Specific binding between *Bacillus thuringiensis* Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (*Chilo suppressalis*)

Zeyu Wang^{1,2}, Longfa Fang¹, Zishan Zhou¹, Sabino Pacheco², Isabel Gómez², Fuping Song¹, Mario Soberón², Jie Zhang^{1,*} and Alejandra Bravo^{2,*}

List of the material included: two supporting figures, four supporting tables and one supporting method.

Figure S2. Model of the three dimensional structure of Vip3Aa constructed by using QUARK protein structure prediction since this is suitable for proteins which are considered without homologous templates (<u>https://zhanglab.ccmb.med.umiC.edu/QUARK/).</u>

	Observed LC ₅₀	Expected LC ₅₀	Synergy factor
Toxins	in µg/g diet	in µg/g diet	(SF)
	(95% confidence limits)		
Cry9Aa	5.89 (4.39-7.88)		
Vip3Aa	>150		
Cry9Aa+ Vip3Aa	2.51 (1.65-3.81)	11.3	4.5
Cry9Aa-R495A/R496A/S497A	21.7 (14.5-34.9)		
Vip3Aa-K432A/T433A/L434A	>150		
Cry9Aa- R495A/R496A/S497A + Vip3Aa	50.9ª	37.9	0.76
Cry9Aa+ Vip3Aa-4K432A/T433A/L434A	1.99 (0.359-10.2)	11.3	5.7
Cry9Aa-R495A/R496A/S497A+	60.5 (42 3-112)	37 9	0.63
Vip3Aa- K432A/T433A/L434A	0000 (1200 112)	51.9	0.05

Table S1. Bioassays of insecticidal activity of Cry9Aa and Vip3Aa toxins against *Ostrinia furnacalis* larvae.

^a, confidence limits not statistical significant

Drimer name	DNA Sequence $(5^{2} \rightarrow 3^{2})$	Restriction
Primer name DNA Sequence $(3 \rightarrow 3)$		site
Cry9Aa D1-F	CGC <u>GGATCC</u> GATGAATCAAAATAAACACGG	BamH I
Cry9Aa D1-R	CCG <u>CTCGAG</u> CGGCCAACTTTCTCCCCTAAGACTAC	Xho I
Cry9Aa D2-F	CGC <u>GGATCC</u> GTACCCAATAGAAACAGATTTTCAGTTGAGTAGGG	BamH I
Cry9Aa D2-R	CCG <u>CTCGAG</u> CGGACGAGCCAGACTTTTATGTGTCCAACCATAC	Xho I
Cry9Aa D3-F	CGC <u>GGATCC</u> GAACAATACCATTAATCCAGATAGAATTAC	BamH I
Cry9Aa D3-R	CCG <u>CTCGAG</u> CGGAACTGGAATGAACTCAATTCTATCTAC	Xho I
Vip3Aa F1-F	C <u>GGATCC</u> GATGAACAAGAATAATACTAAATTAAG	BamH [
Vip3Aa F1-R	CCG <u>CTCGAG</u> CGGGTAAACAATTGCAAGAGATTTCT	Xho I
Vip3Aa F2-F	C <u>GGATCC</u> GGATGTTAATAACAAACTCGATG	BamH I
Vip3Aa F2-R	CCG <u>CTCGAG</u> CGGCCCGAATAAATTATTTCCTAC	Xho I
Vip3Aa F3-F	C <u>GGATCC</u> GGATAAGTTGGATATTATTAATG	BamH I
Vip3Aa F3-R	CCG <u>CTCGAG</u> CGGATCTGCTAAGCCTAATAATTTTC	Xho I
Vip3Aa F4-F	C <u>GGATCC</u> GCGTTCAGCTTTAAAAACTGC	BamH I
Vip3Aa F4-R	CCG <u>CTCGAG</u> CGGTAATTTATCCATATCACCATAAATAAC	Xho I
Vip3Aa F5-F	C <u>GGATCC</u> GATTGATTATACTTCTATTATG	BamH I
Vip3Aa F5-R	CCG <u>CTCGAG</u> CGGGTCAATTTCTCCTGTAGAAG	Xho I
Vip3Aa F6-F	C <u>GGATCC</u> GAAACCAGGACATGCATTGATTG	BamH I
Vip3Aa F6-R	CCG <u>CTCGAG</u> CGGTGAATTTTCATCAGCTTG	Xho I
Vip3Aa F7-F	C <u>GGATCC</u> GTGCCCAGATCAATCTGAAC	BamH [
Vip3Aa F7-R	CCG <u>CTCGAG</u> CGGCTCTAAATTGTCCTCTTCTATG	Xho I
Vip3Aa F8-F	C <u>GGATCC</u> GTTAATTACTTTAACATGTAAATC	BamH I
Vip3Aa F8-R	CCG <u>CTCGAG</u> CGGACTTTTTAAAATTAAATACAC	Xho I
Vip3Aa F9-F	C <u>GGATCC</u> GAAAGGAAAACCTTCTATTC	BamH I
Vip3Aa F9-R	CCG <u>CTCGAG</u> CGGAGCACCGCTCATATATCTTTTTC	Xho I
Vip3Aa F10-F	C <u>GGATCC</u> GCAAAATGGAGATGAAGCTTG	BamH [
Vip3Aa F10-R	CCG <u>CTCGAG</u> CGGCTTAATAGAGACATCGTAAAAATG	Xho I

Table S2. Primers for amplification of the different Cry9Aa and Vip3Aa fragments

Restriction sites were underlined

Primer name	DNA Sequence $(5' \rightarrow 3')$
Cry9Aa 307PIG309AAA	GGGTCATTTATACAGATGCAGCTGCTTTTGTACATCGTAGTAGTCTTAGGGG
Cry9Aa 316LRH318AAA	GGTTTTGTACATCGTAGTAGTGCTGCGGCAGAAAGTTGGTTTAGCTTTG
Cry9Aa 325VNR327AAA	GAAAGTTGGTTTAGCTTTGCTGCTGCAGCTAATTTCTCAGATTTAG
Cry9Aa 359PVS361AAA	CTACTGGTTCACTTACATTGGCGGCTGCCCCAAGTACTGATAGAGCGAGGG
Cry9Aa 364TDR366AAA	CATTGCCGGTTAGCCCAAGTGCTGCTGCAGCGAGGGTATGGTATGGAAGTCG
Cry9Aa 393HTT395AAA	CTGAACTAATCTCTGGACAAGCTGCGGCTGCTACACAAACTATT
Cry9Aa 416NDT418AAA	GATTCTCAAGCTTGTAATTTAGCTGCTGCCACATATGGAGTGAATAGGGCGG
Cry9Aa 422VNR424AAA	GTAATTTAAATGATACCACATATGGAGCGGCTGCGGCGGTATTTTATCATGATGCG
Cry9Aa 488LRG490AAA	CAACAATAAATTTAACAGGAGGAGCTGCAGCAGTAGCATCTAATCGCCGTTC
Cry9Aa 495RRS497AAA	GGACTTAGACAAGTAGCATCTAATGCCGCTGCATCTTTAGTAATGTATGGTTGG
Vip3Aa 357LIG359AAA	GAAGCTAAACCAGGACATGCAGCGGCTGCGTTTGAAATTAGTAATGATTC
Vip3Aa 360FEI362AAA	CCAGGACATGCATTGATTGGGGGCTGCAGCTAGTAATGATTCAATTACAG
Vip3Aa 363SND365AAA	CATTGATTGGGTTTGAAATTGCTGCTGCTTCAATTACAGTATTAAAAG
Vip3Aa 364NDS366AAA	CATTGATTGGGTTTGAAATTGCTGCTGCTTCAATTACAGTATTAAAAG
Vip3Aa 428TKK430AAA	GTAATTACTAAAATTGATTTCGCTGCAGCAATGAAAACTTTAAGATATG
Vip3Aa 430KMK432AAA	CTAAAATTGATTTCACTAAAGCAGCGGCAACTTTAAGATATGAGGTAAC
Vip3Aa 432KTL435AAA	GATTTCACTAAAAAATGGCAGCTGCAAGATATGAGGTAACAGCG

Table S3. Primers used for mutagenesis of Cry9Aa and Vip3Aa proteins

Extraction from midgut	APN enzymatic activity (L/mg)	The ratio of BBMV/	
	AT IN Chizymatic activity (0/hig)	Midgut homogenate	
BBMV	38.04	4.05 6.11	
		4 0 5 6 1 1	

Table S4. Determination of APN enzymatic activity in Chilo suppressalis midgut membrane

The ratio of BBMV/ midgut homogenate suggests that the BBMV sample is well prepared.

Supporting methods

The Preparation of Cry9Aa and Vip3Aa Antibodies. The anti-Cry9Aa or anti-Vip3Aa polyclonal antibodies were raised in New Zealand white rabbits (from facilities of IBT-UNAM) after subcutaneous immunization with purified Vip3Aa or Cry9Aa toxins. The rabbits were boosted three times with 1 mg of the toxins mixed with incomplete Freund's adjuvant, at 15-day intervals. Blood serum was obtained and the specificity and sensitivity of the polyclonal antisera was determined in a dot blot assay using different concentrations of Vip3Aa or Cry9Aa toxins spotted on nitrocellulose strips and analyzed with different concentrations of the polyclonal anti-Vip3Aa or anti-Cry9Aa antibodies (from 1: 10,000 to 1: 50,000 dilutions) and the secondary goat anti-rabbit antibody coupled to HRP (diluted 1: 10,000).