
GigaScience
 

Nighres: Processing tools for high-resolution neuroimaging
--Manuscript Draft--

 
Manuscript Number: GIGA-D-17-00325

Full Title: Nighres: Processing tools for high-resolution neuroimaging

Article Type: Technical Note

Funding Information:

Abstract: With recent improvements in magnetic resonance imaging (MRI) at ultra-high fields,
the amount of data collected per subject in a given MRI experiment has increased
considerably. Standard image processing packages are often challenged by the size of
these data and dedicated methods are needed to leverage their extraordinary spatial
resolution. Here we introduce a flexible Python toolbox which implements a set of
advanced techniques for high-resolution neuroimaging. With these tools, segmentation
and laminar analysis of cortical MRI data can be performed at resolutions up to 500 µm
in reasonable times. Comprehensive online documentation makes the toolbox easy to
use and install. An extensive developer's guide encourages contributions of other
researchers that will help to accelerate progress in the promising field of high-
resolution neuroimaging.

Corresponding Author: Julia M Huntenburg
Max-Planck-Institut fur Kognitions- und Neurowissenschaften
Leipzig, GERMANY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Max-Planck-Institut fur Kognitions- und Neurowissenschaften

Corresponding Author's Secondary
Institution:

First Author: Julia M Huntenburg

First Author Secondary Information:

Order of Authors: Julia M Huntenburg

Christopher J Steele

Pierre-Louis Bazin

Order of Authors Secondary Information:

Opposed Reviewers:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


requested in your manuscript?

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

Not applicable as this manuscript describes software

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


GigaScience, 2017, 1–7
doi: xx.xxxx/xxxx
Manuscript in Preparation
Technical Note

TE CHN I C A L NOTE

Nighres: Processing tools for high-resolution
neuroimaging
Julia M Huntenburg1,2,*, Christopher J Steele3,4,† and Pierre-Louis
Bazin3,5,6,7,†
1Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive
and Brain Sciences, Leipzig, Germany and 2Neurocomputation and Neuroimaging Unit, Department of
Education and Psychology, Free University of Berlin, Berlin, Germany and 3Department of Neurology, Max
Planck Institute for Human Cognitive and Brain Sciences, Germany and 4Cerebral Imaging Center, Douglas
Mental Health University Institute, Montreal, QC, Canada and 5Department of Neurophysics, Max Planck
Institute for Human Cognitive and Brain Sciences, Leipzig, Germany and 6Social Brain Lab, Netherlands
Institute for Neuroscience, Amsterdam, Netherlands and 7Spinoza Centre for Neuroimaging, Amsterdam,
Netherlands
*Correspondance: huntenburg@cbs.mpg.de
†Contributed equally

Abstract
With recent improvements in magnetic resonance imaging (MRI) at ultra-high �elds, the amount of data collected per
subject in a given MRI experiment has increased considerably. Standard image processing packages are often challenged by
the size of these data and dedicated methods are needed to leverage their extraordinary spatial resolution. Here we
introduce a �exible Python toolbox which implements a set of advanced techniques for high-resolution neuroimaging.
With these tools, segmentation and laminar analysis of cortical MRI data can be performed at resolutions up to 500 µm in
reasonable times. Comprehensive online documentation makes the toolbox easy to use and install. An extensive
developer’s guide encourages contributions of other researchers that will help to accelerate progress in the promising �eld
of high-resolution neuroimaging.
Key words: Neuroimaging in Python; High-resolution MRI; Ultra-high �eld MRI; Laminar MRI; Python Java integration

Background

Advances in ultra-high �eld (7 Tesla and above) MRI now
make it possible to image the whole brain at an unprecedented
level of detail [1]. Submillimeter resolutions and quantitative
metrics reveal �ne-grained variations in structure and
function that were previously undetectable in vivo, and allow
researchers to ask new questions about the human brain.
Examples include the investigation of intracortical myelin [e.g
2, 3, 4, 5], the laminar organization of the cortical sheet [e.g.
6, 7, 8, 9, 10], feedforward and feedback patterns in cortical

connections [11, 12, 13] and the detailed description of small
cortical and subcortical structures [14, 15] and their function
[16].

While ultra-high �eld scanners have become increasingly
available and the �rst open 7 Tesla MRI data sets have been
released [17, 18, 19], software tools still lag behind. Standard
neuroimaging software packages are often not designed to
handle the growing data size and new quantitative contrasts.
Three-dimensional MRI data grows as a cube of its resolution,
and computational complexity generally ranges between

Compiled on: November 29, 2017.
Draft manuscript prepared by the author.

1

Main Latex file Click here to download Manuscript main.tex 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/giga/download.aspx?id=24144&guid=a7120e0b-d316-408f-91ac-9ed6a5db8f06&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=24144&guid=a7120e0b-d316-408f-91ac-9ed6a5db8f06&scheme=1


2 | GigaScience, 2017, Vol. 00, No. 0

Key Points

• A toolbox dedicated to the processing of high-resolution MRI data
• Lightweight and �exible code written in Python for ease of use, expansion and integration with other tools
• Extensive documentation with developer’s guide and usage examples based on open data

O(N logN) and O(N2). Therefore, a change in spatial resolution
from 1 mm to 0.5 mm easily entails an increase in compu-
tational requirements by a factor of 15 to 60, depending on
the methods used. Moreover, many new applications, such as
laminar analysis, have only become possible with higher reso-
lutions and are not implemented in existing software packages.
CBS High-Res Brain Processing Tools (CBS Tools) is

a software suite which addresses this gap by providing
cutting-edge methods for e�cient processing of MR images
at submillimeter resolution [20]. For example, CBS Tools
implements routine cortical segmentation at resolutions as
high as 400 µm, processing of quantitative MRI sequences
such as MP2RAGE, MPM or QSM [20], laminar analysis [7],
and small vessel segmentation [21]. While this software has
been well-received as a key tool set for quantitative and
high-resolution neuroimaging, its adoption has been slowed
by the complex infrastructure it builds on. CBS Tools have
been developed in Java as a set of plugins for the MIPAV
software package [22] and the JIST pipeline environment
[23]. The MIPAV / JIST framework provides a graphical
interface for building analysis pipelines and implements many
convenient tools, but it comes with a complex installation
procedure, heavy dependencies, and limited documentation.
More importantly, it is di�cult to integrate with other popular
neuroimaging tools, limiting its software ecosystem.
Meanwhile, a range of versatile, interoperable open source

packages for the analysis of neuroscienti�c data has been de-
veloped using the increasingly popular programming language
Python [24]. For example, Nipy1 is a community of practice
devoted to the use of Python in the analysis of neuroimaging
data, encompassing popular tools such as Nibabel [25], Nipype
[26], Nilearn [27] and many others.
Here we present Nighres2 – a new toolbox that makes the

quantitative and high-resolution image processing capabilities
of CBS Tools available in Python. Nighres is a user-friendly
Python package which interfaces with CBS Tools while avoiding
the JIST and MIPAV dependency tree. It facilitates integration
with other Python-based neuroimaging tools and interactive
data exploration, for example in Jupyter notebooks3. Nighres
features comprehensive online documentation with usage ex-
amples that are based on publicly available data sets. An ex-
tensive developer’s guide encourages external contributions in
Java or Python. With this new package, we aim to make the
capacities of CBS Tools accessible to a wider community, high-
light the potential of new high-resolution image processing
methods, and foster collaboration in this emerging �eld.

Implementation

1 http://nipy.org/
2 NeuroImaginG at High RESolution
3 http://jupyter.org/

Architecture and design

The Nighres package consists of two core Python modules. The
module cbstools contains the original CBS Tools Java classes
that have been encapsulated using the JCC package4. JCC en-
capsulates the Java code with C++ code, to make it accessible to
the Python interpreter, and produces a complete Python exten-
sion module. The module nighres includes the Python inter-
faces that are exposed to the user. It is organized in submod-
ules that represent di�erent application areas.5 For example,
the submodule laminar contains functions related to laminar
analysis of the cortical sheet. The Python interfaces in each
submodule are currently of two types:
i. Functions that wrap Java classes
ii. Functions in pure Python
Functions that wrap Java classes
The initial motivation to develop Nighres was to provide a user-
friendly interface to the functionality of CBS Tools, leveraging
the �exibility of Python. Therefore, a majority of the current
functions in Nighres constitute Python wrappers which inter-
nally execute the original CBS Tools Java classes. These func-
tions generally adhere to the following basic structure (a simple
example can be found in the function probability_to_levelset):
i. Evaluate input parameters
ii. Start Java virtual machine
iii. Initiate Java class through JCC wrapper
iv. Load input data and cast to Java array
v. Pass additional parameters to Java class
vi. Execute Java class
vii. Collect outputs of Java class and cast back
viii. Return outputs (optional: save outputs)
Thus, the actual processing still relies on the same optimized
Java code as in the original CBS Tools. However, since the
Nighres function takes care of the interfacing between Python
and Java, the user only interacts with Python code.
Functions in pure Python
Our long-term vision is for Nighres to become a central plat-
form for new high-resolution image processing tools as they
are developed. As discussed above, Python is rapidly becoming
the most popular programming language in the neuroimaging
community. The modular design of Nighres allows for easy in-
tegration of pure Python processing routines, and for the use of
other neuroimaging software that has been (or can be) wrapped
in Python independently with pipelining tools such as Nipype
[26]. In addition, we have included a core set of lightweight
convenience functions for input and output, parameter han-
dling, and �le naming in Python to simplify function calls and
minimize the integration burden for new methods.

4 http://lucene.apache.org/pylucene/jcc/index.html
5 For consistency the submodule names are based on the original module
organization in CBS Tools

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://nipy.org/
http://jupyter.org/
http://lucene.apache.org/pylucene/jcc/index.html


Huntenburg et al. | 3

Data handling

Data handling within Nighres follows established and widely
used standards in the imaging community to ensure maxi-
mum interoperability. Where possible, Nighres uses the Ni-
babel package for handling imaging data [25]. Input and out-
put functions are designed to automatically recognize and load
most commonly used data formats, while maintaining �exi-
bility to accommodate loading of non-standard data formats
using custom scripts. Data is internally represented as Niba-
bel Nifti1Images (volumes) or Python dictionaries (surfaces) and
can be passed in the form of �le names or memory objects. Pro-
cessing results are returned as memory objects, functions with
multiple outputs return a dictionary storing the di�erent out-
puts. Outputs can also be saved to disk. For saving, modi�ers
are appended to the output �le names that refer to the name of
the function and the speci�c output (e.g. _layering_depth for
the continuous depth output of the volumetric layering func-
tion). Output names can be set to have a speci�c pre�x or, by
default, append modi�ers to the main input �le name.

Distribution

While both Python and Java are cross-platform languages,
the JCC package that is used to encapsulate the CBS Tools
Java classes generates C++ code and thus makes compilation
platform-speci�c. We therefore implemented an automated
build script that compiles the original CBS Tools Java code and
builds the wrappers using JCC. We set up continuous integra-
tion using Travis CI6 to test the build upon any changes to
the code base on Github and, for any tagged releases, deploy
the package to the Python Package Index7. The user can then
download the package, run the fully automated build script to
recompile the Java code and C++ wrappers on their platform,
and �nally use the pip installer8 to install the modules and all
their dependencies. Subsequently, Nighres can simply be im-
ported into any Python environment.
We also provide a container allowing users to test Nighres

in a preset environment, without actually installing it on their
system. For this option the user only has to install Docker9, a
lightweight container platform that runs on Linux, Windows
and Mac OS X. The Nighres Docker�le10 can then be used to
build an Ubuntu 14 Trusty Docker image that contains a suit-
able Java installation, Nighres, and Jupyter Notebook.
Dependencies
One goal of Nighres was to reduce external dependencies. We
therefore restricted the required packages for Nighres’ core
functionality to Nibabel, for reading and writing of common
neuroimaging data formats [25], and Numpy, for e�cient
manipulation of data arrays [28]. The functions wrapping
CBS Tools code require the CBS Tools Java library as well the
Java matrix manipulation11 and Apache Commons Math12 li-
braries. However, these libraries are automatically recom-
piled, wrapped and installed from the CBS Tools github repos-
itory13 upon installation of Nighres. Our example work�ows
use Nilearn’s [27] plotting functionality for visualizing their
results, but will automatically skip plotting if Nilearn is not
installed.

6 https://travis-ci.org/nighres
7 https://pypi.python.org/pypi/nighres
8 https://pip.pypa.io/en/stable/
9 https://www.docker.com/
10 https://github.com/nighres/nighres/blob/master/Dockerfile
11 http://math.nist.gov/javanumerics/jama/
12 http://commons.apache.org/proper/commons-math/
13 https://github.com/piloubazin/cbstools-public

Support �les
Nighres automatically installs all essential support �les includ-
ing statistical atlases for brain segmentation, look-up tables
for topological constraints, templates for high-resolution spa-
tial normalization, and a cerebellar lobular atlas [29]. In addi-
tion, example data from publicly released 7 Tesla data sets is
hosted on the Nighres project page14 at the neuroimaging infor-
matics tools and resources clearinghouse [NITRC, 30], and au-
tomatically downloaded when running the example work�ows
(see below).

Documentation

Beyond functional code, clear and concise documentation is one
of the most important drivers of software use and longevity.
Nighres’ online documentation15 was implemented using the
Sphinx documentation tool16 and automatically generates on-
line content from the original function docstrings, which
are written according to the the Numpy/Scipy documentation
guidelines17. This design ensures that the documentation stays
up-to-date with minimal overhead for developers, and is in-
tuitive for users. Extensive example work�ows provide users
with easily understandable and reproducible code, as described
in the following section. Finally, the online documentation
contains an in-depth developer’s guide that leads contribu-
tors through all steps necessary to submit code changes, new
Python functions, new wrappers for CBS Tools functions or im-
provements of the documentation, to the Nighres github repos-
itory. We aimed to write a guide that makes it feasible for any
researcher working with high-resolution neuroimaging data to
contribute to Nighres, even without much previous experience
in software development.

Usage example

In the following we present one of Nighres’ usage example
pipelines. The example shows how to obtain a tissue classi-
�cation from MP2RAGE data [31] by performing the following
steps:
i. Downloading the open MP2RAGE data set from NITRC
ii. Removing the skull and creating a brain mask
iii. Atlas-guided tissue classi�cation using a multiple object
geometric deformable model (MGDM) [32]

The outputs of the plotting functions are shown in Figure 1.

Import and download

First we import nighres and the os module to set the output
directory.
import nighres
import os

out_dir = os.path.join(os.getcwd(),’nighres_examples/
↪→ tissue_classification’)

We also try to import Nilearn plotting functions. If Nilearn is
not installed, plotting will be skipped.
skip_plots = False

14 https://www.nitrc.org/projects/nighres/
15 http://nighres.readthedocs.io/en/latest/
16 http://www.sphinx-doc.org/en/stable/
17 https://numpydoc.readthedocs.io/en/latest/format.html

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 https://travis-ci.org/nighres
https://pypi.python.org/pypi/nighres
https://pip.pypa.io/en/stable/
https://www.docker.com/
https://github.com/nighres/nighres/blob/master/Dockerfile
http://math.nist.gov/javanumerics/jama/
http://commons.apache.org/proper/commons-math/
https://github.com/piloubazin/cbstools-public
https://www.nitrc.org/projects/nighres/
http://nighres.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/stable/
https://numpydoc.readthedocs.io/en/latest/format.html


4 | GigaScience, 2017, Vol. 00, No. 0

try:
from nilearn import plotting

except ImportError:
skip_plots = True
print(’Nilearn could not be imported, plotting will be

↪→ skipped’)

Now we download an example MP2RAGE [31] dataset that is
hosted on NITRC [30]. It is the structural scan of the �rst sub-
ject, �rst session of the 7 Tesla Test-Retest dataset published
by Gorgolewski et al. [18]
dataset = nighres.data.download_7T_TRT(out_dir)

Skull stripping

The �rst processing step is skull stripping. Only the second
inversion image of the MP2RAGE sequence is required to cal-
culate the brain mask. But if we input the quantitative T1 map
and the T1-weighted image as well, they will be masked for us.
We also save the outputs in the out_dir speci�ed above and use
a subject ID as the base �le name.
skullstripping_results =
nighres.brain.mp2rage_skullstripping(second_inversion=

↪→ dataset[’inv2’],t1_weighted=dataset[’t1w’],t1_map=
↪→ dataset[’t1map’], save_data=True,file_name=’
↪→ sub001_sess1’,output_dir=out_dir)

To check if the skull stripping worked well ,we plot the brain
mask on top of the original image (Figure 1a). Nighres, like
Nilearn [27], uses Nibabel [25] Nifti1Image objects to pass data
internally. Therefore, we can directly pass the outputs to
Nilearn’s plotting functions without saving and reloading. Al-
ternatively, the images stored in out_dir can be opened in any
common interactive viewer that can read the Nifti data format.
if not skip_plots:

plotting.plot_roi(skullstripping_results[’brain_mask’],
↪→ dataset[’t1w’], annotate=False, black_bg=False
↪→ , draw_cross=False, cmap=’autumn’)

MGDM classi�cation

Next, we use the masked data as input for tissue classi�cation
with the MGDM algorithm [32]. MGDM works with a single
contrast, but can be improved with additional contrasts. In this
case we use the T1-weigthed image as well as the quantitative
T1 map.
mgdm_results = nighres.brain.mgdm_segmentation(
contrast_image1=skullstripping_results[’t1w_masked’],

↪→ contrast_type1="Mp2rage7T",contrast_image2=
↪→ skullstripping_results[’t1map_masked’],
↪→ contrast_type2="T1map7T",save_data=True, file_name
↪→ ="sub001_sess1", output_dir=out_dir)

Now we look at the topology-constrained segmentation that
MGDM created (Figure 1b)
if not skip_plots:

plotting.plot_img(mgdm_results[’segmentation’], vmin=1,
↪→ vmax=50, cmap=’cubehelix’, colorbar=True,
↪→ annotate=False, draw_cross=False)

MGDM also creates an image which represents for each voxel
the distance to its nearest border (Figure 1c). It is useful to
assess where partial volume e�ects may occur.

if not skip_plots:
plotting.plot_anat(mgdm_results[’distance’], vmin=0,

↪→ vmax=20, annotate=False, draw_cross=False,
↪→ colorbar=True)

This examples implements a complete work�ow for advanced
processing of a quantitative MR contrast at high spatial reso-
lution (voxel size = 0.5 mm isotropic). With the openly avail-
able and automatically downloaded data, any user can try out
Nighres’ functionality immediately after installation and then
adapt the clearly explained code for their own use case.

A

B

C

Figure 1. Tissue classi�cation from MP2RAGE data. A The brain mask ob-
tained from skull stripping. (Note that the white rectangles in the image oc-
cur because the data has been "defaced" for anonymization) B The segmented
brain structures. C A representation of each voxel’s distance to their nearest
borders for assessing partial volume e�ects. Visualization performed within
the script using Nilearn [27].

Discussion

We developed a Python toolbox that specializes in processing
high-resolution brain imaging data. It has been designed with
two key purposes in mind:
i. to provide the neuroimaging community with user-
friendly access to cutting-edge high-resolution image pro-
cessing tools,
ii. to create a �exible framework that can be extended by
other researchers, along with thorough instructions on how
to contribute.
The availability of high-resolution and quantitative MRI

data, and the interest in new research directions that this
data enables, are rapidly growing [e.g 33, 34]. At the same
time, the image processing tools that would be required to
leverage the new level of spatial detail provided by this data
are largely missing. Only a few major neuroimaging packages
have begun to adapt their tools for these purposes [35, 36].
However, these packages are limited by their closed source

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Huntenburg et al. | 5

code or rigid data organization, while it is crucial that newly
emerging methods can be �exibly adapted, collaboratively
developed, and integrated with other tools.
CBS Tools provides dedicated open source methods for

high-resolution image processing [20]. Unfortunately, its
complex design and heavy dependencies can make the
installation and handling challenging for naive users, and
impede contributions from other researchers. With Nighres
we provide a �exible and user-friendly implementation of
CBS Tools’ functionality, which eliminates the dependency
on MIPAV and JIST. Another major advance of Nighres
compared to CBS Tools is its extensive online documentation.
Besides comprehensives explanation of every function’s in-
and outputs, carefully documented usage examples provide
step-by-step instructions of how the di�erent tools can be
combined to create complete processing pipelines.
The current implementation of Nighres contains a set of

cutting-edge methods, but rapid methodological advances
are to be expected in the dynamic �eld of high-resolution
neuroimaging. We therefore designed Nighres as a transparent
software platform through which newly developed methods
can be made available to the community and improved
collaboratively. New or existing tools can easily be added in
a variety of formats, depending on the speci�c requirements
of the operation and the preferences of the developer. The
extensive developer’s guide aims to encourage contributions
even from researchers with little previous experience in
software development.
We aimed to closely integrate our package with the existing

community around neuroimaging tools in Python. To this end,
we adopted standardized objects for internal data handling,
which can easily be exchanged with other tools. An example is
the seamless visualization of Nighres outputs using Nilearn’s
[27] plotting functions as showcased in the usage example
(Figure 1).
A major limitation of the current package is that it has been

developed and tested for common Linux platforms only. The
C++ code generated by JCC to interfaces with the CBS Tools
Java classes makes the compilation platform dependent. We
addressed this issue by providing an automated build script
that recompiles this code upon installation. While this process
has only been tested on Linux, the design makes a future
adaptation to Mac OS X platforms straightforward. Support
for Windows is not currently planned. However, the provided
Docker�le enables usage of Nighres in a container on any
platform that supports Docker.
Many future extension of the current package can be

envisioned. Besides integrating more of the original CBS Tools
functions, a main goal is to extend functionality with new
tools coded directly in Python. To ensure e�cient processing
of the large data this might require the implementation of
critical processes as C-extension through Cython18. Another
goal is to provide integration with tools for parallel processing
and job management on compute clusters.
In sum, we developed a user-friendly and well-documented

Python package that makes cutting-edge high-resolution im-
age processing tools available to the research community. The
toolbox is easy to install and provides a comprehensive set
of advanced techniques. While the current functionality is

18 http://cython.org/

largely based on CBS Tools, we hope that the �exible frame-
work encourages contribution of new tools, stimulates collabo-
ration, and accelerates progress in the promising �eld of high-
resolution neuroimaging.

Availability and requirements

• Project name: Nighres
• Project home page: https://github.com/nighres/nighres
• Operating system(s): Linux
• Programming language: Python, Java
• Other requirements: Java≥1.7, Python≥2.7, Numpy≥1.13,
Nibabel≥2.1.0

• License: Apache License 2.0

Availability of supporting data

The data sets supporting the results of this article are available
in the NITRC image repository [30] under https://www.nitrc.
org/frs/?group_id=1205.

Declarations

List of abbreviations

• MGDM - multiple object geometric deformable model
• MPM - quantitative multi-parameter mapping
• MP2RAGE - magnetization prepared two rapid acquisition
gradient echoes

• MRI - magnetic resonance imaging
• NITRC - the neuroimaging informatics tools and resources
clearinghouse

• QSM - quantitative susceptibility mapping

Ethical Approval

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

JMH project was partially funded by a stipend from Google via
the Google Summer of Code program, with INCF as mentoring
organization.

Author’s Contributions

JMH, CJS and PLB contributed equally to conceptualization of
the project and writing of the manuscript. JMH lead and CJS
and PLB supported software development. All authors read and
approved the �nal manuscript.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/nighres/nighres
https://www.nitrc.org/frs/?group_id=1205
https://www.nitrc.org/frs/?group_id=1205


6 | GigaScience, 2017, Vol. 00, No. 0

Acknowledgements

We would like to thank Gilles de Hollander, Nathaniel Kofalt
and Rüdiger Meier for their contributions to Nighres, Daniel S.
Margulies for his continuous support of this project, and Malin
Sandström and the INCF for their coordination of the Google
Summer of Code project.

References

1. van der Zwaag W, Schäfer A, Marques JP, Turner R, Tram-
pel R. Recent applications of UHF-MRI in the study of hu-
man brain function and structure: a review: UHF MRI: Ap-
plications to Human Brain Function and Structure. NMR in
Biomedicine 2016 Sep;29(9):1274–1288. http://doi.wiley.
com/10.1002/nbm.3275.

2. Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-
resolution quantitative mapping of R1 as an index of corti-
cal myelination. NeuroImage 2014 Jun;93:176–188. http://
linkinghub.elsevier.com/retrieve/pii/S1053811913006423.

3. Sereno MI, Lutti A, Weiskopf N, Dick F. Mapping the hu-
man cortical surface by combining quantitative T1 with
retinotopy. Cereb Cortex 2013;23(9):2261–2268.

4. Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI,
Weiskopf N. In vivo functional and myeloarchitectonic
mapping of human primary auditory areas. J Neurosci
2012;32(46):16095–16105.

5. Huntenburg JM, Bazin PL, Goulas A, Tardif CL, Villringer
A, Margulies DS. A Systematic Relationship Between Func-
tional Connectivity and Intracortical Myelin in the Human
Cerebral Cortex. Cerebral Cortex 2017 Feb;27(2):981–997.
https://academic.oup.com/cercor/article/2981936/A.

6. Dinse J, Härtwich N, Waehnert MD, Tardif CL, Schäfer A,
Geyer S, et al. A cytoarchitecture-driven myelin model
reveals area-speci�c signatures in human primary and
secondary areas using ultra-high resolution in-vivo brain
MRI. NeuroImage 2015 Jul;114:71–87. http://linkinghub.
elsevier.com/retrieve/pii/S1053811915003134.

7. Waehnert MD, Dinse J, Schäfer A, Geyer S, Bazin PL,
Turner R, et al. A subject-speci�c framework for in vivo
myeloarchitectonic analysis using high resolution quan-
titative MRI. NeuroImage 2016 Jan;125:94–107. http://
linkinghub.elsevier.com/retrieve/pii/S1053811915008897.

8. Fracasso A, van Veluw SJ, Visser F, Luijten PR, Spliet W,
Zwanenburg JJM, et al. Lines of Baillarger in vivo and ex
vivo: Myelin contrast across lamina at 7T MRI and histol-
ogy. Neuroimage 2016;133:163–175.

9. Whitaker KJ, Vértes PE, Romero-Garcia R, Váša F,
Moutoussis M, Prabhu G, et al. Adolescence is associated
with genomically patterned consolidation of the hubs of
the human brain connectome. Proc Natl Acad Sci U S A
2016;113(32):9105–9110.

10. Marques JP, Khabipova D, Gruetter R. Studying cyto and
myeloarchitecture of the human cortex at ultra-high �eld
with quantitative imaging: R1, R2(*) and magnetic suscep-
tibility. Neuroimage 2017;147:152–163.

11. Kok P, Bains L, vanMourik T, Norris D, deLange F. Se-
lective Activation of the Deep Layers of the Human Pri-
mary Visual Cortex by Top-Down Feedback. Current Biol-
ogy 2016 Feb;26(3):371–376. http://linkinghub.elsevier.
com/retrieve/pii/S0960982215015699.

12. Huber L, Handwerker D, Gonzalez-Castillo J, Jangraw MS
D, Guidi M, et al, Directional connectivity measured with
layer-dependent fMRI in human sensory-motor system;.
Talk presented at 3rd Biennial Whistler Scienti�c Work-
shop on Brain Functional Organization, Connectivity and
Behavior, March 6-9, 2016, Whistler, BC, Canada.

13. Huber L, Handwerker D, Gonzalez-Castillo J, Guidi M,
Ivanov D, Poser B, et al., Methods for measuring e�ec-
tive connectivity with high resolution blood volume fMRI;.
Talk presented at 24th Annual Meeting of the Interna-
tional Society for Magnetic Resonance in Medicine, May
7-9, 2016, Singapore.

14. Keuken MC, Bazin PL, Crown L, Hootsmans J, Laufer
A, Müller-Axt C, et al. Quantifying inter-individual
anatomical variability in the subcortex using 7T structural
MRI. NeuroImage 2014 Jul;94:40–46. http://linkinghub.
elsevier.com/retrieve/pii/S1053811914001797.

15. Steele CJ, Anwander A, Bazin PL, Trampel R, Schaefer
A, Turner R, et al. Human Cerebellar Sub-millimeter
Di�usion Imaging Reveals the Motor and Non-motor
Topography of the Dentate Nucleus. Cerebral Cor-
tex 2017;27(9):4537–4548. +http://dx.doi.org/10.1093/
cercor/bhw258.

16. Thürling M, Kahl F, Maderwald S, Stefanescu RM, Schla-
mann M, Boele HJ, et al. Cerebellar cortex and cerebellar
nuclei are concomitantly activated during eyeblink con-
ditioning: a 7T fMRI study in humans. J Neurosci 2015
Jan;35(3):1228–1239.

17. Forstmann BU, Keuken MC, Schafer A, Bazin PL, Alkemade
A, Turner R. Multi-modal ultra-high resolution structural
7-Tesla MRI data repository. Sci Data 2014 Dec;1:140050.

18. Gorgolewski KJ, Mendes N, Wil�ing D, Wladimirow E, Gau-
thier CJ, Bonnen T, et al. A high resolution 7-Tesla resting-
state fMRI test-retest dataset with cognitive and physio-
logical measures. Sci Data 2015 Jan;2:140054.

19. Tardif CL, Schäfer A, Trampel R, Villringer A, Turner R,
Bazin PL. Open Science CBS Neuroimaging Repository:
Sharing ultra-high-�eld MR images of the brain. Neu-
roimage 2016;124:1143–1148.

20. Bazin PL, Weiss M, Dinse J, Schäfer A, Trampel R, Turner
R. A computational framework for ultra-high resolution
cortical segmentation at 7Tesla. Neuroimage 2014 Jun;93
Pt 2:201–209.

21. Bazin PL, Plessis V, Fan AP, Villringer A, Gauthier CJ. Ves-
sel segmentation from quantitative susceptibility maps
for local oxygenation venography. IEEE; 2016. p. 1135–
1138. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7493466.

22. McAuli�e MJ, Lalonde FM, McGarry D, Gandler W, Csaky
K, Trus BL. Medical Image Processing, Analysis and Visu-
alization in clinical research. In: Computer-Based Medical
Systems, 2001. CBMS 2001. Proceedings. 14th IEEE Sympo-
sium on; 2001. p. 381–386.

23. Lucas BC, Bogovic JA, Carass A, Bazin PL, Prince JL, Pham
DL, et al. The Java Image Science Toolkit (JIST) for
rapid prototyping and publishing of neuroimaging soft-
ware. Neuroinformatics 2010 Mar;8(1):5–17.

24. Muller E, Bednar JA, Diesmann M, Gewaltig MO, Hines M,
Davison AP. Python in neuroscience. Front Neuroinform
2015 Apr;9:11.

25. Brett M, HankeM, Cipollini B, Côté MA, Markiewicz C, Ger-
hard S, et al. nibabel: 2.1. 0. Zenodo 2016;.

26. Gorgolewski KJ, Burns CD, Madison C, Clark D, Halchenko
YO. Nipype : a �exible, lightweight and extensible neu-
roimaging data processing framework in Python. Front
Neuroinform 2011;5(August).

27. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller
A, Kossai� J, et al. Machine learning for neuroimaging
with scikit-learn. Front Neuroinform 2014;8:14.

28. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array:
A Structure for E�cient Numerical Computation. Comput-
ing in Science Engineering 2011 March;13(2):22–30.

29. Bazin J P L Kipping, Steele CJ, Margulies D, Turner R, Vill-
ringer A, Subject-speci�c cortical cerebellar mapping at 3T

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://doi.wiley.com/10.1002/nbm.3275
http://doi.wiley.com/10.1002/nbm.3275
http://linkinghub.elsevier.com/retrieve/pii/S1053811913006423
http://linkinghub.elsevier.com/retrieve/pii/S1053811913006423
https://academic.oup.com/cercor/article/2981936/A
http://linkinghub.elsevier.com/retrieve/pii/S1053811915003134
http://linkinghub.elsevier.com/retrieve/pii/S1053811915003134
http://linkinghub.elsevier.com/retrieve/pii/S1053811915008897
http://linkinghub.elsevier.com/retrieve/pii/S1053811915008897
http://linkinghub.elsevier.com/retrieve/pii/S0960982215015699
http://linkinghub.elsevier.com/retrieve/pii/S0960982215015699
http://linkinghub.elsevier.com/retrieve/pii/S1053811914001797
http://linkinghub.elsevier.com/retrieve/pii/S1053811914001797
+ http://dx.doi.org/10.1093/cercor/bhw258
+ http://dx.doi.org/10.1093/cercor/bhw258
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7493466
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7493466


Huntenburg et al. | 7

and 7T;. Poster presented at the 19th Annual Meeting of
the Organization for Human Brain Mapping, June 16-20,
2013, Seattle, USA.

30. Kennedy DN, Haselgrove C, Riehl J, Preuss N, Buccigrossi
R. The NITRC image repository. NeuroImage 2016;124(Part
B):1069–1073.

31. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de
Moortele PF, Gruetter R. MP2RAGE, a self bias-�eld
corrected sequence for improved segmentation and T1-
mapping at high �eld. Neuroimage 2010 Jan;49(2):1271–
1281.

32. Bogovic J, Prince J, Bazin P. Amultiple object geometric de-
formable model for image segmentation. Computer Vision
and Image Understanding 2013;117(2):145–157.

33. Trampel R, Bazin PL, Pine K, Weiskopf N. In-vivo mag-
netic resonance imaging (MRI) of laminae in the human
cortex. Neuroimage 2017 Sep;.

34. Paus T. Imaging microstructure in the living human brain:
A viewpoint. NeuroImage 2017;http://www.sciencedirect.
com/science/article/pii/S1053811917308261.

35. Goebel R. BrainVoyager–past, present, future. Neuroim-
age 2012 Aug;62(2):748–756.

36. Zaretskaya N, Fischl B, Reuter M, Renvall V, Polimeni JR.
Advantages of cortical surface reconstruction using sub-
millimeter 7 T MEMPRAGE. Neuroimage 2017 Sep;165:11–
26.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.sciencedirect.com/science/article/pii/S1053811917308261
http://www.sciencedirect.com/science/article/pii/S1053811917308261

