
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Review for: “Spontaneous cortical activity transiently organises into frequency specific phase-coupling 
networks”, Nature Communications  
 
This is a focused concise paper which addresses a topic of great current interest, and will appeal to a 
broad readership. The base methods are sound and well-tested, and are deployed here in a novel, 
data-driven analysis to generate findings that advance the subfield. The authors argue that their data 
show that frequency-specific oscillations play a role in coordinating multiple functional subnetworks, 
producing a sequence of states identified via changes in spatially-distinct patterns of power and phase 
coupling. Furthermore:  
 
- Paper provides much needed data on the transient nature the spontaneous evolution of a sequence 
of brain states, with a quantitative characterization of these changes over time and modeling (HHM).  
- Focus on including inter-area phase-coupling in HMM is key advance, given the different time scales 
of phase coupling changes and power changes, and the direct theoretical work linking phase coupling 
to communication efficacy.  
- Adaptive and data-driven rather than beginning with fixed but arbitrary parameters  
- Novel analysis of the default mode network which suggests a subdivision of at least two higher-order 
cognitive brain states/active-networks, identified by robust spatial and spectral differences.  
- Shows different timescales for state changes in higher-order cognition networks vs. 
sensorimotor/visual networks.  
- Shows frequency-specific subdivision of at least 2 higher-order cognition networks.  
- Elegant analysis pipeline that starts from raw MEG time-courses with minimal parameter selection or 
fine tuning by researcher.  
 
However:  
- Needs some light rewriting to clarify what is empirical data, what is theoretical frame and 
mathematical model, and what are inferred causal mechanisms.  
- Explain relation of this method to existing literature of EEG microstates (eg data-driven HHM 
identification). http://www.scholarpedia.org/article/EEG_microstates  
- Code is the best documentation of methods. I did not see link to code posted online; if complete 
codebase for this specific analysis is not yet ready, include link to the repository which will eventually 
have it.  
- Remaining question, what is the relative weight of power and phase-coupling in defining or clustering 
data into k distinct states?  
 
Minor points:  
 
L14 Abstract, "ongoing functional brain networks"  
Consider "ongoing activity in functional brain networks", "functional brain networks displaying 
spontaneous ongoing activity", or a similar recast. The network is not ongoing, the activity is, or the 
output from an operationally-defined method detecting functional connectivity within the network. 
Also, more emphasis that the contrast is between goal-directed cognitive tasks and spontaneous 
ongoing activity.  
 
L14 Abstract, "should also be able to"  
Consider "would also exhibit the oscillatory signatures associated with transient coordination", or shift 
"in a similar manner" to "via similar mechanisms for transient coordination" or similar. I am requesting 



a clearer distinction between functional role, detected empirical signatures or signal, and hypothesis 
concerning causal mechanisms. "able to reorganize" strikes me as goal-directed function, whereas I 
suspect you are predicting that goal-directed vs. spontaneous activity will exhibit similar empirical 
signatures (namely, transient frequency-specific oscillatory activity and phase-locking).  
 
L15 Abstract "use" -> "developed" ?  
 
L18 Abstract "spatially distinct power"  
Consider "spatially-distinct patterns of oscillatory power"  
 
L25 "networks operate"  
This may be too strong a statement. You show that the MEG signals associated with ongoing activity in 
default mode networks can be well characterized as a robust sequence of brain states. You 
hypothesize that this sequence of states is caused by mechanisms of transient coordination that 
enable the network to operate and perform functional roles. Recommend rewriting this to make these 
distinctions clearer.  
 
L55 "distinct spectral and phase-coupling features"  
Consider "distinct spatial and spectral features that include both power and phase-coupling" or similar. 
Spectral includes frequency-specific power and phase, with phase coupling determined by absolute 
phase in each area.  
 
L57 "For the first time"  
Consider adding to abstract to make clear original claims to skimming reader.  
 
L75 "in a completely data-driven way"  
I think this should be emphasized before results section, prior work in this area almost always hand-
pick parameter values, this is a real advance methodologically.  
 
L524 Space permitting, suggest additional refs for  
instantaneous frequency:  
Cohen L. (1995). Time-frequency analysis. [BOOK]  
Gardner TJ and Magnasco MO. (2006). Sparse time-frequency representations. PNAS, 103, 16. doi: 
10.1073/pnas.0601707103  
 
L552 Space permitting, suggest additional refs for  
single neuron selectivity for different time scales:  
Canolty et al. (2010). Oscillatory phase coupling coordinates anatomically-dispersed functional cell 
assemblies. PNAS, 107, 40, 17356-17361. doi: 10.1073/pnas.1008306107  
 
Space permitting and if theory agrees, suggest ref to work of Beggs JM on neuronal avalanches: 
http://www.scholarpedia.org/article/Neuronal_avalanche  
This is one possible mechanism to provoke changes in brain states.  
 
The methods look sound and I did not see anything that jumped out of me as red flags. However, I 
am not a direct user of beamformer methods for spatial localization, and I have not used HMMs 
myself. That said, I felt the methods were well documented and described. Code should be included 
for final version, especially for any novel code not available elsewhere.  
 
SECTIONS:  
Abstract  



 
Introduction  
 
Results  
- The states exhibit specific phase-locking connectivity  
- Higher-order cognitive states have distinct spectral characteristics  
- Higher-order cognitive states have distinct temporal characteristics  
 
Methods  
Data and preprocessing  
The Hidden Markov Model  
The embedded Hidden Markov Model  
Source-reconstructed dipole ambiguity  
Extracting spectral information  
 
Discussion  
Fast Transient Brain States and Slow Rhythms  
Subdivision of the Default Mode Network  
Posterior Cingulate Cortex in Resting-state MEG  
Relationship between Power and Coherence  
Gamma-band  
Number of Brain States  
State exclusivity  
Summary  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
This is a very interesting paper that dissects spontaneous resting-state brain activity recorded with 
MEG into transient and intermittent states. The authors suggest that two of them correspond higher-
order cognitive states, putatively the anterior and posterior parts of the default mode network (DMN), 
and others to visual, somatosensory and other networks. The authors find resting-state brain activity 
to be decomposable into very brief (< 100 ms) states with distinct anatomical patterns and spectral 
profiles.  
 
I think it is fair to say that the phenomenology of electrophysiological resting-state brain activity, let 
alone that pertaining to phase correlations, is really quite poorly understood. This paper makes a 
significant contribution to that understanding and, in my opinion, would influence the field and be 
interesting to a broad audience. I also applaud the authors’ data-driven approach, which I think is 
fundamentally important for gaining understanding about the large-scale operating mechanics of 
cerebral activity (much beyond what the hypothesis-driven approach can yield) and thereby also 
advancing the nascent field of network neuroscience. However, the downside of the authors’ 
innovative and extremely advanced analysis pipeline is that it is also extremely difficult for common 
readers to understand in terms of actual procedures and their implications and limitations. This could 
partly be alleviated by expanding and better illustrating the analysis pipeline in supplementary 
material.  
 
Overall my core concern is that as it is now, the reader must accept the results at face value and has 
little means for grasping their (neurobiological) validity and (statistical) reliability/robustness. I have 
outlined below some suggestions that I hope the authors consider to consolidate the manuscript.  



 
Major  
1. “Separable neurophysiological states or a continuum of activity artificially split by HMM?” The key 
premise of this paper is that ‘semi-discrete’ brain states exist and can be identified with the authors’ 
approach. Since this specific methodological approach has not been validated earlier, it would be good 
to test how similar states it would find from data that has identical spatiotemporal autocorrelations 
and 1/f dynamics but no states or community structures per se. I.e., running the same core analyses 
on well comparable surrogate data would be essential. Vidaurre et al., 2016, NeuroImage paper 
presented validation for the alt.-hypothesis case where true states were simulated and successfully 
detected, but I was not able to find validation for the null-hypothesis case. One simple, perhaps 
adequate, approach would be use temporally randomly rotate 42 dipole time series (preserving 
temporal autocorrelations and dynamics but breaking inter-areal relationships) and apply forward and 
inverse transforms to recreate the MEG-related spatial mixing.  
 
2. Reliability and state boundaries. It would be useful to assess the reliability of these observations 
explicitly. What would be the split-cohort reliability of these state observations? I could not find any 
indication of how the power maps were thresholded – what is the confidence level for the colored 
areas to belonging to the state they are assigned to? Visualization of the functional connections is 
justified by fitting a mixture of two Gaussian distributions to the connection strength distribution: how 
good are these fits? My guess would be that the joint distribution is a unimodal heavy-tailed one but I 
would gladly be wrong here. Why not simply estimate the null hypothesis distribution with surrogate 
data and illustrate connections based on statistical significance?  
 
3. Functional annotations. While the authors mostly write about “higher-order cognitive brain states”, 
which may be fair given their neuroanatomical localization, several parallels are drawn with the DMN. 
The authors could match these data with fMRI RSN maps and test quantitatively whether the observed 
higher-order cognitive states better match the DMN or other networks (see also minor note below 
about co-localization with prior power-correlation data).  
 
4. Power bias for phase correlation networks. Estimating phase correlations with coherence is 
fundamentally problematic because, the resulting network is significantly dependent on power so that 
high-power states have much more weight than low power states in dictating which phase differences 
“count” in the estimate. As implied in Fig. 3a, this likely leads to an overestimation of how well the 
phase correlation networks are co-localized with the power topographies as well as to a possible 
misestimation of what the phase correlation networks really are. The presence of some ‘counter 
examples’ does not diminish the presence of such a systematic bias. If the authors want to have 
phase-coupling networks, as opposed to coherence networks, as the theme of the paper, I would urge 
to use a proper phase synchrony metric, in the simplest by running the coherence function with 
amplitudes normalized to unity.  
 
5. Brevity of the states: while the authors’ supplementary material suggests that the states’ spectral 
profile can be technically evaluated with sub-cycle data segments, it remains unclear what can be the 
physiological meaning of states like this. Is state brevity a “false” result caused by the HMM 
assumption of just one state being allowed in the entire system at a time in a condition where a 
hypothetical “truth” is that the states are longer but overlap each other temporally?  
 
Minor  
• How are the power maps constructed? Their visualization appears to be in done at the resolution of 
source dipoles but the HMM analysis and phase correlation networks were done in the 42 parcel 
parcellation.  
 



• The paper uses a HMM-based approach that has been validated in previous papers, but the 
‘observables’ to the HMM are different to that used in Baker et al. (2014) and Vidaurre et al. (2016). 
The authors say that the MVAR coefficients that were used as observables in Vidaurre et al. (2016) 
work well with a few regions, but not many brain regions. In this paper, the observables are ‘time-
delayed covariance matrices’ which are conceptually similar to MVAR coefficients. Please provide some 
intuition on why MVAR coefficients do not work well when looking at many regions (but time-delayed 
covariance matrices do). Also since a novel variant of the HMM-based method is used, simulations 
quantifying its validity would be welcome in the Supplementary section.  
 
• Using time-delayed covariance matrices as observables: please provide information on the maximum 
lag used and rationale for it, for example in relation to the cycle widths of the observed oscillations on 
one hand and axonal conduction velocities on the other.  
 
• The authors have set the number of states in the HMM somewhat arbitrarily to 12. Why analyse 12 
and proceed to ignore many of them when the 6 state division seems to convey all essential state 
information noted also for 12 states? Are the states hierarchically organized as in hierarchically 
modular networks? The authors note that the number of states essentially influences level of detail or 
resolution at which brain dynamics are viewed. While I agree with this notion, it would be good to 
provide statistical evidence that more than one stable state exists and is reliable in the first place and 
further use a measure of stability to quantify whether the chosen numbers of states yield valid/stable 
divisions into states (analogously to measuring the stability of graph module allocations).  
 
• How do the power topographies of each state match with power-correlation networks reported in the 
original HMM paper (Baker et al. (2014)) by the same group? While the Baker et al. (2014) paper 
identified 8 states which corresponded to the different canonical RSNs to some extent, the power 
topographies (or the phase correlation networks) in this paper do not seem to systematically 
correspond to the RSNs per se. I do not see that they should, but it would be useful to the community 
to know whether they do or not. Are the differences simply driven by the power-vs.-raw difference 
(different observation models) for the HMM-based method?  
 
• Comparison with the new Pascual-Marqui method could be presented quantitatively. Are all Pascual-
Marqui connections also found by the Colclough method? For example, if Pascual-Marqui connections 
are considered a truth network, what is the sensitivity and specificity (or accuracy, TPR, FPR…) of the 
Colclough network?  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The paper of Vidaurre et al. demonstrates that spontaneous brain activity is parcelled into specific 
brain states in time and that each of this state is characterized by specific frequency and phase-
coupling. This demonstration is based on the analysis of hidden Markov models in source-
reconstructed MEG data of 55 subjects.  
 
There is increasing interest in the temporal dynamics of resting-state brain activity and fMRI is limited 
when it comes to the time scale that is relevant for understanding mental processes. The method 
presented here is interesting as it allows to resolve this dynamics in time, frequency and phase.  
 
The principle results of the study are:  
a) The life-time of a state is around 50-100 ms.  
b) Power- and phase/locking in specific frequencies characterize these states.  



c) Different states have different dominant frequencies.  
d) The interval times differ for different states.  
e) Frontal and posterior states differ in the dominant frequency.  
 
While these are all interesting observations, they are not entirely new and they largely confirm what 
has been already observed using other methods applied to EEG or MEG. Unfortunately, the paper 
makes only little or no contact with this existing literature. In order to make the paper significantly 
more powerful, the approach and the results should be better embedded in the context of other 
existing approaches and should be compared to them.  
 
Approaches that should be discussed and compared with are the following:  
a) The EEG microstate approach: A large number of studies over many years have shown that resting-
state EEG can be parcelled into states of stable topographies lasting around 100 ms, that are related 
to large-scale networks seen with fMRI due to scale-free dynamics [1-3]. Topographic time-frequency 
decompositions have shown that networks contributing to a specific microstates share the same 
temporal dynamics defined in time, frequency, and phase [4, 5].  
b) Analysis of synchronization patterns of resting state EEG have shown that EEG dynamics consists of 
a limited number of stable states consisting of core networks that remain stable for about 100 ms and 
rapidly switch between each other [6].  
c) The general idea of chunking brain dynamics in metastable states has been proposed repeatedly 
and demonstrated in different ways (see for example the heteroclinic channels of [7] or the 
coordination dynamics of [8]). Relations between such principles and observed EEG dynamics have 
been discussed in [9] and more recently in [10].  
d) Also the link to the literature regarding frontal theta and posterior alpha oscillations is missing [11-
13]. The results presented in the manuscript, in respect to the localization, network extent and 
frequency are plausible considering this ‘classic’ literature concerning EEG oscillations.  
 
In addition to this general request of better embedding the study in the current knowledge on brain 
state dynamics, the following methodological questions need to be considered:  
1. Only four out of twelve observed states are described and discussed in detail in the manuscript. 
What was the percentage of explained variance for these four states (relative to the total variance)?  
2. Power maps are illustrated relative to their temporal average. The scale would be of interest here, 
i.e. % change or dB in order to appreciate what ‘low’ and ‘high’ power means (in numbers). 
Furthermore, the thresholding criterion for the power maps is missing.  
3. Several other important parameters of the method are not justified and not described in detail. 
Specifically, why were 42 ROIs and 4 frequency profiles chosen?  
4. Line 153 -> It is said that frequency bands are split into the classical bands. However, delta/theta 
is defined as 0.5-10 Hz and alpha as 5-15 Hz. Besides the frequency overlap these are not the 
classical bands. I assume this is a typo.  
5. Line 155 -> Due to the relatively lower SNR in this band and considering the bias towards lower 
frequency activity resulting from running HMM on PCA components, it is more likely that gamma 
modes could not be observed given the used methods. What is crucially different from stating that 
there are no “state-specific differences” for these modes. This issue is addressed in the discussion; 
however, the wording should also be changed in the results section.  
6. Line 317 -> It seems that the authors down-sampled the data before filtering. If so, they do not 
mitigate the distortion due to aliasing. I assume it is a typo.  
7. Line 328 -> By using the hidden Markov Model authors assumed that at each time point only one 
state is active. Moreover, the states are defined at group level and then the activation of a state at the 
subject level (Line 344). How do the authors justify that by using a 12-state model they are able both 
to explain the subject inter-variability and to guarantee that at each time point only one of this state is 
active?  



8. Line 383 -> Authors applied PCA. It would be important to know the amount of variance explained 
by the decomposition per subject.  
9. Line 479 -> The authors should define “in numbers” what they assume saying “having more 
probability” .  
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We	thank	the	three	Reviewers	for	their	critical	revisions,	which	have	greatly	helped	improve	the	
paper.	Changes	are	highlighted	in	red.	
	
Reviewer	#1	
	
Comment	1.	Needs	some	light	rewriting	to	clarify	what	is	empirical	data,	what	is	theoretical	
frame	and	mathematical	model,	and	what	are	inferred	causal	mechanisms.	
	
We	thank	the	Reviewer	for	the	suggestion.	We	have	clarified	these	points	further	in	the	last	
paragraph	of	the	Introduction.		
	
With	regard	to	the	empirical	data:	
	
"We	used	resting-state	MEG	data	from	55	healthy	subjects,	source-reconstructed	to	42	
regions	across	the	entire	cortex.	Notably,	applying	this	approach	to	these	data	revealed..."	
	
In	relation	to	the	theoretical	framework:	
	
"To	identify	the	possible	presence	of	these	events,	we	use	a	new	analysis	approach	based	on	
the	Hidden	Markov	Model	(HMM;	Rabiner,	1989),	a	general	mathematical	framework	
previously	shown	to	find	recurring	states	in	brain	data	(Vidaurre	et	al,	2017)."	
	
We	note	that,	strictly	speaking,	we	are	not	aiming	to	pinpoint	the	causal	mechanisms	
underlying	the	states	visits	and	switches.	In	this	paper,	we	are	focusing	on	describing	these	
states	and	their	main	characteristics,	relating	them	to	previous	literature	but	without	
hypothesising	explicit	causality.	This	point,	while	important,	requires	further	extensive	
research.	We	have	included	a	new	section	in	the	Discussion,	"Biological	underpinnings	and	
functional	labelling",	where	we	now	further	clarify	this	point.	
	
Comment	2.	Explain	relation	of	this	method	to	existing	literature	of	EEG	microstates	(eg	
data-driven	HHM	identification).	http://www.scholarpedia.org/article/EEG_microstates.	
	
Following	the	Reviewer's	suggestion,	we	have	added	the	section	"Relation	to	EEG	
Microstates"	in	the	Discussion,	which	contains	a	brief	conceptual	comparison	to	the	EEG	
microstates	framework:	
	
"Our	approach	is	not	the	first	in	proposing	a	segmentation	of	electrophysiological	time	series	into	a	
discrete	set	of	states.	For	example,	Rabinovich	et	al.	(2015),	among	others,	argue	for	the	
characterisation	of	brain	dynamics	as	“a	task-dependent	sequential	activations	metastable	states,	
that	is,	states	where	system	variables	reach	and	temporary	hold	stationary	values”	(see	also	Tognoli	
and	Kelso	(2014)	for	a	general	reference	about	metastability	in	the	brain).	A	prominent	related	
methodology	is	the	EEG	microstates	framework	(see	e.g.	van	de	Ville	et	al.	(2010);	Khanna	et	al.	
(2010)).	One	essential	difference	between	the	approach	taken	in	this	work	and	the	EEG	microstates	
is	that	we	characterise	HMM	states	in	source-space.	Most	importantly,	our	states	are	specifically	
defined	as	periods	in	time	where	the	data	exhibits	distinct	spectral	and	cross-spectral	properties.	
This	allows	us	to	identify	states	that	correspond	to	networks	of	specific	multivariate	spectral	
patterns,	including	coherence.	By	contrast,	EEG	microstates	do	not	appear	to	exhibit	distinct	spectral	
properties.	While	other	approaches	applied	to	EEG	data	that	do	capture	spectral	differences	have	
also	been	proposed,	these	are	in	sensor	space,	and	so	cannot	capture	the	changes	in	phase-coupling	
between	specific	subnetworks	of	cortical	regions	that	we	find	in	this	work	(Koenig	et	al.,	2001;	
Studer	et	al.,	2006;	Betzel	et	al.,	2012)."	



	
Comment	3.	Code	is	the	best	documentation	of	methods.	I	did	not	see	link	to	code	posted	
online;	if	complete	codebase	for	this	specific	analysis	is	not	yet	ready,	include	link	to	the	
repository	which	will	eventually	have	it.	
	
We	fully	agree	with	the	Reviewer's	comment.	Although	the	code	of	the	toolbox	was	already	
online,	we	have	now	uploaded	the	script	with	the	entire	analysis	pipeline	(from	
preprocessing	to	the	production	of	the	figures)	to	our	Github	repository.	In	the	header	of	
the	Methods	section,	we	have	now	included	the	following	text:		
	
"The	HMM	analysis	was	conducted	using	the	HMM-MAR	Matlab	toolbox1,	which	contains	
detailed	documentation	of	the	tools’	usage2.	Furthermore,	a	script	containing	the	entire	
pipeline	is	also	available	online3."	
	
Comment	4.	What	is	the	relative	weight	of	power	and	phase-coupling	in	defining	or	
clustering	data	into	k	distinct	states?	
	
The	Reviewer	raises	an	important	question,	related	to	the	one	addressed	in	the	Discussion	
"Relationship	between	Power	and	Coherence".	In	order	to	bring	some	clarification,	we	have	
expanded	the	Results	by	adding	the	Section	"Power	vs	connectivity	in	driving	state	
switching",	which	reads	now	as	follows:		
	
"An	important	question	is	which	features	in	the	data	(i.e.	power	or	connectivity)	are	driving	the	
HMM	state	segmentation.	Given	that	power	can	be	estimated	more	precisely	than	cross-spectral	
properties	(such	as	coherence),	and	that	the	leakage	correction	procedure	(Colclough	et	al.,	2015)	
may	remove	some	genuine	connectivity	information	(if	interactions	occur	with,	or	close	to,	zero-lag),	
changes	in	power	are	expected	to	drive	a	considerable	amount	of	state	switching.	By	manipulating	
the	diagonal	and	off-diagonal	elements	of	the	autocovariance	matrices	that	characterise	each	state,	
we	computed	the	Riemannian	distance	(see	Methods)	between	each	pair	of	states	using	(i)	power	
and	coherence,	(ii)	just	coherence,	and	(iii)	just	power.	Fig.	7a	reflects	that	the	contribution	of	power	
and	coherence	to	state	differences	is	variable,	but,	on	average,	the	contribution	of	power	is	indeed	
around	four	times	higher	on	average	(note	the	difference	in	the	scale	bar).	
	
To	compare	our	results	to	previous	work,	we	also	ran	the	HMM	on	power	envelopes	computed	from	
the	data	band-passed	filtered	between	1Hz	and	40Hz	(Baker	et	al.,	2014),	which	defines	HMM	states	
as	having	distinct	patterns	of	power	and	power	correlations	in	a	single	frequency	band.	We	then	
computed	the	spatial	correlation	between	the	power	maps	and	the	phase-coupling	connectivity	
profiles	(in	either	case	using	the	multitaper	after	the	HMM	inference)	between	the	two	types	of	
HMM.	We	paired	the	states	between	the	two	runs	such	that	the	correlations	are	maximal.	Fig.	7b	
shows	that	some	power	maps	are	relatively	well	correlated	between	the	two	runs,	and	that	the	
differences	of	functional	connectivity	between	the	two	runs	are	in	general	larger	than	the	
differences	in	power.	In	summary,	this	analysis	demonstrates	that,	while	there	are	similarities	
between	the	two	HMM	approaches,	there	are	also	distinct	characteristics	to	each	of	them."	
	
Minor	Comment	1.	Abstract,	"ongoing	functional	brain	networks"	
Consider	"ongoing	activity	in	functional	brain	networks",	"functional	brain	networks	
displaying	spontaneous	ongoing	activity",	or	a	similar	recast.	The	network	is	not	ongoing,	the	

                                                
1	https://github.com/OHBA-analysis/HMM-MAR	
2	https://github.com/OHBA-analysis/HMM-MAR/wiki/User-Guide	
3	https://github.com/OHBA-analysis/HMM-MAR/blob/master/examples/NatComms2018_fullpipeline.m	



activity	is,	or	the	output	from	an	operationally-defined	method	detecting	functional	
connectivity	within	the	network.	Also,	more	emphasis	that	the	contrast	is	between	goal-
directed	cognitive	tasks	and	spontaneous	ongoing	activity.	
	
We	thank	the	Reviewer	for	this	and	the	following	comments,	which	we	have	incorporated	to	
the	text.		
	
We	have	changed	this	now	to	"the	ongoing	activity	ascribed	to	the	different	functional	brain	
networks"	
	
Minor	Comment	2.	Abstract,	"should	also	be	able	to"	
Consider	"would	also	exhibit	the	oscillatory	signatures	associated	with	transient	
coordination",	or	shift	"in	a	similar	manner"	to	"via	similar	mechanisms	for	transient	
coordination"	or	similar.	I	am	requesting	a	clearer	distinction	between	functional	role,	
detected	empirical	signatures	or	signal,	and	hypothesis	concerning	causal	mechanisms.	"able	
to	reorganize"	strikes	me	as	goal-directed	function,	whereas	I	suspect	you	are	predicting	that	
goal-directed	vs.	spontaneous	activity	will	exhibit	similar	empirical	signatures	(namely,	
transient	frequency-specific	oscillatory	activity	and	phase-locking).	
	
We	have	changed	this	to	"should	also	be	able	to	reorganise	and	coordinate	via	similar	
mechanisms"	
	
Minor	Comment	3.	Abstract	"use"	->	"developed"?	
	
We	have	now	included	this	change.		
	
Minor	Comment	4.	Abstract	"spatially	distinct	power".	Consider	"spatially-distinct	patterns	
of	oscillatory	power"	
	
We	have	now	included	this	change.		
	
Minor	Comment	5.	"networks	operate".	This	may	be	too	strong	a	statement.	You	show	that	
the	MEG	signals	associated	with	ongoing	activity	in	default	mode	networks	can	be	well	
characterized	as	a	robust	sequence	of	brain	states.	You	hypothesize	that	this	sequence	of	
states	is	caused	by	mechanisms	of	transient	coordination	that	enable	the	network	to	operate	
and	perform	functional	roles.	Recommend	rewriting	this	to	make	these	distinctions	clearer.	
	
We	have	changed	it	to	"have	characteristic	signatures"	
	
Minor	Comment	6.	"distinct	spectral	and	phase-coupling	features"	
Consider	"distinct	spatial	and	spectral	features	that	include	both	power	and	phase-coupling"	
or	similar.	Spectral	includes	frequency-specific	power	and	phase,	with	phase	coupling	
determined	by	absolute	phase	in	each	area.	
	
We	have	now	included	this	change.		
	
Minor	Comment	7.	"For	the	first	time"	
Consider	adding	to	abstract	to	make	clear	original	claims	to	skimming	reader.	
	
Because	we	already	used	this	expression	in	the	Introduction	("For	the	first	time,	this	allows	
for	the	identification	of	brain-wide	networks"),	we	preferred	to	omit	it	in	the	Abstract.	We	



however	thank	the	Reviewer	for	the	suggestion.		
	
Minor	Comment	8.	"in	a	completely	data-driven	way"	
I	think	this	should	be	emphasized	before	results	section,	prior	work	in	this	area	almost	always	
hand-pick	parameter	values,	this	is	a	real	advance	methodologically.	
	
We	have	added	it	to	the	abstract:	"To	test	this	hypothesis,	we	developed	a	novel	method	for	
identifying,	in	a	completely	data-driven	way,	repeating	patterns	of	large-scale	phase-
coupling	network	dynamics"	
	
Minor	Comment	9.	Space	permitting,	suggest	additional	refs	for	instantaneous	frequency:	
Cohen	L.	(1995).	Time-frequency	analysis.	[BOOK]	
Gardner	TJ	and	Magnasco	MO.	(2006).	Sparse	time-frequency	representations.	PNAS,	103,	
16.	doi:	10.1073/pnas.0601707103	
	
We	have	added	the	second	reference.	Unfortunately	we	are	over	the	limit	in	number	of	
references	allowed	by	the	journal,	so	we	had	to	leave	out	the	first.		
	
Minor	Comment	10.	Space	permitting,	suggest	additional	refs	for	single	neuron	selectivity	
for	different	time	scales:	
Canolty	et	al.	(2010).	Oscillatory	phase	coupling	coordinates	anatomically-dispersed	
functional	cell	assemblies.	PNAS,	107,	40,	17356-17361.	doi:	10.1073/pnas.1008306107	
	
We	have	added	the	reference,	and	cited	it	in	the	first	paragraph	of	the	Introduction.	
	
Minor	Comment	11.	Space	permitting	and	if	theory	agrees,	suggest	ref	to	work	of	Beggs	JM	
on	neuronal	avalanches:	http://www.scholarpedia.org/article/Neuronal_avalanche	
This	is	one	possible	mechanism	to	provoke	changes	in	brain	states.	
	
We	have	added	the	following	to	the	Discussion:	
	
"...	A	separate	question	is	about	the	mechanisms	and	causes	of	switching,	and	whether	
these	can	be	linked	to	avalanches	of	activity	(Beggs	and	Plenz,	2003)."	
	
Reviewer	#2	
	
Comment	1.	“Separable	neurophysiological	states	or	a	continuum	of	activity	artificially	split	
by	HMM?”	The	key	premise	of	this	paper	is	that	‘semi-discrete’	brain	states	exist	and	can	be	
identified	with	the	authors’	approach.	Since	this	specific	methodological	approach	has	not	
been	validated	earlier,	it	would	be	good	to	test	how	similar	states	it	would	find	from	data	
that	has	identical	spatiotemporal	autocorrelations	and	1/f	dynamics	but	no	states	or	
community	structures	per	se.	I.e.,	running	the	same	core	analyses	on	well	comparable	
surrogate	data	would	be	essential.	Vidaurre	et	al.,	2016,	NeuroImage	paper	presented	
validation	for	the	alt.-hypothesis	case	where	true	states	were	simulated	and	successfully	
detected,	but	I	was	not	able	to	find	validation	for	the	null-hypothesis	case.	One	simple,	
perhaps	adequate,	approach	would	be	use	temporally	randomly	rotate	42	dipole	time	series	
(preserving	temporal	autocorrelations	and	dynamics	but	breaking	inter-areal	relationships)	
and	apply	forward	and	inverse	transforms	to	recreate	the	MEG-related	spatial	mixing.	
	
	



The	Reviewer	raises	the	question	of	to	which	extent	semi-discrete	brain	states	emerge	in	surrogate	
data.	Following	the	Reviewer’s	suggestion	we	have	now	added	an	appropriate	analysis.	In	particular,	
we	simulate	from	one	single	observation	model	(see	new	section	in	the	Supplemental	Information	
“Simulating	data	from	the	HMM”	and	the	response	to	Minor	Comment	#2	below),	set	the	HMM	to	
use	four	states,	and	run	the	HMM	inference.	We	now	indicate	at	the	end	of	the	“Simulating	data	
from	the	HMM”	section:	
	
“…	Furthermore,	when	simulating	from	one	single	state,	the	HMM	inference	was	able	to	reduce	the	
complexity	of	the	model	by	eliminating	all	states	but	one.”	
	
We	have	also	now	added	an	investigation	of	how	the	HMM	states	might	differ	between	those	
we	find	on	data	simulated	from	complex	single-state	dynamic	models,	and	those	that	we	find	in	
the	real	data.	To	this	end,	we	have	performed	a	further	set	of	synthetic	simulations,	and	added	a	
new	section	in	the	Supplemental	Information,	with	the	title	"HMM	states	from	surrogate	data"	
and	the	following	content:	
	
"In	this	paper,	we	have	proposed	a	model	that	finds	separable,	spectrally-defined	states	from	MEG	
data.	Applied	on	the	resting-state,	we	found	a	number	of	states	with	interpretable	characteristics.	
Being	aware	that	the	brain	complex	dynamics	can	be	equally	well	represented	in	multiple	ways	(see	
Alternative	representations	of	the	data	above),	it	is	important	to	investigate	how	the	HMM	states	
might	differ	between	those	we	find	in	surrogate	data	simulated	from	complex	single-state	dynamic	
models,	and	those	that	we	find	in	the	real	data.	To	test	this,	we	implemented	a	surrogate	data	
generation	procedure	where	we	kept	analogous	1/f	dynamics	and	autocorrelations	while	breaking	
the	state-specific	dynamics	by	using	autoregressive	models.	In	particular,	using	the	42-channels	data	
used	in	the	rest	of	the	paper	before	leakage	correction,	we	estimated	two	models:	(i)	a	multivariate	
autoregressive	model	of	order	3	(MAR(3),	with	422	x	3	parameters)	which	captured	between	channel	
autocorrelations,	and	(ii)	a	collection	of	univariate	autoregressive	models	(one	per	channel)	of	order	
21	(AR(21),	with	21	x	42	parameters)	which	did	not	capture	between-channels	spectral	
characteristics,	but	which	was	able	to	estimate	more	detailed	within-channel	spectral	features.	We	
then	sampled	data	from	these	two	models,	corrected	for	signal	leakage,	and	applied	the	HMM.		
	
Consistent	with	our	expectations,	and	as	discussed	in	previous	work	(Vidaurre	et	al,	2017b),	the	
autoregressive	model	is	indeed	able	to	represent	complex	dynamics.	Depending	on	the	complexity	
of	the	autoregressive	model	(in	particular,	in	the	case	of	the	MAR(3)	and	AR(21)	models),	a	single	
(low-rank)	lagged	cross-correlation	(as	corresponds	to	the	HMM	states	in	our	model)	cannot	
represent	the	data	well	enough,	and,	therefore,	several	states	are	necessary.	In	other	words,	
complex	1/f	and	cross-spectral	dynamics	can	either	be	represented	by	an	autoregressive	model	with	
a	large	number	of	parameters,	or	a	set	of	less	complex	models	as	we	use	in	this	work.	As	a	
consequence	of	this,	different	HMM	states	emerge	from	these	simulated	data.”	
	
We	note	here,	that	it	is	important	to	be	clear	that	the	HMM	is	not	a	biophysical	model,	and	so	
alternative	analyses	of	the	data	can	also	represent	the	brain	activity	well,	and	from	a	different	
perspective.	To	make	this	clearer,	we	also	now	include	a	new	section	named	“Alternative	
representations	of	the	data”	in	the	Supplementary	Discussion,	reading	as	follows:	
	
“The	TDE-HMM	is	a	useful	representation	of	the	data,	but	is	not	the	only	possible	one.	For	instance,	
a	high	order	multivariate	autoregressive	model	has	the	potential	to	explain	very	rich	dynamics	to	
similar	extent,	but	in	an	alternative	manner,	to	an	HMM	with	a	simpler	observation	model	(Vidaurre	
et	al.,	2016;	Vidaurre	et	al,	2017b).		Armed	with	just	resting	data,	it	is	not	possible	to	disambiguate	
between	these	two	different	descriptions	of	the	data.	Which	one	is	more	appropriate	rather	
depends	on	the	question	in	hand.	A	potential	reason	to	use	the	HMM	over	a	single-state	more	



complex	model	(such	as	a	high	order	multivariate	autoregressive	model)	is	that	it	explicitly	
parameterises	the	time	series	through	the	state	time	courses,	opening	avenues	to	investigate,	for	
example,	the	interactions	between	rest	and	task.	Further,	it	is	through	the	use	of	the	HMM	in	this	
work	that	we	have	been	able	to	successfully	identify	networks	of	spatially	distinct	patterns	of	
oscillatory	power	and	phase-coupling	in	specific	frequency	bands,	in	a	manner	that	has	not	been	
achieved	previously	with	other	approaches,	including	the	autoregressive	model.”	
	
Nonetheless,	given	that	the	data	simulated	from	the	autoregressive	model	is	able	to	represent	
complex	dynamics	and	therefore	produces	states	when	using	the	HMM,	the	question	follows	as	to	
what	these	surrogate	states	represent,	and	whether	the	states	obtained	from	real	data	have	
different	characteristics	with	the	states	obtained	from	the	simulated	data.	We	continue	in	section	
"HMM	states	from	surrogate	data"	as:		
	
“We	compared	the	HMM	decomposition	obtained	from	the	real	data	and	the	HMM	
decomposition	obtained	from	these	synthetic	scenarios.	Fig.	SI-8	shows	the	results.	The	states	
obtained	from	real	data	hold	significant	differences	with	the	states	obtained	from	the	MAR(3)	
and	the	AR(21)	models.	As	a	first	approach,	we	compared	the	wideband	spectral	maps	(see	
Methods)	between	the	surrogated	and	the	real	states.	For	this,	we	paired	up	the	synthetic	
states	with	the	real	states	such	that	the	correlation	is	maximal.	In	the	MAR(3)	case,	the	states	
have	relatively	low	correlations	between	real	and	synthetic	(top	left);	in	the	AR(21)	case,	which	
captures	the	within-channel	spectral	information	more	faithfully,	the	correlation	is	much	higher,	
with	the	interesting	exception	of	the	higher-cognitive	states	and	the	fifth	state	(top	right).	As	
demonstrated	in	the	bottom-right	panel,	these	high	correlations	are	however	trivially	explained	
by	the	across-states	average	power	profile	being	very	similar	between	synthetic	and	real	states;	
this	was	expected	given	the	AR(21)	model’s	high	explanatory	power	in	the	spectral	domain.	
Note	that	this	grand-average	correlation	is	missed	in	the	MAR(3)	model	case,	most	likely	due	to	
leakage	correction	removing	a	large	extent	of	the	(stationary)	information.	Most	importantly,	
the	states	obtained	from	the	real	data	are	much	more	diverse	than	those	corresponding	to	
either	of	the	synthetic	models,	as	shown	in	the	bottom	panels.	This,	together	with	the	inability	
to	identify	the	higher-cognitive	states,	suggests	that	the	HMM	states	obtained	here	are	not	
trivially	obtained	from	just	any	data	with	the	same	spatiotemporal	autocorrelations." 
	
Comment	2.	Reliability	and	state	boundaries.	It	would	be	useful	to	assess	the	reliability	of	
these	observations	explicitly.		
	
What	would	be	the	split-cohort	reliability	of	these	state	observations?		
	
We	have	run	half-split	replication	analyses,	where	we	compared	the	states	obtained	
separately	from	two	separate	partitions	of	the	data.	This	is	summarized	in	the	Discussion,	
within	the	rebranded	section	"Number	of	states	and	state	reliability":	
	
"Another	important	aspect	(and	a	sensible	way	of	guiding	the	choice	of	the	number	of	
states)	is	state	reliability,	that	is,	how	robust	are	the	states	across,	for	example,	half-splits	of	
the	data?	We	randomly	divided	the	subjects	into	two	partitions	and	ran	the	HMM	on	each	of	
half.	We	then	compared	the	states	between	the	partitions	and	to	the	full	data	set	run.	
Details	of	the	experiments	and	results	are	provided	in	the	Supplemental	Discussion	and	Fig.	
SI-10.	In	short,	most	states	were	reproducible	across	data	halves	to	a	large	extent,	which	
was	quantitatively	verified	through	non-parametric	statistical	testing.	This	analysis	
demonstrated	that	both	the	method	and	the	results	are	robust	in	this	data	set;	further	
replication	in	other	data	sets	and	experimental	paradigms	is	however	fundamental	and	will	
be	addressed	in	the	future."	



	
We	go	into	further	detail	in	the	Supplemental	Discussion	(section	Reproducibility):	
	
"We	assessed	the	reproducibility	of	the	states	by	randomly	splitting	the	data	into	two	groups	of	
subjects	(half-splits)	and	running	five	times	the	HMM	inference	separately	on	each	half.	We	also	ran	
the	HMM	on	the	full	data	set	five	times.	This	is	intended	to	evaluate	the	reproducibility	of	the	results	
both	across	different	HMM	runs	and	across	different	subjects.	We	obtained	12	states	from	each	run	
and	matched	the	states	across	runs	(between	the	two	partitions	and	to	the	full	cohort	run)	such	that	
the	similarity	between	state	pairs	is	maximal.	We	used	Riemannian	distances	to	quantify	the	
dissimilarities	between	states	(see	Methods).	Fig.	SI-10a	shows	the	Riemannian	distances	between	
each	pair	of	states	(within	and	between	runs).	We	then	performed	statistical	testing	on	the	
consistency	between	runs	across	halves.	Conceptually,	we	aimed	to	test	if	each	pair	of	matched	
states	(one	per	half)	reliably	represents	the	same	process.	If	the	distance	between	the	states	within	
the	pair	is	significantly	lower	than	between	any	two	non-matched	states,	the	state	represented	by	
this	pair	is	robust	across	runs	and	subjects.	This	is	shown	in	Fig.	SI-10b	(left),	where	several	states	
appear	to	be	significantly	reliable.	A	notable	exception	is	the	anterior	higher-order	cognitive	state,	
the	reason	being	its	high	similarity	with	state	5	(see	Fig.	SI-10a);	that	is,	these	two	states	are	
relatively	similar	and	can	potentially	be	mixed	in	certain	runs.	If,	on	the	other	hand,	we	test	the	
distance	of	each	pair	of	matched	states	against	the	average	distance	between	any	pair	of	states	
(that	is,	a	less	conservative	test),	the	anterior	higher-order	cognitive	state	appears	as	highly	reliable	
(Fig.	SI-10b,	right).	In	summary:		
	

- Overall,	there	is	a	strong	similarity	across	runs,	both	within	and	between	half-split	partitions	
of	the	data	(and	to	the	full	data	set).	

- Within	sessions,	some	states	are	relatively	similar,	suggesting	some	form	of	state	hierarchy."	
	
In	terms	of	the	state	boundaries	and	the	related	assumption	of	mutual	exclusivity,	we	have	
added	the	following	to	the	discussion	(section	“State	occurrence	exclusivity”):	
	
"The	model	specification	of	the	HMM,	through	assigning	state	probabilities	at	each	time	
point,	implicitly	assumes	that	only	one	state	is	active	at	each	point	in	time.	However,	it	is	
worth	noting	that	it	is	still	possible	for	network	multiplexing	to	be	realised	at	slower	time	
scales	through	temporal	correlation	of	the	rate	of	occurrence	of	states.	At	the	faster	time-
scale	of	HMM	switching,	it	is	important	to	note	that	any	conclusion	about	brain	network	
exclusivity	must	be	made	with	caution,	and	is	by	no	means	necessarily	a	physiologically	
meaningful	feature	of	the	brain.	Addressing	the	information	contained	in	the	state	time	
courses	at	multiple	time	scales	is	an	important	area	for	future	investigations."	
	
I	could	not	find	any	indication	of	how	the	power	maps	were	thresholded	–	what	is	the	
confidence	level	for	the	colored	areas	to	belonging	to	the	state	they	are	assigned	to?		
	
Whereas	we	used	a	data-driven	method	(i.e.	mixture	modelling)	to	define	which	functional	
connections	were	to	be	shown	in	the	"Phase-coupling"	plots,	with	the	power	maps	we	just	
selected	a	fixed	percentile	of	the	voxels.	In	the	previous	version,	this	threshold	was	not	
consistent	between	figures.	In	this	version	of	the	manuscript,	we	have	made	this	
comparable	across	figures.	For	the	wideband	maps	we	show	the	show	the	50%	of	voxels	
with	the	highest	departure	from	the	state	average	(either	as	an	activation	or	a	deactivation).	
For	the	frequency-specific	results	(e.g.	Fig.	4)	we	show	the	10%,	with	the	intention	of	
narrowing	down	into	the	main	features	of	the	maps.	The	reason	of	not	using	mixture	
modelling	for	the	power	maps	is	because,	while	there	are	861	possible	functional	
connections,	the	power	maps	have	only	42	elements,	which	makes	Gaussian	mixture	



modelling	less	practical.	We	have	clarified	the	way	the	maps	were	constructed	in	the	section	
“The	states	exhibit	specific	phase-locking	connectivity”:		
	
“The	power	maps	are	in	relation	to	the	mean	power	across	states.”	
	
And	in	the	Methods'	section	"Extracting	spectral	information":		
	
"For	the	wideband	results	(Fig.	2,	Fig.	SI-2	and	Fig.	SI-9),	the	power	maps	were	thresholded	
such	that	only	the	50%	of	voxels	with	the	highest	activation	or	deactivation	are	shown.	For	
the	frequency-specific	results	(Fig.	4	and	Fig.	SI-4),	the	threshold	was	set	to	10%."	
	
Furthermore,	we	did	not	perform	any	statistical	analysis	in	this	case,	so	these	colours	reflect	
just	the	power	average.	We	have	however	added	maps	of	statistically	significant	power	and	
connectivity	maps	in	a	separate	plot	-	see	below.		
	
Visualization	of	the	functional	connections	is	justified	by	fitting	a	mixture	of	two	Gaussian	
distributions	to	the	connection	strength	distribution:	how	good	are	these	fits?	My	guess	
would	be	that	the	joint	distribution	is	a	unimodal	heavy-tailed	one	but	I	would	gladly	be	
wrong	here.		
	
The	referee	is	right	in	noting	that	this	distribution	is	sometimes,	yet	not	always,	unimodal	
with	a	heavy	tail	on	the	right.	The	intention	of	using	this	approach	was	to	avoid	arbitrary	
thresholding,	i.e.	we	did	not	intend	to	claim	bimodality	as	an	interesting	finding.	Generally,	
the	Gaussian	mixture	model	fits	were	found	to	be	qualitatively	good.	For	reference,	the	
distributions	of	connection	strengths	are	shown	in	Fig	SI-7	for	some	states.		
	
Why	not	simply	estimate	the	null	hypothesis	distribution	with	surrogate	data	and	illustrate	
connections	based	on	statistical	significance?		
	
This	is	an	important	point.	Here,	the	Gaussian	mixture	model	(GMM)	analysis	is	intentionally	
used	to	find	which	functional	connections	stand	out	from	a	background	level	of	connectivity	
within	each	state,	rather	than	to	ask	which	connections	reject	the	null.	To	make	this	clear	we	
have	now	say	in	Methods:	
	
“This	analysis	is	designed	to	find	which	functional	connections	stand	out	from	a	background	
level	of	connectivity	within	each	state”	
	
An	alternative	analysis	is	the	assessment	of	which	connections	are	significantly	stronger	for	
any	given	state	with	respect	to	the	other	states.	In	order	to	address	the	latter	question,	we	
have	used	the	between-subject	variability	in	the	spectral	estimations	to	perform	
permutation	testing	analysis.	We	have	added	the	results	of	this	analysis	in	Fig	SI-3,	where	we	
show	the	power	increments	and	functional	connections	that	are	significantly	stronger	for	
these	states	than	for	the	other	states;	we	now	describe	this	analysis	in	the	Methods	section:		
	
"A	different	question	is	which	functional	connections,	or	power	increments,	are	significantly	
stronger	for	any	given	state	with	respect	to	the	other	states.	We	performed	non-parametric	
statistical	testing	to	investigate	these	differences,	for	which	we	calculated	the	spectral	information	
(power	and	connectivity)	for	each	subject	separately,	and	then	used	this	between-subject	variability	
to	run	standard	permutation	testing	analysis.	In	detail,	we	used	a	shared	set	of	permutations	for	
each	state,	power	value	and	functional	connection.	At	each	permutation,	we	shuffled	the	target	
power	or	functional	connection	value	across	states.	By	running	5000	permutations,	we	effectively	



created	(for	each	power	and	functional	connection	value)	a	null	distribution	of	differences	between	
each	state’s	value	and	the	mean	value	of	the	other	states,	which	we	then	used	to	produce	a	p-value	
per	activation	value	and	functional	connection.	Fig.	SI-3	shows	statistically	(uncorrected)	significant	
power	and	functional	connectivity	increments	given	a	significance	level	of	0.01."	
	
Comment	3.	Functional	annotations.	While	the	authors	mostly	write	about	“higher-order	
cognitive	brain	states”,	which	may	be	fair	given	their	neuroanatomical	localization,	several	
parallels	are	drawn	with	the	DMN.	The	authors	could	match	these	data	with	fMRI	RSN	maps	
and	test	quantitatively	whether	the	observed	higher-order	cognitive	states	better	match	the	
DMN	or	other	networks	(see	also	minor	note	below	about	co-localization	with	prior	power-
correlation	data).		
	
We	think	this	is	a	really	useful	suggestion,	so	we	have	implemented	it	and	included	it	in	the	
main	Results	(new	section	“The	higher-cognitive	states	and	the	canonical	fMRI	DMN”),	
reading	as	follows:	
	
“Throughout	the	paper,	we	have	drawn	a	link	between	the	two	identified	higher-cognitive	states	
and	the	DMN.	We	now	evaluate	quantitatively	this	relation	using	a	meta-analysis	technique.	In	
particular,	using	the	system	described	by	Tarkoni	et	al.	(2011),	we	extracted	a	canonical	map	of	DMN	
activation	from	the	fMRI	research	literature	(Fig.	6a).	Using	the	wideband	power	maps	(as	shown	in	
Fig.	2),	we	computed	masks	by	selecting	the	10%	most	active	voxels	for	each	state.	We	then	defined	
the	union	of	the	two	higher-cognitive	states	(depicted	in	Fig.	6b)	by	selecting	the	voxels	that	are	
active	in	either	of	the	two	corresponding	masks.	Using	these	masks,	Fig.	6c	shows	the	correlation	of	
each	state	to	the	canonical	DMN	map.	As	observed,	the	two	higher-order	cognitive	states	hold	the	
highest	correlation	of	all	states	with	the	canonical	DMN,	with	the	union	of	the	two	higher-cognitive	
states	being	more	correlated	to	the	canonical	DMN	map	than	any	individual	state.	This	result	
quantitatively	demonstrates	the	relation	of	the	two	higher-cognitive	states	to	what	is	understood	by	
the	canonical	DMN	as	measured	by	fMRI.”	
		
We	should	nevertheless	clarify	that	our	annotations	were	primarily	based	on	anatomical	
locations	and	not	necessarily	cognitive	function.	For	example,	the	visual	state	was	named	
after	having	higher	power	and	connectivity	in	visual	occipital	areas.	However,	this	activation	
is	primarily	in	the	alpha	range	which	is	rather	indicative	of	inhibition	(Klimesch,	2012);	
therefore,	this	state	might	well	represent	a	reduction	in	visual	processing.	We	have	created	
a	new	section	in	the	Discussion	(Biological	underpinnings	and	functional	labelling)	in	order	to	
clarify	this	point,	with	the	following	content:	
	
"In	this	paper,	we	have	characterised	large-scale	brain	states	from	MEG	data,	in	terms	of	
power	and	phase-coupling.	In	order	to	gain	insight	into	the	mechanistic	underpinnings	of	
these	patterns	and	their	dynamics,	the	descriptive	methods	presented	here	will	need	to	be	
combined	with	biophysical	modelling	of	large-scale	networks	(Woolrich	and	Stephan,	2013).	
With	the	exception	of	the	higher-order	cognitive	functions,	for	which	we	have	conducted	a	
meta-analysis	against	existing	literature,	our	state	labelling	is	purely	based	on	the	
anatomical	location	of	power	and	functional	connectivity.	For	example,	we	refer	to	the	
“visual”	state	as	the	state	with	wideband	power	and	connectivity	in	occipital	areas.	
However,	when	looking	at	the	spectral	characteristics	of	this	state,	we	find	that	this	activity	
is	primarily	occurring	in	the	alpha	band	(see	Fig.	SI-4).	Given	the	hypothesised	inhibitory	role	
of	alpha	(Jensen	and	Mazaheri,	2010;	Klimesch,	2012),	it	is	likely	that	this	state	is	cognitively	
representing	a	reduction,	rather	than	an	increase,	in	visual	activity.	Some	further	
connections	to	existing	literature	are	plausible.	For	example,	given	its	long-distance	
connections	between	the	anterior	temporal	lobes	and	its	low-frequency	dominance,	a	



relation	between	the	anterior	higher-order	cognitive	state	and	memory	retrieval	is	very	
likely	(Maguire	and	Mummery,	1999;	Jensen	and	Tesche,	2002;	Fell	and	Axmacher,	2011),	
yet	cognitive	control	could	also	be	involved	(Cavanagh	and	Frank,	2014).	Likewise,	the	
posterior	higher-order	cognitive	state	could	be	related	to	attention	and	cross-modal	
processing	(Behrmann	et	al.,	2004).	A	separate	question	is	about	the	mechanisms	and	
causes	of	state	switching,	and	whether	these	can	be	linked	to	avalanches	of	activity	(Beggs	
and	Plenz,	2003)."	
	
Comment	4.	Power	bias	for	phase	correlation	networks.	Estimating	phase	correlations	with	
coherence	is	fundamentally	problematic	because,	the	resulting	network	is	significantly	
dependent	on	power	so	that	high-power	states	have	much	more	weight	than	low	power	
states	in	dictating	which	phase	differences	“count”	in	the	estimate.	As	implied	in	Fig.	3a,	this	
likely	leads	to	an	overestimation	of	how	well	the	phase	correlation	networks	are	co-localized	
with	the	power	topographies	as	well	as	to	a	possible	misestimation	of	what	the	phase	
correlation	networks	really	are.	The	presence	of	some	‘counter	examples’	does	not	diminish	
the	presence	of	such	a	systematic	bias.	If	the	authors	want	to	have	phase-coupling	networks,	
as	opposed	to	coherence	networks,	as	the	theme	of	the	paper,	I	would	urge	to	use	a	proper	
phase	synchrony	metric,	in	the	simplest	by	running	the	coherence	function	with	amplitudes	
normalized	to	unity.	
	
We	would	like	to	clarify	that	the	computation	of	spectral	coherence	is,	within	each	state,	
already	normalised	by	the	squared	magnitude	of	the	spectral	power	of	each	signal	by	
definition:	
	
Cohij(f)	=	Powij(f)	/		(Powi(f)	Powj(f))1/2	
	
Nevertheless,	we	agree	that	estimations	of	time-varying	phase-coupling	are	not	rigorously	
proved	to	be	independent	from	time-varying	power.	We	can	however	claim	that,	by	
accounting	for	time-varying	power	(as	the	HMM	does),	we	are	much	better	able	to	reveal	
the	presence	of	phase-coupled	networks.	
	
Note	that	the	abstract	is	now	clearer	and	consistent	with	this	message:	
	
“To	test	this	hypothesis,	we	developed	a	novel	method	for	identifying,	in	a	completely	data-
driven	way,	large-scale	phase-coupled	network	dynamics,	and	show	that	resting	networks	in	
magnetoencephalography	are	well	characterised	by	visits	to	short-lived	transient	brain	
states,	with	spatially	distinct	patterns	of	oscillatory	power	and	coherence	in	specific	
frequency	bands.”	
	
To	make	this	clearer,	we	have	also	added	the	following	to	the	new	section	of	the	
Supplemental	Discussion	(Relationship	between	power	and	coherence	estimations)	
dedicated	to	this	question:		
	
“The	inference	of	networks	of	coherence	using	the	HMM	reveals	the	presence	of	strong	
phase-coupling	in	resting	state	MEG	data.	However,	while	there	are	examples	of	coherence	
and	power	not	changing	together,	it	remains	possible	that	many	of	the	changes	in	
coherence	between	states	could	be	driven	by	changes	in	power.	Nonetheless,	the	evidence	
presented	in	this	paper	suggests	that	the	fast	dynamics	characterised	by	the	HMM	reveal	
the	presence	of	phase-coupled	networks	in	resting	MEG	data	better	than	equivalent	
techniques	averaged	over	slower	time-scales.	
	



A	relevant	related	issue	is	the	choice	of	metric	used	to	measure	phase-coupling.	There	are	different	
alternatives,	of	which	spectral	coherence	and	phase-locking	value	(PLV)	are	two	popular	examples.	
Although	PLV	has	been	claimed	to	represent	phase-coupling	more	faithfully	than	spectral	coherence	
(Lowet	et	al.,	2016),	in	this	work	we	found	PLV	to	be	indeed	less	robust	at	the	large	scale	than	
coherence,	partly	because	the	application	of	our	data-driven	spectral	decomposition	(as	we	
performed	for	coherence)	is	not	directly	applicable,	so	we	had	to	rely	on	an	arbitrary	specification	of	
the	frequency	bands.	Furthermore,	PLV	has	its	own	limitations,	such	as	its	dependence	on	filtering	
and	the	subsequent	use	of	the	Hilbert	transform	for	instantaneous	phase	calculation;	see	(Huang	et	
al.,	1998)	for	a	comprehensive	description	of	this	issue.	It	is	also	worth	noting	that	one	of	the	main	
limitations	of	spectral	coherence	is	stationarity,	which	is	mitigated	here	by	the	fact	that	the	HMM	
breaks,	to	some	extent,	the	non-stationarity	of	the	signal	into	short	visits	to	quasi-stationary	states.	
Further,	PLV	is	also	not	automatically	immune	to	power	bias,	given	that	phase-locking	is	inferred	
more	reliably	when	the	power	(and	therefore	the	signal-to	noise	ratio)	is	high.	The	advantages	and	
disadvantages	of	different	approaches	to	compute	phase-coupling	are	however	beyond	the	scope	of	
this	paper,	as	a	satisfactory	solution	would	require	to	properly	deal	with	the	problems	of	
nonlinearity	and	non-stationarity,	at	the	heart	of	the	limitations	of	both	spectral	coherence	and	
phase-locking	value.			
	
Comment	5.	Brevity	of	the	states:	while	the	authors’	supplementary	material	suggests	that	
the	states’	spectral	profile	can	be	technically	evaluated	with	sub-cycle	data	segments,	it	
remains	unclear	what	can	be	the	physiological	meaning	of	states	like	this.	Is	state	brevity	a	
“false”	result	caused	by	the	HMM	assumption	of	just	one	state	being	allowed	in	the	entire	
system	at	a	time	in	a	condition	where	a	hypothetical	“truth”	is	that	the	states	are	longer	but	
overlap	each	other	temporally?		
	
The	reviewer	raises	a	good	point,	and	which	relates	to	our	response	to	this	Reviewer’s	
Comments	1	and	2.	That	is,	we	are	not	claiming	that	such	short	semi-discrete	brain	states	
necessarily	exist	as	a	unique	biophysiological	ground	truth,	or	even	that	the	HMM	explains	
all	aspects	of	the	data.	However,	the	HMM	does	offer	a	useful	perspective	on	the	data,	
allowing	us	to	find	meaningful	patterns	of	power	and	connectivity	and	state	time	courses	
that	can	be	easily	interpreted.	Please	see	the	response	to	Comments	1	and	2	for	how	this	is	
now	made	clearer	in	the	paper.	
	
More	specifically,	the	values	for	the	state	dwell	times	could	indeed	be	misleading	if	the	
exclusivity	assumption	is	strongly	violated.	To	clarify	this	issue,	we	have	added	the	following	
sentence	in	the	Results	section	'Higher-order	cognitive	states	have	distinct	temporal	
characteristics':	
	
“Note	that	we	have	examined	only	relative	differences	between	the	states;	since	the	
absolute	value	of	these	temporal	features	must	be	interpreted	with	caution	given	the	state	
exclusivity	assumption	of	the	HMM	(see	Discussion	for	details).”	
	
Also,	as	already	indicated	in	the	response	to	Comment	2,	we	now	have	the	following	text	in	
the	Discussion:	
	
"The	model	specification	of	the	HMM,	through	assigning	state	probabilities	at	each	time	
point,	implicitly	assumes	that	only	one	state	is	active	at	each	point	in	time.	However,	it	is	
worth	noting	that	network	multiplexing	might	still	be	realised	at	slower	time	scales	through	
temporal	correlation	of	the	rate	of	occurrence	of	states.	At	the	time-scale	of	HMM	
switching,	it	is	important	to	note	that	any	conclusion	about	brain	network	exclusivity	must	
be	made	with	caution	and	is	by	no	means	necessarily	a	physiologically	meaningful	feature	of	



the	brain.	Addressing	the	information	contained	in	the	state	time	courses	at	multiple	time	
scales	is	an	important	area	for	future	investigations."	
	
Minor	Comment	1.	How	are	the	power	maps	constructed?	Their	visualization	appears	to	be	
in	done	at	the	resolution	of	source	dipoles	but	the	HMM	analysis	and	phase	correlation	
networks	were	done	in	the	42	parcel	parcellation.	
	
We	note	in	the	Methods	section:	
	
“In	order	to	project	the	results	to	brain	space,	we	used	a	weighted	mask,	where	each	region	
has	its	maximum	value	at	the	center	of	gravity.”		
	
Following	Reviewer	#1's	comment,	we	have	included	a	script	with	the	entire	pipeline	in	our	
toolbox's	Github	site	[1],	including	the	generation	of	the	power	and	connectivity	maps.	We	
now	refer	to	this	from	the	Methods	section:	
	
"The	HMM	analysis	was	conducted	using	the	HMM-MAR	Matlab	toolbox4,	which	contains	
detailed	documentation	of	the	tools’	usage5.	Furthermore,	a	script	containing	the	entire	
pipeline	is	also	available	online6.	"	
	
Minor	Comment	2.	The	paper	uses	a	HMM-based	approach	that	has	been	validated	in	
previous	papers,	but	the	‘observables’	to	the	HMM	are	different	to	that	used	in	Baker	et	al.	
(2014)	and	Vidaurre	et	al.	(2016).	The	authors	say	that	the	MVAR	coefficients	that	were	used	
as	observables	in	Vidaurre	et	al.	(2016)	work	well	with	a	few	regions,	but	not	many	brain	
regions.	In	this	paper,	the	observables	are	‘time-delayed	covariance	matrices’	which	are	
conceptually	similar	to	MVAR	coefficients.	Please	provide	some	intuition	on	why	MVAR	
coefficients	do	not	work	well	when	looking	at	many	regions	(but	time-delayed	covariance	
matrices	do).		
	
In	order	to	clarify	this	question,	we	have	now	added	the	following	sentences	in	the	'The	
Embedded	Hidden	Markov	Model'	Section:	
	
"The	reason,	beyond	computational,	is	that	a	MAR	model	of	order	p	needs	422	x	p	
autoregressive	coefficients	to	model	data	with	42	regions	of	interest	(as	we	use	here).	This	
large	number	of	parameters	can	result	in	overfitting.	As	a	consequence,	this	makes	the	
HMM	unable	to	segment	the	time	series	effectively."	
	
Also	since	a	novel	variant	of	the	HMM-based	method	is	used,	simulations	quantifying	its	
validity	would	be	welcome	in	the	Supplementary	section.	
	
As	requested	by	the	Reviewer,	we	have	added	a	new	section	to	the	Supplementary	
Information,	“Simulating	data	from	the	HMM”,	with	the	following	content:		
	
“Each	state	model	of	the	TDE-HMM	corresponds	to	a	Gaussian	process	(Rasmussen	and	Williams,	
2006).	In	order	to	generate	T	time	points	of	data	from	a	given	state,	one	can	construct	a	(no.	of	
regions	x	T)	by	(no.	of	regions	x	T)	covariance	matrix	by	rearranging	the	elements	of	the	(no.	of	
regions	x	time	lags)	by	(no.	of	regions	x	time	lags)	state	covariance	matrix.	In	order	to	generate	data	

                                                
4	https://github.com/OHBA-analysis/HMM-MAR	
5	https://github.com/OHBA-analysis/HMM-MAR/wiki/User-Guide	
6	https://github.com/OHBA-analysis/HMM-MAR/blob/master/examples/NatComms2018_fullpipeline.m	



from	the	TDE-HMM,	we	used	the	two	higher-order	states	and	selected	a	subset	of	regions	for	
computational	simplicity	(ACC,	PCC,	and	left	and	right	intraparietal	sulci).	We	then	sampled	30min	of	
data,	alternating	between	these	two	states,	with	state	visits	set	to	last	from	0.2	to	2s.	We	then	ran	
the	HMM	inference	on	the	simulated	data.	The	inference,	as	shown	in	Fig.	SI-13,	was	able	to	
accurately	recover	the	simulated	state	time	course	with	a	correlation	between	simulated	and	
estimated	time	courses	of	r=0.98.	Furthermore,	when	simulating	from	one	single	state,	the	HMM	
inference	was	able	to	reduce	the	complexity	of	the	model	by	eliminating	all	states	but	one	(not	
shown).	
	
Minor	Comment	3.	Using	time-delayed	covariance	matrices	as	observables:	please	provide	
information	on	the	maximum	lag	used	and	rationale	for	it,	for	example	in	relation	to	the	
cycle	widths	of	the	observed	oscillations	on	one	hand	and	axonal	conduction	velocities	on	the	
other.	
	
Following	the	Reviewer's	suggestion,	we	have	now	included	more	detail	in	the	Methods'	
Section	"The	Time-Delay	Embedded	Hidden	Markov	Model":	
	
"Therefore,	besides	the	number	of	states	(see	Discussion),	the	important	parameters	of	the	model	
are	the	length	of	the	window	(i.e.	the	number	of	lags	to	be	modelled	by	the	state	autocovariance	
matrices)	and	the	number	of	PCA	components.	From	a	practical	perspective,	a	trade-off	between	
these	two	parameters	will	prescribe	which	frequencies	in	the	data	the	TDE-HMM	will	be	more	
sensitive	to.	That	is,	longer	windows	(more	extended	lags)	and	fewer	principal	components	will	
incline	the	model	to	be	more	sensitive	to	the	lower	frequencies,	whereas	if	we	include	more	
principal	components	and/or	reduce	the	window	we	will	be	better	able	to	capture	high-frequency	
differences.	In	this	paper,	as	mentioned	earlier,	we	used	a	window	of	60ms	and	42x2	principal	
components.	This	window	contains	one	cycle	at	exactly	16.6Hz,	but	note	that	this	does	not	preclude	
the	model	from	accessing	slower	frequencies	(see	Discussion)."	
	
Minor	Comment	4.	The	authors	have	set	the	number	of	states	in	the	HMM	somewhat	
arbitrarily	to	12.	Why	analyse	12	and	proceed	to	ignore	many	of	them	when	the	6	state	
division	seems	to	convey	all	essential	state	information	noted	also	for	12	states?	Are	the	
states	hierarchically	organized	as	in	hierarchically	modular	networks?	The	authors	note	that	
the	number	of	states	essentially	influences	level	of	detail	or	resolution	at	which	brain	
dynamics	are	viewed.	While	I	agree	with	this	notion,	it	would	be	good	to	provide	statistical	
evidence	that	more	than	one	stable	state	exists	and	is	reliable	in	the	first	place	and	further	
use	a	measure	of	stability	to	quantify	whether	the	chosen	numbers	of	states	yield	
valid/stable	divisions	into	states	(analogously	to	measuring	the	stability	of	graph	module	
allocations).	
	
The	question	of	how	to	best	characterise	hierarchies	of	states	through	separate	HMM	runs	
with	different	numbers	of	states	is	a	key	area	of	current	investigation,	and	we	are	very	glad	
that	the	Reviewer	brings	it	up.	It	is	our	goal	to	provide	a	fully	validated	and	complete	
solution	to	this	question	in	the	future,	and,	although	for	the	purposes	of	this	paper,	we	
could	easily	reason	through	the	(Riemannian)	distances	between	the	12-states	and	the	6-
states	solution	(similarly	as	we	did	in	Fig.	SI-10a	when	comparing	HMM	runs	from	different	
half-splits),	this	would	not	be	completely	satisfactory	or	as	much	useful	in	our	opinion.	More	
specifically,	we	would	like	to	address	this	question	through	modelling	(i.e.	a	hierarchical	
model	containing	different	HMM	solutions)	instead	of	providing	a	simply	(correlation-based)	
descriptive	examination	of	these	particular	results.	The	development	of	this	model	is,	
arguably,	a	separate	project	in	its	own	right.		
	



This	paper's	purpose,	besides	introducing	the	method,	is	to	have	a	closer	examination	to	the	
so-called	higher-order	cognitive	states.	The	reason	because	we	did	not	elaborate	on	the	
other	states	is	not	because	of	their	lack	of	interest,	but	because	of	the	paper's	focus	being	
another	one.	That	is,	we	preferred	to	go	more	in	depth	into	the	aspects	of	the	data	that	
these	states	represent,	instead	of	being	more	general	and	less	specific	(as	it	would	have	
been	appropriate	in	more	standard	methods-like	contribution).	We	mentioned	this	briefly	in	
the	Discussion:		
	
"Of	note,	although	this	paper	has	paid	closer	examination	to	the	four	states	represented	in	
Fig.	2,	these	occupy	on	average	only	30%	of	the	total	scanning	time	(see	also	Fig.	SI-6)."	
	
In	response	to	Reviewer's	Comment	2,	we	have	shown	the	reliability	of	using	12	states.	We	
agree	this	is	a	valid	criterion	to	choose	the	number	of	states,	as	we	now	mentioned	in	the	
Section	"Number	of	Brain	States	and	State	Reliability":		
	
"Another	important	aspect	(and	a	sensible	way	of	guiding	the	choice	of	the	number	of	
states)	is	state	reliability,	that	is,	how	robust	are	the	states	across,	for	example,	half-splits	of	
the	data?"	
	
In	fact,	this	is	partly	the	reason	why	we	did	not	choose	16	states	in	the	first	place,	being	our	
original	intention	to	select	the	highest	number	of	states	while	still	having	a	reliable	solution.	
We	preferred	not	to	include	these	considerations	in	the	paper	because	we	were	not	fully	
exhaustive	in	searching	the	optimal	number	of	states	in	this	sense.		
	
Why	analyse	12	and	proceed	to	ignore	many	of	them	when	the	6	state	division	seems	to	
convey	all	essential	state	information	noted	also	for	12	states?	
	
In	this	case,	we	disagree	with	the	Reviewer's	about	the	6-states	solution	conveying	all	the	
relevant	information	within	the	12-states	solution.	For	example,	the	hemispheric	separation	
of	left	vs.	right	temporal	network	states	(see	Fig.	SI-10)	is	absent	the	6-states	solution.	Other	
differences	exist,	also	at	the	level	of	connectivity.		
	
Minor	Comment	5.	How	do	the	power	topographies	of	each	state	match	with	power-
correlation	networks	reported	in	the	original	HMM	paper	(Baker	et	al.	(2014))	by	the	same	
group?	While	the	Baker	et	al.	(2014)	paper	identified	8	states	which	corresponded	to	the	
different	canonical	RSNs	to	some	extent,	the	power	topographies	(or	the	phase	correlation	
networks)	in	this	paper	do	not	seem	to	systematically	correspond	to	the	RSNs	per	se.	I	do	not	
see	that	they	should,	but	it	would	be	useful	to	the	community	to	know	whether	they	do	or	
not.	Are	the	differences	simply	driven	by	the	power-vs.-raw	difference	(different	observation	
models)	for	the	HMM-based	method?		
	
This	is	a	good	point.	It	is	true	that	the	states	found	here	are	not	equivalent	to	those	in	Baker	
et	al.	(2014),	and	that	they	are	also	somewhat	different	from	canonical	fMRI	RSNs.	In	order	
to	address	these	two	issues	we	have	included	two	new	analyses.		
	
First,	with	regards	to	the	equivalence	to	Baker	et	al.	(2014)'s,	we	have	now	added	a	
comparison	between	the	Baker	et	al.	method	and	the	method	proposed	in	this	paper,	both	
on	the	dataset	used	in	this	paper.	This	can	be	found	in	the	new	section	in	Results:	
	
“To	compare	our	results	to	previous	work,	we	also	ran	the	HMM	on	power	envelopes	computed	
from	the	data	band-passed	filtered	between	1Hz	and	40Hz	(Baker	et	al.,	2014),	which	defines	HMM	



states	as	having	distinct	patterns	of	power	and	power	correlations	in	a	single	frequency	band.	We	
then	computed	the	correlation	between	the	power	maps	and	the	phase-coupling	connectivity	
profiles	(in	either	case	using	the	multitaper	after	the	HMM	inference)	between	the	two	types	of	
HMM.	We	paired	the	states	between	the	two	runs	such	that	the	correlations	are	maximal.	Fig.	7b	
shows	that	some	power	maps	are	relatively	well	correlated	between	the	two	runs,	and	that	the	
differences	of	functional	connectivity	between	the	two	runs	are	in	general	larger	than	the	
differences	in	power.	In	summary,	this	analysis	demonstrates	that,	while	there	are	similarities	
between	the	two	HMM	approaches,	there	are	also	distinct	characteristics	to	each	of	them.”	
	
Second,	with	regards	to	differences	to	canonical	fMRI	RSNs	we	have	now	included	a	
quantitative	analysis	in	a	new	section	in	the	Results.	Please	see	the	response	to	Comment	3	
for	details.	
	
Minor	Comment		6.	Comparison	with	the	new	Pascual-Marqui	method	could	be	presented	
quantitatively.	Are	all	Pascual-Marqui	connections	also	found	by	the	Colclough	method?	For	
example,	if	Pascual-Marqui	connections	are	considered	a	truth	network,	what	is	the	
sensitivity	and	specificity	(or	accuracy,	TPR,	FPR…)	of	the	Colclough	network?	
	
We	fully	agree	that	it	will	be	important	to	quantitatively	assess	the	relationship	between	the	
two	methods	in	a	wide	range	of	contexts.	However,	we	feel	that	it	is	beyond	the	scope	of	
this	paper	(which	already	contains	a	large	amount	of	methodological	work),	particularly	
since	the	two	solutions	are	qualitatively	very	similar	in	this	case	(see	Fig.	SI-12).	
	
	
Reviewer	#3	
	
Main	Comment.	In	order	to	make	the	paper	significantly	more	powerful,	the	approach	and	
the	results	should	be	better	embedded	in	the	context	of	other	existing	approaches	and	
should	be	compared	to	them.	
	
We	are	grateful	to	the	Reviewer	for	this	suggestion	and	for	the	comprehensive	relation	of	
references,	and	we	definitely	agree	that	the	paper	would	benefit	from	a	better	account	of	
previous	work.	Although	we	are	currently	on	the	limit	of	references	and	number	of	words	
permitted	by	the	journal,	we	have	sought	to	cover	as	much	as	the	suggested	bibliography	as	
possible	(at	the	expense	of	some	other	references	that	were	perhaps	less	relevant	to	the	
main	points	of	the	paper).	We	have	also	included	further	bibliographical	suggestions	from	
Reviewer	#1.		
	
In	relation	with	EEG	microstates,	we	have	added	the	section	"Relation	to	EEG	microstates"	
with	the	following	content:		
	
“Our	approach	is	not	the	first	in	proposing	a	segmentation	of	electrophysiological	time	series	into	a	
discrete	set	of	states.	For	example,	Rabinovich	et	al.	(2015),	among	others,	argue	for	the	
characterisation	of	brain	dynamics	as	“a	task-dependent	sequential	activations	metastable	states,	
that	is,	states	where	system	variables	reach	and	temporary	hold	stationary	values”	(see	also	Tognoli	
and	Kelso	(2014)	for	a	general	reference	about	metastability	in	the	brain).	A	prominent	related	
methodology	is	the	EEG	microstates	framework	(see	e.g.	van	de	Ville	et	al.	(2010);	Khanna	et	al.	
(2010)).	One	essential	difference	between	the	approach	taken	in	this	work	and	the	EEG	microstates	
is	that	we	characterise	HMM	states	in	source-space.	Most	importantly,	our	states	are	specifically	
defined	as	periods	in	time	where	the	data	exhibits	distinct	spectral	and	cross-spectral	properties.	
This	allows	us	to	identify	states	that	correspond	to	networks	of	specific	multivariate	spectral	



patterns,	including	coherence.	By	contrast,	EEG	microstates	do	not	appear	to	exhibit	distinct	spectral	
properties.	While	other	approaches	applied	to	EEG	data	that	do	capture	spectral	differences	have	
also	been	proposed,	these	are	in	sensor	space,	and	so	cannot	capture	the	changes	in	phase-coupling	
between	specific	subnetworks	of	cortical	regions	that	we	find	in	this	work	(Koenig	et	al.,	2001;	
Studer	et	al.,	2006;	Betzel	et	al.,	2012)."	
	
Also,	we	have	added	the	new	section	"Biological	underpinnings	and	functional	labelling"	in	
the	Discussion,	which	reads	as	follows:		
	
"In	this	paper,	we	have	characterised	large-scale	brain	states	from	MEG	data,	in	terms	of	
power	and	phase-coupling.	In	order	to	gain	insight	into	the	mechanistic	underpinnings	of	
these	patterns	and	their	dynamics,	the	descriptive	methods	presented	here	will	need	to	be	
combined	with	biophysical	modelling	of	large-scale	networks	(Woolrich	and	Stephan,	2013).	
With	the	exception	of	the	higher-order	cognitive	functions,	for	which	we	have	conducted	a	
meta-analysis	against	existing	literature,	our	state	labelling	is	purely	based	on	the	
anatomical	location	of	power	and	functional	connectivity.	For	example,	we	refer	to	the	
“visual”	state	as	the	state	with	wideband	power	and	connectivity	in	occipital	areas.	
However,	when	looking	at	the	spectral	characteristics	of	this	state,	we	find	that	this	activity	
is	primarily	occurring	in	the	alpha	band	(see	Fig.	SI-4).	Given	the	hypothesised	inhibitory	role	
of	alpha	(Jensen	and	Mazaheri,	2010;	Klimesch,	2012),	it	is	likely	that	this	state	is	cognitively	
representing	a	reduction,	rather	than	an	increase,	in	visual	activity.	Some	further	
connections	to	existing	literature	are	plausible.	For	example,	given	its	long-distance	
connections	between	the	anterior	temporal	lobes	and	its	low-frequency	dominance,	a	
relation	between	the	anterior	higher-order	cognitive	state	and	memory	retrieval	is	very	
likely	(Maguire	and	Mummery,	1999;	Jensen	and	Tesche,	2002;	Fell	and	Axmacher,	2011),	
yet	cognitive	control	could	also	be	involved	(Cavanagh	and	Frank,	2014).	Likewise,	the	
posterior	higher-order	cognitive	state	could	be	related	to	attention	and	cross-modal	
processing	(Behrmann	et	al.,	2004).	A	separate	question	is	about	the	mechanisms	and	
causes	of	state	switching,	and	whether	these	can	be	linked	to	avalanches	of	activity	(Beggs	
and	Plenz,	2003).“	
	
Comment	1.	Only	four	out	of	twelve	observed	states	are	described	and	discussed	in	detail	in	
the	manuscript.		
	
Although	it	is	true	that	much	more	information	exists	beyond	these	four	states,	we	
intentionally	decided	to	focus	on	these	in	this	paper.	In	particular,	our	original	motivation	for	
this	work	was	to	investigate	the	spectral	and	temporal	properties	of	the	DMN	in	MEG,	and	
so	our	main	interest	is	the	two	higher-cognitive	states	and	their	relation	to	the	DMN.	The	
other	eight	states	are	shown	in	Fig.	SI-2.	
	
What	was	the	percentage	of	explained	variance	for	these	four	states	(relative	to	the	total	
variance)?	
	
We	need	to	first	clarify	that	explained	variance	is	not	an	appropriate	measure	for	this	type	of	
model.	Explained	variance	is	normally	used	in	the	context	of	a	model	that	accounts	for	a	
percentage	of	the	signal	and	leaves	the	rest	as	unexplained	residuals	(e.g.	regression	models	
or	principal	component	analysis).	In	contrast,	here	we	have	a	fully	probabilistic	model,	
where	the	description	of	each	HMM	state	is	a	distinct	probabilistic	representation	of	the	
data,	in	this	case	in	the	form	of	a	multivariate	Gaussian	distribution.		
	
Therefore,	a	more	appropriate	measure	is	fractional	occupancy,	i.e.	the	percentage	of	time	



where	that	state	is	the	most	probable	description	of	the	data.	We	have	now	referred	to	the	
fractional	occupancy	of	the	four	states	in	the	Discussion:		
	
"Of	note,	although	this	paper	has	paid	closer	examination	to	the	four	states	represented	in	
Fig.	2,	these	occupy	on	average	only	30%	of	the	total	scanning	time."	
	
Also,	in	relation	to	the	fractional	occupancy,	we	have	now	added	the	following	paragraph	in	
the	Results	(section	"Higher-order	cognitive	states	have	distinct	temporal	characteristics"):	
	
"A	related	point	is	the	extent	of	state	fractional	occupancy	variability	across	subjects,	and	
whether	this	distribution	is	relatively	flat	or	varies	strongly	across	subjects.	Fig.	SI-6	reveals	
that	the	distribution	is	indeed	not	uniform,	and	that	different	subjects	have	different	
degrees	of	state	representation,	which	might	possibly	relate	to	specific	subject	traits	
(Vidaurre	et	al.,	2017b)."	
	
Comment	2.	Power	maps	are	illustrated	relative	to	their	temporal	average.	The	scale	would	
be	of	interest	here,	i.e.	%	change	or	dB	in	order	to	appreciate	what	‘low’	and	‘high’	power	
means	(in	numbers).	Furthermore,	the	thresholding	criterion	for	the	power	maps	is	missing.	
	
Thanks	-	we	have	now	indicated	the	exact	scale	in	each	map	(Fig.	2,	Fig.	4,	Fig.	SI-2	and	Fig.	
SI-3).	Also,	as	is	now	indicated	in	the	Method	section:		
	
“For	the	wideband	results	(Fig.	2,	Fig.	SI-2	and	Fig.	SI-9),	the	power	maps	were	thresholded	
such	that	only	the	50%	of	voxels	with	the	highest	activation	or	deactivation	are	shown.	For	
the	frequency-specific	results	(Fig.	4	and	Fig.	SI-4),	the	threshold	was	set	to	10%.”	
	
We	have	now	also	added	actual	statistical	maps,	reflecting	which	connections	and	
activations	are	statistically	significant	(please	see	Question	2	from	Reviewer	#2	for	details).		
	
Comment	3.	Several	other	important	parameters	of	the	method	are	not	justified	and	not	
described	in	detail.	Specifically,	why	were	42	ROIs	and	4	frequency	profiles	chosen?	
	
We	now	provide	more	detail	about	the	choice	of	parcellation	in	the	Methods'	section	"Data	
and	preprocessing":	
	
"Thirty-eight	of	these	dipoles	were	obtained	from	a	ICA	decomposition	on	resting-state	fMRI	
data	from	the	Human	Connectome	Project,	used	previously	to	estimate	large-scale	static	
functional	connectivity	networks	in	MEG	(Colclough	et	al.,	2016);	the	other	four	parcels	
correspond	to	the	anterior	and	posterior	precuneus	which	we	wanted	to	disambiguate	from	
the	PCC	given	the	importance	of	this	region	in	the	resting	state,	and	the	left	and	right	
intraparietal	sulci.”	
	
Note	that	a	parcellation	with	approximately	40	ROIs	is	consistent	with	evidence	that	the	
effective	dimensionality	in	MEG	source	space	is	approximately	64	(Taulu	and	Simola,	2006),	
and	with	the	findings	from	using	an	adaptive	parcellation	approach	(Farahibozorg	et	al,	
2018).	These	references	have	now	been	included	in	the	Supplementary	References.	
	
In	relation	to	the	choice	of	the	number	of	frequency	bands,	we	now	provide	some	
clarification	in	the	section	"Extracting	spectral	information"	in	Methods:	
	
"...	asking	for	four	components,	which	we	found	to	render	stable	decompositions	while	still	



being	reasonably	frequency-specific.	This	choice	of	four	components	corresponds	to	the	
coarseness	of	classical	frequency	bands	often	used	in	the	low	frequency	range	we	are	
studying	(i.e.	low	gamma,	beta,	alpha,	delta/theta)."	
	
We	have	also	added	the	following	references	in	the	Supplementary	References:		
	
S.	Taulu	and	J.	Simola,	J.	(2006).	Spatiotemporal	signal	space	separation	method	for	rejecting	
nearby	interference	in	MEG	measurements.	Physics	in	Medicine	and	Biology	51,	1759–1768.	

S.R.	Farahibozorg,	R.N.	Henson	and	O.	Hauk	(2018).	Adaptive	cortical	parcellations	for	source	
reconstructed	EEG/MEG	connectomes.	NeuroImage	169,	23–45.	

	
Comment	4.	Line	153	->	It	is	said	that	frequency	bands	are	split	into	the	classical	bands.	
However,	delta/theta	is	defined	as	0.5-10	Hz	and	alpha	as	5-15	Hz.	Besides	the	frequency	
overlap	these	are	not	the	classical	bands.	I	assume	this	is	a	typo.	
	
The	reviewer	makes	a	valid	point.	Following	on	from	the	previous	comment,	we	have	now	
clarified	this	in	the	section	"Higher-order	cognitive	states	have	distinct	spectral	
characteristics":	
	
"The	frequency	modes	were	estimated	following	a	data-driven	approach	(non-negative	
matrix	factorisation,	see	Methods),	which	identified	frequency	modes	that	approximately	
correspond	to	classical	frequency	bands	(although	overlap	one	another	to	a	certain	extent,	
bringing	some	data-driven	flexibility).	For	convenience,	we	labelled	the	data-driven	modes	
using	the	closest	corresponding	classical	frequency	bands,	resulting	in	“delta/theta”	(0.5-
10Hz),	“alpha”	(5-15Hz),	“beta”	(15-30Hz)	and	“low	gamma	bands”	(30-45Hz).	It	should	
however	be	kept	in	mind	that	the	frequency	modes	are	derived	from	the	data,	and	so	are	
not	exactly	the	same	as	the	classical	frequency	bands	normally	used."	
	
Comment	5.	Line	155	->	Due	to	the	relatively	lower	SNR	in	this	band	and	considering	the	bias	
towards	lower	frequency	activity	resulting	from	running	HMM	on	PCA	components,	it	is	more	
likely	that	gamma	modes	could	not	be	observed	given	the	used	methods.	What	is	crucially	
different	from	stating	that	there	are	no	“state-specific	differences”	for	these	modes.	This	
issue	is	addressed	in	the	discussion;	however,	the	wording	should	also	be	changed	in	the	
results	section.	
	
We	thank	the	Reviewer	for	pointing	this.	We	have	rephrased	this	as	follows:		
	
"Possibly	due	to	the	relatively	low	signal-to-noise	ratio	in	higher	frequency	bands,	strong	
state-specific	differences	in	the	gamma	band	could	not	be	observed	with	this	approach,	and,	
therefore,	we	only	show	results	for	the	delta/theta,	alpha,	and	beta	modes."	
	
Comment	6.	Line	317	->	It	seems	that	the	authors	down-sampled	the	data	before	filtering.	If	
so,	they	do	not	mitigate	the	distortion	due	to	aliasing.	I	assume	it	is	a	typo.	
	
We	performed	downsampling	with	an	anti-aliasing	filter.	This	has	been	now	clarified	in	the	
methods	as	follows:	
	
"MEG	data	were	then	downsampled	to	250Hz	using	an	anti-aliasing	filter,	filtered	out	
frequencies	below	1Hz,	and	source-reconstructed	using	LCMV	beamforming	"	
	
Comment	7.		Line	328	->	By	using	the	hidden	Markov	Model	authors	assumed	that	at	each	



time	point	only	one	state	is	active.	Moreover,	the	states	are	defined	at	group	level	and	then	
the	activation	of	a	state	at	the	subject	level	(Line	344).	How	do	the	authors	justify	that	by	
using	a	12-state	model	they	are	able	both	to	explain	the	subject	inter-variability	and	to	
guarantee	that	at	each	time	point	only	one	of	this	state	is	active?	
	
The	Reviewer	raises	a	good	point.	It	is	worth	noting	that	the	HMM	states	are	defined	during	
the	inference	at	the	group	level,	that	is	they	do	not	explain	subject	inter-variability	excepting	
temporally	(through	the	subject-specific	state	time	courses).	Therefore,	each	state	is	
averaged	across-subjects.	Using	a	low	number	of	components	is,	for	example,	standard	in	
group-level	ICA	analyses;	here,	besides,	the	state	distribution	contains	more	information	
than	an	ICA	component	(i.e.	the	spectra).	In	any	case,	the	model	is	more	detailed	than	a	
static	description,	which	is	also	standard	in	the	field	(Colclough	et	al.,	2016).	Also	in	relation	
to	between-subjects	differences,	we	now	mention	in	the	Discussion:	
	
"While	each	state	has	its	own	subject-specific	temporal	characteristics	(i.e.	the	state	time	
courses),	their	spatial	and	spectral	features	are	defined	at	the	group	level.	However,	note	
that	if	they	are	needed,	e.g.	to	investigate	their	between-subject	spatial	and	spectral	
differences,	it	is	straightforward	to	re-compute	subject-specific	states	features	by	combining	
the	state	time	courses	and	data	for	each	subject	separately.”	
	
Comment	8.	Line	383	->	Authors	applied	PCA.	It	would	be	important	to	know	the	amount	of	
variance	explained	by	the	decomposition	per	subject.	
	
We	have	now	stated	this	in	the	Methods	section:		
	
"In	this	data	set,	this	explains	on	average	60%	of	the	variance	(lowest	and	highest	across	
subjects	are,	respectively,	55%	and	66%).	"	
	
Comment	9.	Line	479	->	The	authors	should	define	“in	numbers”	what	they	assume	saying	
“having	more	probability”.	
		
We	apologize	for	the	confusion.	In	this	case,	we	meant	that	we	show	any	connection	
assigned	to	the	larger	Gaussian	distribution.	We	have	simplified	this	to:		
	

"we	only	show	the	connections	that	belong	to	the	Gaussian	distribution	representing	the	
strongest	connections".	



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have addressed all of my points and concerns with this revision. I think this paper will be 
of interest to a wide community, and will introduce a valuable new data-driven analysis methodology 
to neuroscientists studying the role of phase-coupled distributed networks in action, perception, and 
cognition.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have considered all prior review comments adequately and, in my opinion, significantly 
improved the manuscript. I see this study as an important opening both scientifically and 
methodologically, and thereby well suited for a top-level inter-disciplinary journal.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
Most of my concerns have been answered and corrections were done appropriately. However, my 
request to connect their method and results to other existing approaches has been answered 
somewhat superficially. It is true that one particularity of the proposed method is that it has been 
applied to MEG data transferred to source-space, while microstate analysis is performed on the sensor 
space. However, it is not evident that this is an “essential” difference as claimed by the authors. Since 
the contribution of power to the HMM state segmentation is 4 times higher than the contribution of 
coherence (as shown in the new Figure 7), it is not sure whether the analysis in source space is a 
major difference. Interestingly, studies that transformed the microstates into source space show very 
similar networks underlying the microstates as the ones underlying the HMM states (see for example 
Custo et al., Brain Connectivity 2017, where a similar distinction between an anterior and posterior 
DMN has been described). Also an earlier report of Pascual-Marqui et al., (arXiv, 2014) described the 
microstates as different parts of the DMN. In the paper of Milz et al. (Neuroimage 2017), the 
microstates were related to synchronization in the Alpha-band, which also dominate in the present 
work at least for the PCC and visual network.  
 
The statement of the authors that microstates do not exhibit distinct spectral properties is not fully 
correct. As recently discussed in the review article by Michel & König (Neuroimage, 2018), EEG 
microstates are due to similar oscillations of the underlying sources with zero or minimal phase-lag, 
thus with high coherence. The crucial question is how much phase-lag the sources can exhibit so that 
still one stable topography is seen at the scalp level. In the approach presented by the authors zero-
phase lag is excluded by the leakage correction, so the phase-coupling calculated by the coherence 
measure has certain phase-lags. I could not find a clear description of how much this phase-lag was in 
average. The authors refer to work by Fries and Engels concerning the importance of phase-locking for 
communication. However, the phase-lags in such coupled networks are very small. More information 
about the phase-lags and a more proper comparison of the networks derived from the HMM and the 
microstate approach would be appreciated.  



Reviewer	#3	
	
Most	of	my	concerns	have	been	answered	and	corrections	were	done	appropriately.	However,	my	
request	to	connect	their	method	and	results	to	other	existing	approaches	has	been	answered	
somewhat	superficially.	
	
We	thank	Reviewer	#3	for	their	comments.	We	fully	agree	that	comparing	the	methods	and	
results	of	our	approach	to	microstate	analyses	is	useful	and	appropriate	in	this	context,	and	
include	this	in	our	revision,	as	specified	below.	We	have	also	included	new	information,	in	
the	form	of	an	SI	figure,	with	regards	to	the	phase-lags	identified	by	the	HMM.	Changes	are	
highlighted	in	red.	
	
Since	the	contribution	of	power	to	the	HMM	state	segmentation	is	4	times	higher	than	the	
contribution	of	coherence	(as	shown	in	the	new	Figure	7),	it	is	not	sure	whether	the	analysis	in	source	
space	is	a	major	difference.	
	
We	would	like	to	clarify	that	having	relatively	small	between-states	differences	in	coherence	
compared	to	power	(as	examined	post-hoc	and	according	to	the	chosen	metric)	does	not	
necessarily	mean	that	coherence	cannot	have	a	significant	impact	on	the	HMM	state	
segmentation.	For	example,	as	shown	in	Fig.	7b,	the	states	inferred	from	the	present	
time-delay	embedded	HMM	have	important	differences	from	those	obtained	from	an	HMM	
that	only	uses	power	(Baker	et	al.,	2014).	 	
	
We	can	see	how	our	previous	description	of	these	results	may	have	led	to	the	Reviewer’s	
confusion	on	this	point.	We	have	now	modified	the	wording	in	the	corresponding	section	of	
the	Results	to	make	this	clearer:	 	
	
"...	However,	this	(referring	to	between-states	differences)	does	not	mean	that	phase	
coupling	does	not	contribute	to	the	inference.	To	demonstrate	this,	we	also	ran	the	HMM	on	
power	envelopes	..."	
	
We	agree	that	substantial	information	about	the	states	will	be	accessible	in	sensor	space,	
but	given	the	findings	in	Fig.	7b,	we	still	expect	there	to	be	differences.	A	full	comparison	
between	analyses	in	sensor	space	and	in	(parcellated)	source	space	would	be	instructive	in	
future	work.	To	make	these	points	more	clearly,	we	now	have	added	the	following	to	the	
Discussion:	
	
"…	whereas	the	proposed	model	operates	in	source-space,	microstates	are	estimated	in	
sensor-space.	Although	HMM	states	can	also	be	estimated	in	sensor	space,	
source-reconstruction	is	however	useful	for	noise	removal	and	to	better	balance	the	
contribution	of	deeper	regions	compared	with	more	dominant	(superficial)	cortical	areas.”	
	
Interestingly,	studies	that	transformed	the	microstates	into	source	space	show	very	similar	networks	
underlying	the	microstates	as	the	ones	underlying	the	HMM	states	(see	for	example	Custo	et	al.,	
Brain	Connectivity	2017,	where	a	similar	distinction	between	an	anterior	and	
posterior	DMN	has	been	described).	Also	an	earlier	report	of	Pascual-Marqui	et	al.,	(arXiv,	2014)	
described	the	microstates	as	different	parts	of	the	DMN.	 	
	
We	agree	that	microstate	analysis	offers	an	important	and	complementary	perspective	on	resting	
electrophysiological	data.	As	such	we	have	now	included	new	text	on	microstates	and	their	
contribution	to	resting	state	network	analysis,	particularly	in	relation	to	the	results	we	have	in	this	



paper,	as	follows:	
	
“Segmentation	of	EEG	scalp	maps	into	microstates	is	based	on	finding	repeating	distributions	of	
power	across	multiple	sensors,	and	therefore	could	be	expected	to	capture	interactions	related	to	
those	that	drive	the	HMM.	Microstates	have	also	offered	new	insights	into	the	nature	of	resting	
state	networks	(Michel	and	König,	2018),	including	some	evidence	of	a	fragmentation	of	the	DMN	
into	anterior	and	posterior	states	(Pascual-Marqui	et	al.,	2014;	Custo	et	al.,	2017).	However,	some	
fundamental	differences	exist.	Most	importantly,	the	HMM	directly	identifies	states	with	distinct	
spectral	and	cross-spectral	profiles,	including	coherence	networks	in	distinct	frequency	bands	and,	
potentially,	at	diverse	phases	(Maris	et	al.,	2016).	In	contrast,	while	microstates	can	capture	
broadband	spectral	phenomena	(Michel	and	König,	2018),	their	estimation	(performed	in	
sensor-space)	is	not	based	on	spectral	profiles	(but	see	Milz	et	al.,	2017),	and	assumes	zero-lag	(or	
180°)	phase	differences.	Also,	whereas	the	proposed	model	operates	in	source-space,	microstates	
are	estimated	in	sensor-space.	Although	HMM	states	can	also	be	estimated	in	sensor	space,	
source-reconstruction	is	however	useful	for	noise	removal	and	to	better	balance	the	contribution	of	
deeper	regions	compared	with	more	dominant	(superficial)	cortical	areas.	In	summary,	it	is	through	
the	use	of	the	HMM	that	we	have	been	able	to	reveal	that	the	fragmentation	of	the	DMN	into	
anterior	and	posterior	states	is	characterized	by	not	only	the	presence	of	phase-locking	networks,	
but	also	spectral	power	and	phase-locking	in	distinct	frequency	bands.”	
	
In	the	paper	of	Milz	et	al.	(Neuroimage	2017),	the	microstates	were	related	to	synchronization	in	the	
Alpha-band,	which	also	dominate	in	the	present	work	at	least	for	the	PCC	and	visual	network.	
	
We	thank	the	Reviewer	for	bringing	up	these	references.	However,	a	key	property	of	the	HMM	
segmentation	is	that	the	states	not	only	exhibit	a	variety	of	distinct	spectral	properties	at	different	
frequency	bands,	but	their	estimation	is	crucially	dependent	on	such	spectral	profiles.	As	a	result,	
the	approach	is	not	only	able	to	characterise	networks	in	the	alpha	band	as	the	Reviewer	has	
indicated,	but	also	in	other	frequency	bands	(e.g.	sensorimotor	in	beta	band,	and	the	anterior	
higher-order	cognitive	in	the	delta/theta	frequency	band).	 	
	
The	statement	of	the	authors	that	microstates	do	not	exhibit	distinct	spectral	properties	is	not	fully	
correct.	As	recently	discussed	in	the	review	article	by	Michel	&	König	(Neuroimage,	2018),	EEG	
microstates	are	due	to	similar	oscillations	of	the	underlying	sources	with	zero	or	minimal	phase-lag,	
thus	with	high	coherence.	 	 	
	
Although	it	is	true	that,	as	opposed	to	EEG	microstates	analysis,	the	proposed	approach	is	
specifically	designed	to	capture	spectral	changes,	the	Reviewer	is	right	in	making	this	point.	We	have	
removed	this	sentence	from	this	version	of	the	paper,	and	as	mentioned	above,	we	now	include	the	
following	text	in	the	Discussion:	
	
“…	the	HMM	directly	identifies	states	with	distinct	spectral	and	cross-spectral	profiles,	including	
coherence	networks	in	distinct	frequency	bands	and,	potentially,	at	diverse	phases	(Maris	et	al.,	
2016).	In	contrast,	while	microstates	can	capture	broadband	spectral	phenomena	(Michel	and	König,	
2018),	their	estimation	(performed	in	sensor-space)	is	not	based	on	spectral	profiles	(but	see	Milz	et	
al.,	2017)”	
	
In	the	approach	presented	by	the	authors	zero-phase	lag	is	excluded	by	the	leakage	correction,	so	the	
phase-coupling	calculated	by	the	coherence	measure	has	certain	phase-lags.	I	could	not	find	a	clear	
description	of	how	much	this	phase-lag	was	in	average.	The	authors	refer	to	work	by	Fries	and	Engels	
concerning	the	importance	of	phase-locking	for	communication.	However,	the	phase-lags	in	such	
coupled	networks	are	very	small.	 	



	
This	is	certainly	a	very	good	point.	The	Reviewer	is	correct	that	leakage	correction	does	remove	the	
zero-lag	correlations	on	average.	However,	transient	(close	to)	zero-lag	synchronisation	can	still	be	
identified.	We	now	make	this	point	in	the	Supplemental	Discussion,	along	with	a	new	supplemental	
Figure	SI-11:	
	
"A	related	issue	is	whether	leakage	correction,	which	makes	the	signals	orthogonal	across	the	entire	
time	series,	precludes	completely	zero-lag	(or	small	lag)	relationships,	which	are	central	to	the	
theory	of	communication	through	coherence	(Fries	2015).	Importantly,	leakage	correction	operates	
at	the	level	of	the	entire	time	series,	and	so	only	removes	zero-lag	correlations	on	average.	This	
means	that	it	is	still	possible	to	have	transient	periods	of	zero-	or	small-	lag	synchronisation.	
Focusing	on	the	anterior	and	posterior	higher-order	cognitive	networks,	Fig.	SI-11	illustrates	this	
point	by	showing	the	phase	at	which	different	regions	have	a	high	coherence	with	the	PCC	(using	a	
threshold	of	0.05).	Each	dot	thus	represents	a	region	with	high	coherence	with	PCC	at	the	indicated	
frequency.	Colours	represent	large-scale	cortical	areas.	Importantly,	due	to	the	sign	ambiguity	issue,	
it	is	not	possible	to	distinguish	in-phase	(0)	from	anti-phase	coherence	(π).	If	we	assume	that	
anti-phase	actually	represents	in-phase	relationships,	this	figure	suggests	that	many	of	the	
(transient)	phase-locking	relationships	are	actually	close	to	zero-lag."	
	
More	information	about	the	phase-lags	and	a	more	proper	comparison	of	the	networks	derived	from	
the	HMM	and	the	microstate	approach	would	be	appreciated.	
	
As	indicated	in	our	point-by-point	response	above,	we	have	now	included	in	the	paper	a	
discussion	comparing	and	relating	the	results	from	the	HMM	with	previous	results	obtained	
using	microstate	analyses.	Bearing	in	mind	the	journal’s	space	limitations,	we	have	also	
included	new	information,	in	the	form	of	an	SI	figure	and	discussion,	about	the	specific	
phasic	relations	identified	by	the	HMM.	



REVIEWERS' COMMENTS:  
 
Reviewer #3 (Remarks to the Author):  
 
I thank the authors for their responses to my remaining comments. The changes made are 
appropriate and answered my questions. Of particular relevance is the added supplementary figure 
that shows that connections are close to zero phase lag, which confirms my assumption that the HMM 
states are reflecting similar characteristics than the microstates. I am looking forward to future work 
directly comparing the two approaches. I accept the paper in its current form without any request for 
revision. 
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