelation functions as a function of distance in space 
computed for beads of (A) All types (B) Only between A and A types (C) Only 
between B and B types (D) only between A and B types. 	
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Figure S4: Flow autocorrelation functions as a function of genomic distance 
computed for beads of (A) All types (B) Only between A and A types (C) Only 
between B and B types (D) only between A and B types. 	
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Figure S5: Flow autocorrelation functions as a function of distance in space 
computed for beads of (A) All types (B) Only between A and A types (C) Only 
between B and B types (D) only between A and B types.  
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Figure S6: (A) Ensemble averaged displacement map for 100s time displacement (B) 
Single snapshot displacement map for 100s time displacement 
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Figure S7: Average velocity-velocity autocorrelation maps as a function of time lag.  
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Spatial Coherence, Compartmentalization, and Micro-Phase Separation 

It is possible to map the motion of chromatin simultaneously across the whole nucleus of 

human cells so to generate a two-dimensional vector field of chromatin displacements 

(4). The analysis of the displacements field shows that the motion of chromatin is 

coherent across large regions for several seconds. The regions of coherence extend over 

the micron-scale and cross the boundaries of chromosome territories. When ATP is 

depleted the coherent motion is eliminated indicating that such coherence results from 

protein activity.  

Figure 4 shows the displacement fields predicted by MiChroM. The map shows the 

existence of coherent motion, much as do the experimental maps. The velocity fields 

v ri t( ),δ( ) = 1δ ri t +δ( )− ri t( )( )  obtained for different time lags δ are shown for comparison in 

Figure 4A. As in experiments, it is evident that coherence grows for longer time lags. 

Figure 3B shows the velocity correlation Cδ
v Δr( ) = v ri t( ),δ( )v rj t( ),δ( )δ ri t( )− rj t( ) − Δr( )  as 

a function of the spatial displacement Δr  and for different time lags δ . 

The boundaries between the regions of coherent motions are not the same as the 

boundaries between the chromosomal territories that are occupied by chromosomes 17 

and 18. One easily verifies this observation by inspecting the matrix of the velocity 

correlations cij t,δ( ) = v ri t( ),δ( )v rj t( ),δ( )  between loci i and j (Figure 4B). Surfaces of 

⌧ = 0s ⌧ = 0.5s ⌧ = 1.0s

⌧ = 1.5s ⌧ = 2.0s ⌧ = 2.5s

� = 1s



	

	

	
	
	
	
	
	

	
	
Figure S8: Behavior of the mean-square displacement as a function of the genomic 
distance. (A) Mean square distance between loci i and j of individual chromosomes 
(shown in green and red) as a function of their genomic distance. (B) Aggregated 
data from both chromosomes are used to calculate the apparent scaling exponent 
for the genomic distances 1 to 10 (exponent 1.0), 10 to 100 (exponent 0.6), and 100 to 
end of chains (exponent 0.25). At long length scales, heterogeneity is particularly 
evident; however, despite the noise introduced by heterogeneity, it is possible to 
observe a change in the apparent scaling exponent around genomic distances of 
about 100 beads, or about the size of individual DADs. This last finding supports the 
analysis of the p-modes scaling reported in the main text.  
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