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Supplementary Discussion 
 
Our approach identifies brain states characterized by distinct power and phase-coupling. Related to 
the question of how much phase and coherence contribute to state switching (see Results), there is 
the issue of power differences biasing the estimation of phase-coupling. Here, we find that states 
that show increase in power, often, although not exclusively, also show increases in coherence. 
However, it is well known that, due to changes in the signal-to-noise ratio, increases in power can 
augment the estimated coherence even in the absence of an actual change in the interactions 
between the regions. The same phenomena can cause increases in variance to effect correlation-
based measures of functional connectivity1,2. Therefore, some of the observed changes in coherence 
between states might be caused by differences in power. Notably, while we find that power and 
coherence are generally positively correlated, there are various aspects of phase-coupling that 
cannot be explained by changes in power. For example, the differences between the states are 
much stronger in coherence than in power (see, e.g., Figure 3a). Also, whereas the PCC has slightly 
more (low-frequency) power in the anterior higher-order cognitive state than in the other states, 
phase-coupling is the feature most strongly stands out from the rest (see Figure 3c). However, while 
there are examples of coherence and power not changing together, it remains possible that many of 
the changes in coherence between states could be driven by changes in power. 
 
A relevant related issue is the choice of metric used to measure phase-coupling. There are different 
alternatives, of which spectral coherence and phase-locking value (PLV) are two popular examples. 
Although PLV has been claimed to represent phase-coupling more faithfully than spectral 
coherence3, in this work we found PLV to be indeed less robust at the large scale than coherence, 
partly because the application of our data-driven spectral decomposition (as we performed for 
coherence) is not directly applicable, so we had to rely on an arbitrary specification of the frequency 
bands. Furthermore, PLV has its own limitations, such as its dependence on filtering and the 
subsequent use of the Hilbert transform for instantaneous phase calculation4 ; see also 5 for a 
comprehensive description of this issue. It is also worth noting that one of the main limitations of 
spectral coherence is stationarity, which is mitigated here by the fact that the HMM breaks, to some 
extent, the non-stationarity of the signal into short visits to quasi-stationary states. Further, PLV is 
also not automatically immune to power bias, given that phase-locking is inferred more reliably 
when the power (and therefore the signal-to noise ratio) is high. The advantages and disadvantages 
of different approaches to compute phase-coupling are however beyond the scope of this paper, as 
a satisfactory solution would require to properly deal with the problems of nonlinearity and non-
stationarity, at the heart of the limitations of both spectral coherence and phase-locking value. 
 
A central parameter in our approach is the number of HMM states. Here, we have chosen it to be 
twelve. Importantly, we do not claim this number to be closer to any biological ground-truth than, 
for example, eight or sixteen. Although it is possible to guide the choice of the number of states 
using quantitative measures like the free energy6, or even using non-parametric approaches that 
automatically determine the number of states7, different numbers of states in practice just offer 
different levels of detail of brain dynamics. Indeed, examining different degrees of abstraction can 
reveal useful insights. For example, when we ran the proposed approach with six states (see 
Supplementary Figure 8) the posterior higher-order cognitive state was fused with the first two 
states depicted in Supplementary Figure 2. This is unsurprising considering their relatively similar 
spectral and spatial features. In this analysis, the left and right temporal states (see Supplementary 
Figure 2), which are characterised by high asymmetry and are possibly related to language, were 
also merged into a single symmetric state containing the patterns of both. In summary, running the 
HMM with different numbers of states and combining the results in a principled way can provide a 
hierarchical view of the data that is hidden to other approaches. Thanks to the stochastic scheme of 
inference8, HMM runs are not computationally expensive to produce, facilitating these exploratory 



analyses. For a practical discussion on the choice of the other HMM parameters, refer to Methods. 
Another important aspect (and a sensible way of guiding the choice of the number of states) is state 
reliability, that is, how robust are the states across, for example, half-splits of the data? The question 
of reproducibility is discussed below. 
 
The model specification of the HMM, through assigning state probabilities at each time point, 
implicitly assumes that only one state is active at each point in time. However, it is worth noting that 
it is still possible for network multiplexing to be realised at slower time scales through temporal 
correlation of the rate of occurrence of states. At the faster time-scale of HMM switching, it is 
important to note that any conclusion about brain network exclusivity must be made with caution 
and is by no means necessarily a physiologically meaningful feature of the brain. Addressing the 
information contained in the state time courses at multiple time scales is an important area for 
future investigations. 
 
The TDE-HMM is a useful representation of the data, but is not the only possible one. For instance, a 
high order multivariate autoregressive model has the potential to explain very rich dynamics to 
similar extent, but in an alternative manner, to an HMM with a simpler observation 
model9,10.  Armed with just resting data, it is not possible to disambiguate between these two 
different descriptions of the data. Which one is more appropriate rather depends on the question in 
hand. A potential reason to use the HMM over a single-state more complex model (such as a high 
order multivariate autoregressive model) is that it explicitly parameterises the time series through 
the state time courses, opening avenues to investigate, for example, the interactions between rest 
and task. Further, it is through the use of the HMM in this work that we have been able to 
successfully identify networks of spatially distinct patterns of oscillatory power and phase-coupling 
in specific frequency bands, in a manner that has not been achieved previously with other 
approaches, including the autoregressive model. 
 
  



Supplementary Note 1 
 
Slow-frequency spectral properties within fast state visits 
 
We obtained state visits that were often well under 100ms (Figure 5). How can this be compatible 
with the slow frequencies (e.g. delta/theta bands) that characterise the states? Here, we show that 
this is theoretically and practically possible through simulations. We have simulated data where 
segments of an 8Hz theta wave are interspersed with unstructured signal. We have performed three 
sets of simulations. In each of them, the duration of the wave segments (which are selected at 
random points of the theta period) are sampled from a Poisson distribution with mean 0.025s, 0.05s, 
and 0.1s, respectively. The separation between segments is sampled from a Poisson distribution 
with mean 1s in all cases, which makes the different wave occurrences to be completely phase-
independent. Small-variance Gaussian noise is added to the generated signals. We simulated 20min 
of data at 250Hz for each simulation, and assumed a state time course that is active only at the time 
of the wave segments occurrences. Hence, the duration of the wave segments corresponds to the 
duration of the state visits. We then used the state-wise multitaper used in Results and in 9 to assess 
the spectral content of the signal. Supplementary Figure 9 shows the spectral estimation on the top, 
and an example of a wave segments for each mean dwell time in the bottom. In the three cases, and 
despite the short state visits, the state-wise multitaper is able to find the correct frequency, even 
when the frequency resolution is degraded somewhat as we make the wave segments (state visits) 
shorter, leaking power toward faster frequencies.  
  



Supplementary Note 2 
 
Leakage reduction and phase-locking coherence estimation 
 
In this work, we used the method proposed in 11 in order to reduce the effect of signal leakage 
(volume conduction). Without this step, the estimation of phase-locking gets dominated by a 
pattern of artefactual local connections that is common to all states. While the approach proposed 
in 25 has been shown to work well in the context of MEG amplitude correlations, its application for 
phase-locking networks is less well established. Recently, Pascual-Marqui and colleagues12 have 
challenged the aforementioned approach, particularly within the context of estimating phase-
locking measures, showing that under certain conditions, artefactual connections may arise. The 
authors also provide an alternative approach based on the multivariate autoregressive model that 
may overcome these issues.  
 
To check the approach presented in 11 in the context of phase-locking, we also applied the Pascual-
Marqui’s approach on our real data12, and compared the resulting state-specific phase-locking with 
the estimations depicted in Figure 2. In Supplementary Figure 10, phase-locking connectivity is 
shown for the same four HMM states, after applying Pascual-Marqui’s method. As observed, the 
differences between Supplementary Figure 10 and Figure 2 are limited, with the method proposed 
by Pascual-Marqui and colleagues being slightly more conservative. The main features of the HMM 
states are however preserved. 
 
A related issue is whether leakage correction, which makes the signals orthogonal across the entire 
time series, precludes completely zero-lag (or small lag) relationships, which are central to the 
theory of communication through coherence13. Importantly, leakage correction operates at the level 
of the entire time series, and so only removes zero-lag correlations on average. This means that it is 
still possible to have transient periods of zero- or small- lag synchronisation. Focusing on the anterior 
and posterior higher-order cognitive networks, Supplementary Figure 11 illustrates this point by 
showing the phase at which different regions have a high coherence with the PCC (using a threshold 
of 0.05). Each dot thus represents a region with high coherence with PCC at the indicated frequency. 
Colours represent large-scale cortical areas. Importantly, due to the sign ambiguity issue, it is not 
possible to distinguish in-phase (0) from anti-phase coherence (π). If we assume that anti-phase 
actually represents in-phase relationships, this figure suggests that many of the (transient) phase-
locking relationships are actually close to zero-lag. 
  



Supplementary Note 3 
 
Reproducibility 
 
We assessed the reproducibility of the states by randomly splitting the data into two groups of 
subjects (half-splits) and running five times the HMM inference separately on each half. We also ran 
the HMM on the full data set five times. This is intended to evaluate the reproducibility of the results 
both across different HMM runs and across different subjects. We obtained 12 states from each run 
and matched the states across runs (between the two partitions and to the full cohort run) such that 
the similarity between state pairs is maximal. We used Riemannian distances to quantify the 
dissimilarities between states (see Methods). Supplementary Figure 12a shows the Riemannian 
distances between each pair of states (within and between runs). We then performed statistical 
testing on the consistency between runs across halves. Conceptually, we aimed to test if each pair of 
matched states (one per half) reliably represents the same process. If the distance between the 
states within the pair is significantly lower than between any two non-matched states, the state 
represented by this pair is robust across runs and subjects. This is shown in Supplementary Figure 
12b (left), where several states appear to be significantly reliable. A notable exception is the anterior 
higher-order cognitive state, the reason being its high similarity with state 5 (see Supplementary 
Figure 12a); that is, these two states are relatively similar and can potentially be mixed in certain 
runs. If, on the other hand, we test the distance of each pair of matched states against the average 
distance between any pair of states (that is, a less conservative test), the anterior higher-order 
cognitive state appears as highly reliable (Supplementary Figure 12b, right). In summary:  
 

- Overall, there is a strong similarity across runs, both within and between half-split partitions 
of the data (and to the full data set). 

- Within sessions, some states are relatively similar, suggesting some form of state hierarchy. 
 
 
 
  



Supplementary Note 4 
 
HMM states from surrogate data 
 
In this paper, we have proposed a model that finds separable, spectrally-defined states from MEG 
data. Applied on the resting-state, we found a number of states with interpretable characteristics. 
Being aware that the brain complex dynamics can be equally well represented in multiple ways (see 
above), it is important to investigate how the HMM states might differ between those we find in 
surrogate data simulated from complex single-state dynamic models, and those that we find in the 
real data. To test this, we implemented a surrogate data generation procedure where we kept 
analogous 1/f dynamics and autocorrelations while breaking the state-specific dynamics by using 
autoregressive models. In particular, using the 42-channels data used in the rest of the paper before 
leakage correction, we estimated two models: (i) a multivariate autoregressive model of order 3 
(MAR(3), with 422 x 3 parameters) which captured between channel autocorrelations, and (ii) a 
collection of univariate autoregressive models (one per channel) of order 21 (AR(21), with 21 x 42 
parameters) which did not capture between-channels spectral characteristics, but which was able to 
estimate more detailed within-channel spectral features. We then sampled data from these two 
models, corrected for signal leakage, and applied the HMM.  
 
Consistent with our expectations, and as discussed in previous work9,10, the autoregressive model is 
indeed able to represent complex dynamics. Depending on the complexity of the autoregressive 
model (in particular, in the case of the MAR(3) and AR(21) models), a single (low-rank) lagged cross-
correlation (as corresponds to the HMM states in our model) cannot represent the data well 
enough, and, therefore, several states are necessary. In other words, complex 1/f and cross-spectral 
dynamics can either be represented by an autoregressive model with a large number of parameters, 
or a set of less complex models as we use in this work. As a consequence of this, different HMM 
states emerge from these simulated data. 
 
We compared the HMM decomposition obtained from the real data and the HMM decomposition 
obtained from these synthetic scenarios. Supplementary Figure 13 shows the results. The states 
obtained from real data hold significant differences with the states obtained from the MAR(3) and 
the AR(21) models. As a first approach, we compared the wideband spectral maps (see Methods) 
between the surrogated and the real states. For this, we paired up the synthetic states with the real 
states such that the correlation is maximal. In the MAR(3) case, the states have relatively low 
correlations between real and synthetic (top left); in the AR(21) case, which captures the within-
channel spectral information more faithfully, the correlation is much higher, with the interesting 
exception of the higher-cognitive states and the fifth state (top right). As demonstrated in the 
bottom-right panel, these high correlations are however trivially explained by the across-states 
average power profile being very similar between synthetic and real states; this was expected given 
the AR(21) model’s high explanatory power in the spectral domain. Note that this grand-average 
correlation is missed in the MAR(3) model case, most likely due to leakage correction removing a 
large extent of the (stationary) information. Most importantly, the states obtained from the real 
data are much more diverse than those corresponding to either of the synthetic models, as shown in 
the bottom panels. This, together with the inability to identify the higher-cognitive states, suggests 
that the HMM states obtained here are not trivially obtained from just any data with the same 
spatiotemporal autocorrelations. 
 
  



Supplementary Methods 
 
Simulating data from the HMM 
 
Each state model of the TDE-HMM corresponds to a Gaussian process14. In order to generate T time 
points of data from a given state, one can construct a (no. of regions x T) by (no. of regions x T) 
covariance matrix by rearranging the elements of the (no. of regions x time lags) by (no. of regions x 
time lags) state covariance matrix. In order to generate data from the TDE-HMM, we used the two 
higher-order states and selected a subset of regions for computational simplicity (ACC, PCC, and left 
and right intraparietal sulci). We then sampled 30min of data, alternating between these two states, 
with state visits set to last from 0.2 to 2s. We then ran the HMM inference on the simulated data. 
The inference, as shown in Supplementary Figure 14, was able to accurately recover the simulated 
state time course with a correlation between simulated and estimated time courses of r=0.98. 
Furthermore, when simulating from one single state, the HMM inference was able to reduce the 
complexity of the model by eliminating all states but one.  
  



Supplementary Table 
 
 

Index Area MNI Coordinates (X,Y,Z) 
1 Medial PFC  (2,50,0) 
2 Right Frontal Lobe (42,34,16) 
3 Right Frontal Lobe (26,10,56) 
4 Right Frontal Lobe (18,42,40) 
5 Right Frontal Lobe (42,50,0) 
6 Right Frontal Lobe (26,50,24) 
7 Right Temporal Lobe (58,-22,8) 
8 Right Temporal Lobe (58,-46,0) 
9 Right Temporal Lobe (50,10,-24) 
10 Right Visual Cortex (10,-94,24) 
11 Right Visual Cortex (26,-94,8) 
12 Right Visual Cortex (50,-70,8) 
13 Right Visual Cortex (42,-78,-8) 
14 Right Sensorimotor Cortex (58,-6,32) 
15 Right Sensorimotor Cortex (42,-22,56) 
16 Right Sensorimotor Cortex (10,-30,72) 
17 Right Parietal Lobe (18,-70,56) 
18 Right Parietal Lobe (34,-78,40) 
19 Right Parietal Lobe (-54,-46,40) 
20 Right Parietal Lobe (50,-70,16) 
21 Posterior Precuneus (-6,-70,32) 
22 Posterior Cingulate Cortex (2,-46,24) 
23 Anterior Precuneus (2,-54,48) 
24 Left Parietal Lobe (-22,-62,56) 
25 Left Parietal Lobe (-38,-78,40) 
26 Left Parietal Lobe (58,-46,40) 
27 Left Parietal Lobe (-46,-70,16) 
28 Left Sensorimotor Cortex (-54,-6,32) 
29 Left Sensorimotor Cortex (-46,-22,56) 
30 Left Sensorimotor Cortex (-6,-30,72) 
31 Left Visual Cortex (-14,-94,24) 
32 Left Visual Cortex (-22,-94,8) 
33 Left Visual Cortex (-46,-70,8) 
34 Left Visual Cortex (-38,-86,0) 
35 Left Temporal Lobe (-62,-22,8) 
36 Left Temporal Lobe (-62,-46,0) 
37 Left Temporal Lobe (-46,10,-24) 
38 Left Frontal Lobe (-46,34,16) 
39 Left Frontal Lobe (-22,10,56) 
40 Left Frontal Lobe (-14,42,48) 
41 Left Frontal Lobe (-38,50,0) 
42 Left Frontal Lobe (-22,58,16) 

 
Supplementary Table. List of regions used in the analysis, with their MNI coordinates. Numerical indexes 
correspond to those shown in Figure 2, Figure 4, and Supplementary Figure 4. 
 
 
  



Supplementary Figures 
 

 
 
Supplementary Figure 1. Schematic overview of the proposed method. After preprocessing (source 
reconstruction, parcellation, leakage correction and sign disambiguation – see Methods), the data 
channels X are temporally-embedded (using L lags), PCA is applied for dimensionality reduction 
(producing PCA components Y), and HMM inference is then used to find the state time courses and 
the state parameters.  
  



 
 
Supplementary Figure 2. The remaining eight states of the HMM model. Four of these (in the 
bottom) correspond to depressed (with regard to average) power and connectivity.   
 
 

 
 
Supplementary Figure 3. Statistically-significant wideband activations and functional connections, 
for the four states depicted in Figure 2. Tested hypothesis refer to activations or connections to be 
higher for these states than for the rest of the states. The level of statistical significance was set to 
0.01.     



 
 
Supplementary Figure 4. Frequency-specific power and phase-locking connectivity for the visual 
and motor states. This is shown for the three data-driven estimated frequency modes (see 
Methods). With regard to connectivity, only the connections with highest absolute value are shown 
(see Methods).  



Supplementary Figure 5. The spectral profile of the three regions is distinct when considered state 
by state. The top three panels represent power as a function of frequency for the PCC and the two 
precuneus regions, separated by state and including the global power. The bottom panels reflect 
connectivity with the mPFC region.  
  



 
Supplementary Figure 6. The state distribution is not homogenous over subjects, with some 
subjects having a higher representation of some states than others. On the right, the maximum 
fractional occupancy (per subject) indicates that all subjects are explained by a mixture of states, and 
that no single state dominates an entire subject.      
 

 
Supplementary Figure 7. Histogram and fitted Gaussian distributions used to select the relevant 
connections in Figure 2. These are chosen by fitting a mixture of two Gaussian distributions to the 
state’s distribution of connections, and selecting the ones that belong to the Gaussian distribution 
with the larger mean.  
  



 

 
Supplementary Figure 8. Spatial power maps for an HMM run with 6 states. Some states from the 
original 12 state analysis are now fused into fewer states.  
 

 
Supplementary Figure 9. Spectral information from a collection of signal segments extracted from 
a canonical theta oscillation (8Hz), where the segments are shorter than the theta period (0.125s). 
The length of the segments has either mean 0.025s (left), or 0.05s (middle), or 0.10s (right); 
examples of the segments are shown in the bottom for each case. Despite the brevity of the 
segments, the spectral information of the underlying theta wave is correctly calculated.  



 
 

 
Supplementary Figure 10. Using an alternative leakage correction method does not affect the 
results significantly. Phase-locking connectivity for the two higher-order cognitive (anterior and 
posterior) states, and the visual and motor states, when the method for leakage correction 
presented in 78 is applied instead of the method used in this work25. The differences between the 
two methods are not large, with slightly fewer connections for the method introduced in 78.  
 

 
Supplementary Figure 11. Phase differences between the PCC and the rest of the brain are nearly 
in-phase (or anti-phase). Phase differences between the PCC and the rest of the brain in the anterior 
and posterior higher-order cognitive states, for those regions that exceed a threshold of 0.05. 
Different colours indicate different large-scale areas of the brain, as indicated in the legend. Each dot 
represents the connection of one region to the PCC at a certain frequency.  



 
 
Supplementary Figure 12. The HMM states are largely reproducible across different runs of the 
inference algorithm and across half-splits of the data. (a) Riemannian distances between each pair 
of states, across runs and half-splits. (b) Statistical testing on the reproducibility of the states 
between half-splits. Two tests are implemented: whether the distance between the half-split 
versions of the same state is lower than that of any pair of states, and whether distance between 
the half-split versions of the same state are lower than the average between-states distance. 
 



 
 
Supplementary Figure 13. HMM states obtained from synthetic data hold substantial differences 
with the real-data states. This is shown for two synthetic data generation models (see 
Supplementary Discussion). On top, correlation between the activation maps between the synthetic 
and the real maps. Underneath, a depiction of the power values for the real data and the synthetic 
data states.  
 

 
 
Supplementary Figure 14. The HMM inference can accurately recover the state time courses of 
simulated data using Gaussian processes (see Supplemental Discussion for details).  
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