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FIG. S1. Supplementary Information. Mutation calling pipelines on CGC for A) MuTect, B) SomaticSniper, and C)
VarScan
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FIG. S2. Supplementary Information. Distribution of sample types used for each cancer type.
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FIG. S3. Supplementary Information. Pan-cancer comparison of SNV counts per sample called by different mutation
callers and consensus SNVs along all callers. Each dot is an individual sample. Red line is the best fit line with zero intercept
(slope and correlation coefficient included on the plots). Gray line is the line with slope one.
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FIG. S4. Supplementary Information. SNV counts for different samples within HNSC compared between two mutation
callers. Samples which have distributions that are significantly different according to the Kolmogorov-Smirnov test are shown
by blue dots.

A	 B	

FIG. S5. Supplementary Information. Comparison of allele frequency distributions using A) cumulative absolute difference
of smoothed histograms and B) Distribution of samples which significantly differed based on the quadratic statistics proposed
by Qi Li [1] (Bonferroni corrected with significance threshold α = 0.05). The percentage of samples that fall below this
threshold are on average 38.3 ± 18.4% for MuTect vs SomaticSniper, 17.1 ± 10.7% for MuTect vs VarScan, and 53.6 ± 15.1%
for SomaticSniper vs VarScan comparisons.
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FIG. S6. Supplementary Information. Comparisons of allele frequency distributions for different mutation callers. Per-
centage of significantly different samples (as determined by Kolmogorov-Smirnov test with p < 0.05) for mutation caller pairs
shown for all cancers with copy number filtering : |CNV | < 0.2
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FIG. S7. Supplementary Information. A) Median of MATH score for all cancers and mutation callers. B) Spearman
correlation coefficient of MATH scores for each cancer type called by pairs of different mutation callers.
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FIG. S8. Supplementary Information. Survival curves for all cancers and mutation callers using median MATH score as
separator. The values for median MATH score and the log rank test p-values are included on each plot. p-values smaller than
0.05 are marked in orange.
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FIG. S9. Supplementary Information. Survival analysis using MATH score of the subset of HSNC samples used in [2]
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FIG. S10. Supplementary Information. A) Survival curve difference for groups separated by MATH score, B) survival
curve difference for groups separated by CNV standard deviation
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FIG. S11. Supplementary Information. Survival curves for all cancers and mutation callers using median of CNV std as
separator. The values for median of CNV std and the log rank test p-values are included on each plot. p-values smaller than
0.05 are marked in orange.
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A	 B	

FIG. S12. Supplementary Information. A) Median of CNV std score for all cancers and mutation callers. B) Spearman
correlation coefficient of CNV std scores for each cancer type called by pairs of different mutation callers.
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FIG. S13. Supplementary Information. Log rank test p-values for comparison of low versus high MATH score when filtered
by copy number (|CNV | < 0.2). Stars represent significant results as determined by α < 0.05
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A	 B	

C	 D	

FIG. S14. Supplementary Information. Analysis of SNV/CNV interactions. A) Plot of effect of SNVs and CNVs on gene
expression in UCEC. Each data point is a single gene for which average expression across samples without SNV and without
copy number amplification is plotted against average expression across samples with SNV and with copy number amplification
(see Methods for detailed definition). Dashed red line is the identity line and the percentage of data points falling below this
line is shown in red. n is the number of genes studied, and p-value is calculated using Wilcoxon signed-rank test. B) Similar
plot to panel (A) for average expression across samples without SNV, and with copy number amplification against average
expression across samples with SNV and with copy number amplification. C) Plot of WG CNV std against CNV std (see
Methods). Each dot is a single UCEC sample. Red dashed line is identity line, and r is the Spearman correlation coefficient.
D) Distribution of WG CNV std compared to CNV std, and its clinical associations. p-values correspond to log-rank test for
samples split across median of WG CNV stds (only significant values shown). *: p < 0.05, **: q < 0.05 (Benjamini-Hochberg
correction). All SNVs called by MuTect.
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A	
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FIG. S15. Supplementary Information. A) Clinical data sorted according to their importance in classifying high and low
CNV std groups (divided across median) of UCEC. Results were achieved using random forest feature selection. B) Comparison
of CNV standard deviation for the three histologic subtypes of UCEC. Dashed red line corresponds to median of CNV standard
deviation. The Fisher’s exact test is calculated in comparison to this line.
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A	 C	

B	
CNV	std	

FIG. S16. Supplementary Information. Comparison of exome-wide copy number standard deviation (at loci called by
SomaticSniper) against BRCA1 copy number for OV. A) Average copy number across BRCA1 plotted against copy number
standard deviation showing a negative correlation. Each dot corresponds to one patient. B) Survival analysis of patients divided
in relation to median value of BRCA1 copy number average C) Comparison of CNV standard deviation of the two groups in
B. Dashed red line corresponds to median of CNV standard deviation. Fisher’s exact test is calculated in comparison to this
line.
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FIG. S17. Supplementary Information. Survival analysis log rank test p-values for 11 different statistics derived from allele
frequency distributions. Stars corresponds to values smaller than significance threshold 0.05. Double stars show significant
results after Benjamini-Hochberg correction across all cancer types and mutation callers within individual plots. Triple stars
correspond to Benjamini-Hochberg correction across all 11 plots. AF: allele frequency, CV: coefficient of variation, MAD:
median absolute deviation, std: standard deviation. Statistical moments are calculated around mean.
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A	 B	

FIG. S18. Supplementary Information. Cancer cell fractions (CCF) an their prognostic evaluation A) Pearson correlation
coefficient of CCF MATH score and allele frequency MATH score. B) Survival analysis log rank test p-values for high and low
CCF MATH scores. Stars corresponds to values smaller than significance threshold 0.05. Double stars show significant results
after Benjamini-Hochberg correction across all cancer types and mutation callers.
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D	

C	

F	E	

FIG. S19. Supplementary Information. Effect of tumor purity on allele frequency distributions. A) Plot of MATH against
tumor purity for SNVs in UCEC called by MuTect, B) Pearson correlation coeficient between MATH and purity across cancers
and mutation callers. If multiple samples were available for a patient, average tumor purity is used, C) Number of samples
with purity greater than 0.8, D) Percentage of significantly different samples from subfigure C for pairs of mutation callers
as determined by Kolmogorov-Smirnov test, E) Survival analysis log rank test p-values for high and low MATH score groups
from samples in subfigure C, and F) similar analysis for CNV standard deviation. Stars corresponds to values smaller than
significance threshold 0.05. Double stars show significant results after Benjamini-Hochberg correction across all cancer types
and mutation callers.
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A	 B	

C	

FIG. S20. Supplementary Information. A comparison of allele frequency distributions of some BRCA samples aligned to
hg19 versus GRCh38. a,b) Two examples of allele frequency distributions. c) Distribution of p-values from the Kolmogorov-
Smirnov test between the two alignments. 7% of the samples show significant differences according to Bonferroni corrected
significance level 0.05
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FIG. S21. Supplementary Information. Median and median absolute deviation (MAD) of the linear evolution model
according to equations (6) and (15). Dashed red line is the theoretical result and green dots are calculated out of 100000
samples from the distribution in equation (3).
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Mathematical Model

The mathematical model described in this paper is
based on the linear evolution model of cancer [3]. Most
mutations are neutral; however occasionally driver mu-
tations occur which lead to fast selective sweeps. Allele
frequencies are determined by the timing of the last selec-
tive sweep, and the history of tumor can be divided into
two time periods in relation to this event. Consequently,
we assume that there are two sets of somatic mutations
in the tumor. The subclonal mutations which occurred
after the last selective sweep, and the clonal mutations
which occurred before the last selective sweep. The frac-
tion of mutations in these two groups will be represented
by w and 1−w respectively. The distribution of neutral
subclonal mutations follows [4]:

P (FN ≤ f) =

{
0, f < fmin,

β
(
α− 1

f

)
, fmin ≤ f ≤ 0.5.

(1)

where FN is the random variable associated with al-
lele frequencies of the neutral model. In order to have
P (FN ≤ fmin) = 0 and P (FN ≤ 0.5) = 1, we set
α = 1

fmin
, β = 1

α−2 , where fmin is the minimum allele

frequency measured. All the clonal mutations have allele
frequency 0.5 and their distribution is:

P (FC ≤ f) =

{
0, fmin ≤ f < 0.5,

1, f = 0.5.
(2)

where FC is the random variable associated with clonal
mutations. For allele frequency F = FN ∪ FC , the over-
all probability distribution will be sum of probabilities
(given that FN ∩FC=0) weighted by their rate of occur-
rence:

P (F ≤ f) = wP (FN ≤ f) + (1− w)P (FC ≤ f)

(3)

=


0, f < fmin,

wβ
(
α− 1

f

)
, fmin ≤ f < 0.5,

1, f = 0.5.

To calculate MATH score for this distribution, we
will calculate the median and median absolute deviation
(MAD) separately.

Median

We will denote the median of allele frequencies by φ.
In general φ has to satisfy the following inequalities:{

P (F ≤ φ) ≥ 0.5,

P (F ≥ φ) ≥ 0.5
=⇒

{
P (F ≤ φ) ≥ 0.5,

P (F < φ) ≤ 0.5

(4)

For φ = 0.5 the first row of equation (4) is trivial (1 ≥
0.5), and the second row leads to w ≤ 0.5. On the other
hand, for fmin ≤ φ < 0.5, equation (4) reduces to:

P (F < φ) = 0.5 =⇒ wβ(α− 1
φ ) = 0.5 (5)

=⇒ φ = 1
α−1/ν

where ν = 2wβ, which leads to φ < 0.5 only if w > 0.5.
To summarize our results, the median of allele frequencies
can be written as:

φ =

{
0.5, w ≤ 0.5,

1
α−1/ν , w > 0.5.

(6)

Sampling from the distribution in equation (3) con-
firms this result (Figure S21).

Median Absolute Deviation (MAD)

We will denote MAD by m. It can be derived from the
following relationships:

{
P (|F − φ| ≤ m) ≥ 0.5,

P (|F − φ| ≥ m) ≥ 0.5
=⇒{

P (F ≤ φ+m)− P (F < φ−m) ≥ 0.5,

P (F < φ+m)− P (F ≤ φ−m) ≤ 0.5
(7)

If w ≤ 0.5 we have φ = 0.5. We start by assuming
that m > 0. In this case φ+m > 0.5, leading to P (F ≤
φ+m) = 1 and P (F < φ+m) = 1. Hence equation (7)
can be simplified to:

{
P (F < φ−m) ≤ 0.5,

P (F ≤ φ−m) ≥ 0.5
(8)

Since φ − m < 0.5 the functions are continuous and
we can instead write P (F ≤ φ −m) = 0.5. But P (F ≤
φ −m) ≤ P (F < 0.5) < w which cannot be true, given
that w ≤ 0.5. As a result m cannot be positive. Since m
is non-negative we conclude that m = 0.
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On the other hand, for w > 0.5, we have φ = 1
α−1/ν . In

this case there are four possibilities for solving equation
(7) that we will separately explore:

I.

{
fmin ≤ φ+m < 0.5,

φ−m < fmin.

Functions are continuous in this region. So P (F ≤
φ+m) = 0.5, which can be solved similarly to equa-
tion (6) and gives φ+m = φ =⇒ m = 0. However
this cannot be true, because the assumptions of this
case can only be true for positive m.

II.

{
fmin ≤ φ+m < 0.5,

fmin ≤ φ−m < 0.5.

Functions are continuous in this region and we can
write:

P (F ≤ φ+m)− P (F < φ−m) = 0.5 (9)

=⇒ wβ(α− 1

φ+m
)− wβ(α− 1

φ−m
) = 0.5

=⇒ 1

φ−m
− 1

φ+m
=

1

ν
=⇒ 2m

φ2 −m2
=

1

ν

=⇒ m2 + 2νm− φ2 = 0

=⇒ m = −ν +
√
ν2 + φ2

This result is bounded by m = 0.5− φ.

III.

{
0.5 ≤ φ+m,

φ−m < fmin.

Functions are not continuous in this region. We can
write the second row of equation (7) as

P (F < φ+m) ≤ 0.5. But P (F < φ+m) ≥ P (F <
0.5) = w > 0.5. Hence this cannot be true.

IV.

{
0.5 ≤ φ+m,

fmin ≤ φ−m < 0.5.

Functions are not continuous in this region. We can
write the first row of equation (7) as:

P (F ≤ φ+m)− P (F < φ−m) ≥ 0.5 (10)

=⇒ P (F < φ−m) ≤ 0.5

=⇒ 0.5ν(α− 1

φ−m
) ≤ 0.5

=⇒ φ−m ≤ 1

α− 1
ν

=⇒ φ−m ≤ φ

which is a trivial result. For the second row of equa-
tion (7) we have:

P (F < φ+m)− P (F ≤ φ−m) ≤ 0.5 (11)

If φ+m > 0.5 equation (11) leads to:

P (F ≤ φ−m) ≥ 0.5 (12)

=⇒ 0.5ν(α− 1

φ−m
) ≥ 0.5

=⇒ φ−m ≥ 1

α− 1
ν

=⇒ φ−m ≥ φ =⇒ m = 0

which does not satisfy the assumptions of this case
and cannot be true. On the other hand, if φ+m =
0.5 equation (11) is equal to:

P (F ≤ φ−m) ≥ w − 0.5 (13)

=⇒ 0.5ν(α− 1

φ−m
) ≥ w − 0.5

After some calculation we find:

w ≤ 0.5 +

√
α2 + 32− α

16
(14)

In conclusion, only cases II and IV lead to acceptable
solutions. To summarize these results, for MAD we have:

m =


0, w ≤ 0.5,

0.5− φ, 0.5 < w ≤ 0.5 + ∆w

−ν +
√
ν2 + φ2, w > 0.5 + ∆w.

(15)

where ∆w =
√
α2+32−α

16 . Sampling from the distribu-
tion in equation (3) confirms this result (Figure S21).

MATH Score

MATH can be derived by the following formula:

MATH =
1.4826×m

φ
× 100 (16)

where the constant is the scale factor for median ab-
solute deviation. Using equations (6) and (15) we can
write this as:
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MATH = 148.26×


0, w ≤ 0.5,
0.5
φ − 1, 0.5 < w ≤ 0.5 + ∆w

−ν+
√
ν2+φ2

φ , w > 0.5 + ∆w.

(17)
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