Long range electronic phase separation in CaFe₃O₅

Ka. H. Hong, Angel M. Arevalo-Lopez, James Cumby, Clemens Ritter and J. Paul. Attfield

Supplementary Figure 1. Low angle region of powder neutron diffraction patterns of CaFe₃O₅. The thermal evolution of the magnetic scattering shows little change on cooling from 400 to 325 K, but some diffuse scatter is seen at 300 K, just below the onset of spin order at $T_{\rm M}$ = 302 K.

Supplementary Figure 2. Lattice parameters of CaFe₃O₅. Changes in the lattice parameters relative to 500 K values obtained from PSXRD data ($a_{500 \text{ K}} = 3.039972(2)$), $b_{500 \text{ K}} = 10.016679(8)$ and $c_{500 \text{ K}} = 12.676256(10)$), showing similar variations to PND data in Fig. 4a.

Supplementary Figure 3. Thermogravimetric analysis of $CaFe_3O_5$. The plot shows the change in percentage mass while heating the CaFe₃O₅ sample in air at 10 °C min⁻¹ to 900 °C and then cooling at the same rate. Arrows indicate the direction of the measurement.

Supplementary Figure 4. Electronic density of states for CaFe₃O₅. Partial density of states (pDOS) for Fe1 and Fe2 d-orbitals (arbitrary spin direction chosen) for CO and CA phases, calculated with U = 3.4 eV. CO pDOS shows increased band mixing between Fe1 and Fe2 in the region around -8 eV, attributed to trimeron bonding.

Supplementary Table 1. Lattice parameters, atomic coordinates, and isotropic thermal displacements from neutron refinements in *Cmcm* space group of CaFe₃O₅ HT phase at 500 K (upper values) and CO and CA phases at 4 K (lower values). Estimated standard deviations in independent variables are shown in parentheses. *R* factors are $R_{wp} = 7.70$ and 7.28 %, and $R_p = 7.32$ and 6.14 % at 500 K and 4 K, respectively.

<i>a</i> /Å		b /Å		c /Å		Volume /Å ³						
HT		HT		HT		HT						
CO	CA	СО	CA	СО	CA	C	CO		CA	4		
3.038	396(1)	10.013	354(5)	12.67	038(7)			385.569(3	3)			
3.02425(3)	3.01944(3)	10.02139(10)	9.99766(11)	12.56654(10)	12.61533(15)	380.8	57(6)		380.82	0.823(7)		
Atom	Site	x	;	2	V	Z		Occupancy ^a		$B_{\rm iso}$ /Å ²		
		H	Т	HT		HT		HT		HT		
		СО	CA	СО	CA	СО	CA	СО	CA	CO	CA	
Fe1	8 <i>f</i>	0		0.26614(10)		0.11098(7)		1		1.18(2)		
		0	0	0.26496(20)	0.26688(27)	0.11038(13)	0.11125(17)	1	1	0.54(4)	0.56(6)	
Fe2	4 <i>a</i>	0		0		0		1		1.35(3)		
		0	0	0	0	0	0	1	1	0.71(5)	0.49(6)	
Ca1/Fe	4 <i>c</i>	0)	0.52025(29)		¹ /4		0.952(8)/0.040(8)		1.49(5)		
		0	0	0.52008(52)	0.51938(72)	1/4	1/4	0.952(8)/	0.952(8)/	0.60(9)	0.86(12)	
01	4			0.101		1	/	0.040(8)	0.040(8)	1.0	2(4)	
01	4 <i>c</i>	0		0.191	99(20)	1/	4	1	1	1.2	(3(4))	
		0	0	0.19241(44)	0.19135(64)	-/4	-/4	1	1	0.51(8)	1.03(11)	
02	8 <i>f</i>	0		0.64375(19)		0.44928(13)			1	1.6	52(3)	
		0	0	0.65048(32)	0.64088(56)	0.44839(23)	0.44849(30)	1	1	0.65(5)	1.17(8)	
O3	8 <i>f</i>	0)	0.90437(19)		0.13509(11)		1		1.29(3)		
		0	0	0.90340(40)	0.90383(59)	0.13570(19)	0.13566(28)	1	1	0.62(6)	0.96(7)	

^a Variable occupancies were refined against 500 K neutron data and were fixed in lower temperature refinements. The refined Ca1/Fe occupancy from synchrotron X-ray diffraction data at 500 K is 0.956(3)/0.044(3).

Supplementary Table 2. Fe-O and Fe-Fe bond lengths (Å) obtained from powder neutron diffraction data, with mean values < >, shown for the HT phase of CaFe₃O₅ at 500 K (upper values) and the CO and CA phases at 4 K (lower values).

	Dista	ance		Distance			
Bond	Н	Т	Bond	HT			
	CO	CA		CO	CA		
Ca1-O1 (x 2)	2.295(3)		<fe1-o></fe1-o>	2.083(1)			
	2.296(5)	2.288(7)		2.055(1)	2.082(2)		
Ca1-O3 (x 4)	2.40	3(2)	Fe2-O2 (x 4)	2.190)(1)		
	2.296(5)	2.288(7)		2.231(3)	2.165(5)		
<cal-o></cal-o>	2.36	7(2)	Fe2-O3 (x 2)	l(2)			
	2.359(4)	2.354(6)		1.961(3)	1.962(5)		
Fe1-O1	1.91	2(1)	<fe2-o></fe2-o>	2.113	3(1)		
	1.899(3)	1.907(4)		2.141(1)	2.097(2)		
Fe1-O2	2.23	9(2)	Fe1-Fe1, Fe2-Fe2	3.039(1)			
	2.205(4)	2.251(5)		3.024(1)	3.019(1)		
Fe1-O2 (x 2)	2.096(2)		Fe2-Fe2(x 2)	3.213(2)			
	2.037(3)	2.106(5)		3.173(3)	3.205(4)		
Fe1-O3 (x 2)	2) 2.078(2)		Fe1-Fe2(x 4)	3.120	6(1)		
	2.077(4)	2.061(5)		3.124(2)	3.111(3)		

Supplementary Table 3. Irreducible representations (IrReps) and basis vectors (BV) for Fe1 and Fe2 spin order in the CO phase of CaFe₃O₅ at 4 K, with propagation vector ($\frac{1}{2}$ 0 0). The magnetically independent atoms are Fe1 at ($\frac{1}{2}$, 0.2650, 0.1104) and Fe2 at (0, 0, 0). The symmetry related positions are generated by the operators 1: (x, y, z), 2: (x, y, $-z+\frac{1}{2}$), 3: (x, -y, $z+\frac{1}{2}$) and 4: (x, -y, -z). The structure was solved using $\Gamma_2\psi_4$, $\Gamma_2\psi_5$ and $\Gamma_2\psi_6$ for Fe1 and $\Gamma_2\psi_4$, $\Gamma_4\psi_{11}$ and $\Gamma_4\psi_{12}$ for Fe2, with R_p and R_{wp} factors = 6.1 and 7.3 %, respectively.

IrReps		Γ_1			Γ_2			Γ3			Γ4		
	BV	ψ_{I}	ψ_2	ψ_3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ_9	ψ_{10}	ψ_{11}	ψ_{12}
Atoms		m_x	m_y	m_z	m_x	m_y	m_z	m_x	m_y	m_z	m_x	m_y	m_z
Fe1_1		+	+	+	+	+	+	+	+	+	+	+	+
Fe1_2		+	-	-	+	-	-	-	+	+	-	+	+
Fe1_3		-	-	+	+	+	-	-	-	+	+	+	-
Fe1_4		-	+	-	+	-	+	+	-	+	-	+	-
Fe2_1		+			+				+	+		+	+
Fe2_2		-			+				-	+		+	-

Supplementary Table 4. Irreducible representations (IrReps) and basis vectors (BV) for Fe1 and Fe2 spin order in the CA phase of CaFe₃O₅ at 4 K, with propagation vector (0 0 0). The magnetically independent atoms are Fe1 at (0, 0.2669, 0.1113) and Fe2 at (0, 0, 0). The symmetry related positions are generated by the operators 1: (*x*, *y*, *z*), 2: (-*x*, -*y*, *z*+¹/₂), 3: (-*x*, *y*, -*z*+¹/₂) and 4: (*x*, -*y*, -*z*). The structure was solved using $\Gamma_1\psi_1$, $\Gamma_5\psi_7$ and $\Gamma_5\psi_8$ for both Fe1 and Fe2 sites, with R_p and R_{wp} factors = 6.1 and 7.3 %, respectively.

IrReps		Γ_1	Γ_2		Γ ₃		Γ4	Γ ₅		Γ_6	Γ_7	Γ_8	
	BV	ψ_{l}	ψ_2	Ψ3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ9	Ψ10	Ψ11	ψ_{12}
Atoms		m_x	m_y	m_z	m_y	m_z	m_x	m_y	m_z	m_x	m_x	m_y	m_z
Fe1_1		+	+	+	+	+	+	+	+	+	+	+	+
Fe1_2		-	-	+	-	+	-	+	-	+	+	+	-
Fe1_3		-	+	-	-	+	+	+	-	-	+	-	+
Fe1_4		+	-	-	+	+	-	+	+	-	+	-	-
Fe2_1		+			+	+		+	+		+		
Fe2_2		-			-	+		+	-		+		

Supplementary Table 5. The refined Fe moments in the CO and CA phases of CaFe₃O₅ between 4 and 300 K. Moments of the Fe1 and Fe2 sites were constrained to be equal.

Sites	Phases	4 K	50 K	100 K	150 K	200 K	250 K	275 K	300 K
Fe1/2	СО	4.03(3)	3.98(3)	3.85(3)	3.70(3)	3.39(3)	2.86(4)	2.30(4)	0
(µ _B)	CA	3.63(4)	3.68(4)	3.60(4)	3.40(4)	3.28(3)	3.02(3)	2.66(3)	0

Supplementary Table 6. Bader charge and volume, Mulliken charge and spin, and total energies of the CO and CA phases of $CaFe_3O_5$ from band structure calculations with U = 3.4 eV. Differences between Bader and Mulliken quantities are in keeping with the greater charge separation between Fe1 and Fe2 sites in the CO phase compared to the CA found by BVS calculations as shown in Fig. 4b although magnitudes are smaller than expected from the formal valences.¹

	Charge (Ordered (CO)	Charge av	veraged (CA)	
	Fe1	Fe2	Fe1	Fe2	
Bader Charge	1.85	1.51	1.83	1.55	
Bader Volume ([bohr radius] ³)	50	59	52	56	
Mulliken Charge	1.04	0.86	1.01	0.91	
Mulliken Spin (μ_B)	4.08	3.72	4.07	3.65	
Total energy (eV)	-46	328.588	-46327.893		
Free energy $(E - TS) (eV)$	-46	328.858	-46328.048		

Supplementary References

1. Pickett, W. E., Quan, Y. & and Pardo, V. Charge states of ions, and mechanisms of charge ordering transitions. *J. Phys.: Condens. Matter* **26**, 274203 (2014).