
GigaScience
 

Nighres: Processing tools for high-resolution neuroimaging
--Manuscript Draft--

 
Manuscript Number: GIGA-D-17-00325R1

Full Title: Nighres: Processing tools for high-resolution neuroimaging

Article Type: Technical Note

Funding Information:

Abstract: With recent improvements in human magnetic resonance imaging (MRI) at ultra-high
fields, the amount of data collected per subject in a given MRI experiment has
increased considerably. Standard image processing packages are often challenged by
the size of these data and dedicated methods are needed to leverage their
extraordinary spatial resolution. Here we introduce a flexible Python toolbox which
implements a set of advanced techniques for high-resolution neuroimaging. With these
tools, segmentation and laminar analysis of cortical MRI data can be performed at
resolutions up to 500 μm in reasonable times. Comprehensive online documentation
makes the toolbox easy to use and install. An extensive developer's guide encourages
contributions of other researchers that will help to accelerate progress in the promising
field of high-resolution neuroimaging.

Corresponding Author: Julia M Huntenburg
Max-Planck-Institut fur Kognitions- und Neurowissenschaften
Leipzig, GERMANY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Max-Planck-Institut fur Kognitions- und Neurowissenschaften

Corresponding Author's Secondary
Institution:

First Author: Julia M Huntenburg

First Author Secondary Information:

Order of Authors: Julia M Huntenburg

Christopher J Steele

Pierre-Louis Bazin

Order of Authors Secondary Information:

Response to Reviewers: We have now included the reference to the GigaDB entry in the section "Availability of
supporting data".

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


Have you included all the information
requested in your manuscript?

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

Not applicable as this manuscript describes software

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Placeholder for
OUP logo
oup.pdf

GigaScience, 0000, 1–9
doi: xx.xxxx/xxxx
Manuscript in Preparation
Technical Note

TE CHN I C A L NOTE

Nighres: Processing tools for high-resolution
neuroimaging
Julia M Huntenburg1,2,*, Christopher J Steele3,4,† and Pierre-Louis
Bazin3,5,6,7,†
1Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive
and Brain Sciences, Leipzig, Germany and 2Neurocomputation and Neuroimaging Unit, Department of
Education and Psychology, Free University of Berlin, Berlin, Germany and 3Department of Neurology, Max
Planck Institute for Human Cognitive and Brain Sciences, Germany and 4Cerebral Imaging Center, Douglas
Mental Health University Institute, Montreal, QC, Canada and 5Department of Neurophysics, Max Planck
Institute for Human Cognitive and Brain Sciences, Leipzig, Germany and 6Social Brain Lab, Netherlands
Institute for Neuroscience, Amsterdam, Netherlands and 7Spinoza Centre for Neuroimaging, Amsterdam,
Netherlands
*Correspondance: ju.huntenburg@gmail.com
†Contributed equally

Abstract
With recent improvements in human magnetic resonance imaging (MRI) at ultra-high �elds, the amount of data collected
per subject in a given MRI experiment has increased considerably. Standard image processing packages are often
challenged by the size of these data and dedicated methods are needed to leverage their extraordinary spatial resolution.
Here we introduce a �exible Python toolbox which implements a set of advanced techniques for high-resolution
neuroimaging. With these tools, segmentation and laminar analysis of cortical MRI data can be performed at resolutions up
to 500 µm in reasonable times. Comprehensive online documentation makes the toolbox easy to use and install. An
extensive developer’s guide encourages contributions of other researchers that will help to accelerate progress in the
promising �eld of high-resolution neuroimaging.
Key words: Neuroimaging in Python; High-resolution MRI; Ultra-high �eld MRI; Laminar MRI; Python Java integration

Background

Advances in ultra-high �eld (7 Tesla and above) MRI now
make it possible to image the entire human brain at an
unprecedented level of detail [1]. Submillimeter resolutions
and quantitative metrics reveal �ne-grained variations in
structure and function that were previously undetectable in
vivo. This information allows researchers to ask new questions
about the human brain. Examples include the investigation of
intracortical myelin [e.g 2, 3, 4, 5], the laminar organization
of the cortical sheet [e.g. 6, 7, 8, 9, 10], feedforward and

feedback patterns in cortical connections [11, 12] and the
detailed description of small cortical and subcortical structures
[13, 14] and their function [15].

While ultra-high �eld scanners have become increasingly
available, and the �rst open 7 Tesla (T) MRI data sets have
been released [16, 17, 18], software tools still lag behind.
Standard neuroimaging software packages are often not
designed to handle the growing data size and new quantitative
contrasts. Three-dimensional MRI data grows as a cube
of its resolution, and computational complexity generally

Compiled on: June 26, 2018.
Draft manuscript prepared by the author.

1

Main Latex file Click here to access/download;Manuscript;main.tex

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/giga/download.aspx?id=45043&guid=5260edd2-9010-49e6-82c6-dd058f8dcb49&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=45043&guid=5260edd2-9010-49e6-82c6-dd058f8dcb49&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=838&rev=1&fileID=45043&msid=ba449d5b-16fd-470d-a51a-195db0c8bd69


2 | GigaScience, 0000, Vol. 00, No. 0

Key Points

• A toolbox dedicated to the processing of high-resolution MRI data
• Lightweight and �exible code written in Python for ease of use, expansion and integration with other tools
• Extensive documentation with developer’s guide and usage examples based on open data

ranges between O(N logN) and O(N2). Therefore, a change
in spatial resolution from 1 mm to 0.5 mm easily entails an
increase in computational requirements by a factor of 15 to 60,
depending on the methods used. Moreover, new applications
such as laminar analysis have only become possible with
higher resolutions and are not implemented in many existing
software packages.
CBS High-Res Brain Processing Tools (CBS Tools) is

a software suite which addresses this gap by providing
cutting-edge methods for e�cient processing of MR images
at submillimeter resolution [19]. For example, CBS Tools
implements routine cortical segmentation at resolutions as
high as 400 µm, processing of quantitative MRI sequences
such as MP2RAGE, MPM or QSM [19], laminar analysis [7],
and small vessel segmentation [20]. While this software
has been well-received as a key tool set for quantitative and
high-resolution neuroimaging, its adoption has been slowed
by the complex infrastructure it builds on. CBS Tools have
been developed in Java as a set of plugins for the MIPAV
software package [21] and the JIST pipeline environment
[22]. The MIPAV and JIST framework provides a graphical
interface for building analysis pipelines and implements many
convenient tools, but it comes with a complex installation
procedure, heavy dependencies, and limited documentation.
More importantly, it is di�cult to integrate with other popular
neuroimaging tools, limiting its software ecosystem.
Meanwhile, a range of versatile, interoperable open source

packages for the analysis of neuroscienti�c data has been de-
veloped using the increasingly popular programming language
Python [23]. For example, Nipy1 is a community of practice
devoted to the use of Python in the analysis of neuroimaging
data, encompassing popular tools such as Nibabel [24], Nipype
[25], Nilearn [26] and many others.
Here we present Nighres2 – a new toolbox that makes the

quantitative and high-resolution image processing capabilities
of CBS Tools available in Python. Nighres is a user-friendly
Python package which interfaces with CBS Tools while avoiding
the JIST and MIPAV dependency tree. It facilitates integration
with other Python-based neuroimaging tools and interactive
data exploration, for example in Jupyter notebooks.3 Nighres
features comprehensive online documentation with usage ex-
amples that are based on publicly available data sets. An exten-
sive developer’s guide encourages external contributions. With
this new package, we aim to make the functionality of CBS
Tools accessible to a wider community, highlight the potential
of new high-resolution image processing methods, and foster
collaboration in this emerging �eld.

1 http://nipy.org/
2 NeuroImaginG at High RESolution
3 http://jupyter.org/

Implementation

Architecture and design

The Nighres package consists of two core Python modules. The
module cbstools contains the original CBS Tools Java classes
that have been encapsulated using the JCC package.4 JCC en-
capsulates the Java code with C++ code, to make it accessible to
the Python interpreter, and produces a complete Python exten-
sion module. The module nighres includes the Python inter-
faces that are exposed to the user. It is organized in submod-
ules that represent di�erent application areas.5 For example,
the submodule laminar contains functions related to laminar
analysis of the cortical sheet. There are currently two types of
Python interfaces within these submodules:
i. Functions that wrap Java classes
ii. Functions in pure Python
Functions that wrap Java classes
The initial motivation to develop Nighres was to provide a user-
friendly interface to the functionality of CBS Tools, leveraging
the �exibility of Python. Therefore, a majority of the current
functions in Nighres constitute Python wrappers which inter-
nally execute the original CBS Tools Java classes. These func-
tions generally adhere to the following basic structure (a simple
example can be found in the function probability_to_levelset):
i. Evaluate input parameters
ii. Start Java virtual machine
iii. Initiate Java class through JCC wrapper
iv. Load input data and cast to Java array
v. Pass additional parameters to Java class
vi. Execute Java class
vii. Collect outputs of Java class and cast back
viii. Return outputs (optional: save outputs)
Thus, the actual processing still relies on the same optimized
Java code as in the original CBS Tools. However, since the
Nighres function takes care of the interfacing between Python
and Java, the user only interacts with Python code.
Functions in pure Python
Our long-term vision is for Nighres to become a central plat-
form for new high-resolution image processing tools as they
are developed. As discussed above, Python is rapidly becoming
the most popular programming language in the neuroimaging
community [23]. Themodular design of Nighres allows for easy
integration of pure Python processing routines, meaning that
new functions can be contributed without the need to interact
with Java or to learn about the JCC based wrapping procedure.
In addition, it is possible to integrate useful tools from other
neuroimaging software that have been (or can be) wrapped in
Python for example using Nipype [25]. Currently, Nighres in-

4 http://lucene.apache.org/pylucene/jcc/index.html
5 For consistency the submodule names are based on the original module
organization in CBS Tools

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://nipy.org/
http://jupyter.org/
http://lucene.apache.org/pylucene/jcc/index.html


Huntenburg et al. | 3

cludes a core set of Python functions for input and output, pa-
rameter handling, and �le naming to simplify function calls
and minimize the integration burden for new methods.

Data handling

Data handling within Nighres follows established and widely
used standards in the neuroimaging community to ensuremax-
imal interoperability. Where possible, Nighres uses the Niba-
bel package for handling imaging data [24]. Input and out-
put functions are designed to automatically recognize and load
most commonly used data formats, while maintaining �exi-
bility to accommodate loading of non-standard data formats
using custom scripts. Data is internally represented as Niba-
bel Nifti1Images (volumes) or Python dictionaries (surfaces) and
can be passed in the form of �le names or memory objects. Pro-
cessing results are returned as memory objects, functions with
multiple outputs return a dictionary storing the di�erent out-
puts. Outputs can also be saved to disk. For saving, modi�ers
are appended to the output �le names that refer to the name
of the function and the speci�c output (e.g. _layering_depth for
the continuous depth output of the layering function). Output
names can be set to have a speci�c pre�x or, by default, append
modi�ers to the main input �le name.

Distribution

While both Python and Java are cross-platform languages, the
JCC package encapsulates CBS Tools’ Java classes with C++ code
and thus makes the compilation platform-speci�c. We im-
plemented an automated build script that compiles the orig-
inal CBS Tools Java code and builds the wrappers using JCC.
We set up continuous integration using Travis CI6 to test the
build upon any changes to the code base on Github and, for
any tagged releases, deploy the package to the Python Pack-
age Index.7 The user can then download the package, run the
fully automated build script to recompile the Java code and C++
wrappers on their platform, and �nally use the pip installer8 to
install the modules and all their dependencies. Subsequently,
Nighres can simply be imported into any Python environment.
We also provide a container allowing users to test Nighres in a
preset environment, without actually installing it on their sys-
tem. For this option the user only has to install Docker,9 a
lightweight container platform that runs on Linux, Windows
and Mac OS X. The Nighres Docker�le10 can then be used to
build an Ubuntu 14 Trusty Docker image that contains a suit-
able Java installation, Nighres, and Jupyter Notebook.
Dependencies
One goal of Nighres was to reduce external dependencies. We
therefore restricted the required packages for Nighres’ core
functionality to Nibabel, for reading and writing of common
neuroimaging data formats [24], and Numpy, for e�cient
manipulation of data arrays [27]. The functions wrapping
CBS Tools code require the CBS Tools Java library as well the
Java matrix manipulation11 and Apache Commons Math12 li-
braries. However, these libraries are automatically recom-
piled, wrapped and installed from the CBS Tools github repos-

6 https://travis-ci.org/nighres
7 https://pypi.python.org/pypi/nighres
8 https://pip.pypa.io/en/stable/
9 https://www.docker.com/
10 https://github.com/nighres/nighres/blob/master/Dockerfile
11 http://math.nist.gov/javanumerics/jama/
12 http://commons.apache.org/proper/commons-math/

itory13 upon installation of Nighres. Our example work�ows
use Nilearn’s [26] plotting functionality for visualizing their
results, but will automatically skip plotting if Nilearn is not
installed.
Support �les
Nighres automatically installs all essential support �les includ-
ing statistical atlases for brain segmentation, look-up tables
for topological constraints, templates for high-resolution spa-
tial normalization, and a cerebellar lobular atlas [28]. Exam-
ple data from publicly released 7T data sets is hosted on the
Nighres project page14 at the neuroimaging informatics tools
and resources clearinghouse [NITRC, 29]. This data is automat-
ically downloaded when running the example work�ows.

Documentation

Beyond functional code, clear and concise documentation is one
of the most important drivers of software use and longevity.
Nighres’ online documentation15 was implemented using the
Sphinx documentation tool.16 The online content is automat-
ically generated from the original function docstrings, which
are written according to the the Numpy/Scipy documentation
guidelines.17 This design ensures that the documentation stays
up-to-date with minimal overhead for developers, and is in-
tuitive for users. Extensive example work�ows provide users
with easily understandable and reproducible code (see sec-
tion Usage example below). Finally, the online documentation
contains an in-depth developer’s guide that leads contribu-
tors through all steps necessary to submit code changes, new
Python functions or CBS Tools wrappers to the Nighres github
repository. We aimed to write a guide that makes it feasible
for any researcher working with high-resolution neuroimag-
ing data to contribute to Nighres, even without much previous
experience in software development.

Functionality

Nighres contains a set of advanced functions which are not
commonly implemented in neuroimaging software and/or have
been optimized towards the speci�c demands of processing
high-resolution and quantitative neuroimaging data. In this
section, we provide an overview of the major features that are
currently implemented. Their application will be demonstrated
in the subsequent section, which also indicates example com-
putation times. A more in-depth discussion of the individual
algorithms and their performance can be found in the original
references listed for each function.
MP2RAGE skull-stripping
This fast skull-stripping algorithm has been optimized for
quantitative images acquired at 7T using the MP2RAGE se-
quence [30]. See [19] for details.
Multiple object geometric deformablemodel segmentation (MGDM)
MGDM is a whole brain tissue classi�cation method, designed
to routinely process datasets at resolutions up to 400 µm. A va-
riety of inputs (MP2RAGE at 3T, 7T and 9.4T; MPM at 3T and
7T; T1-, T2- and di�usion-weighted images) as well as mul-
tiple inputs are accepted. This atlas-guided method uniquely

13 https://github.com/piloubazin/cbstools-public
14 https://www.nitrc.org/projects/nighres/
15 http://nighres.readthedocs.io/en/latest/
16 http://www.sphinx-doc.org/en/stable/
17 https://numpydoc.readthedocs.io/en/latest/format.html

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 https://travis-ci.org/nighres
https://pypi.python.org/pypi/nighres
https://pip.pypa.io/en/stable/
https://www.docker.com/
https://github.com/nighres/nighres/blob/master/Dockerfile
http://math.nist.gov/javanumerics/jama/
http://commons.apache.org/proper/commons-math/
https://github.com/piloubazin/cbstools-public
https://www.nitrc.org/projects/nighres/
http://nighres.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/stable/
https://numpydoc.readthedocs.io/en/latest/format.html


4 | GigaScience, 0000, Vol. 00, No. 0

preserves the topological properties and relationships of all 25
classi�ed brain structures. See [19, 31, 32] for details.
Cortical reconstruction using implicit surface evolution (CRUISE)
CRUISE provides a precise and e�cient method to extract cor-
tical surfaces from high-resolution volumetric data based on
level set representations (see next subsection). A distinguish-
ing feature of this algorithm is the careful modeling of sulcal
fundi. CRUISE can be applied to cerebral and cerebellar cortices
and to data with partial brain coverage. See [33] for details.
Level set creation
This function creates level sets from probabilistic or determin-
istic tissue classi�cations. Level sets are signed distance func-
tions that can be used for representing cortical surfaces in voxel
space instead of triangular meshes. Such representations have
favorable mathematical properties, avoid mesh sampling prob-
lems and facilitate the integration of volumetric and surface
data. Several Nighres functions rely on level sets internally.
See [19] for details.
Equivolumetric layering
Nighres implements an equivolumetric technique for mod-
eling intracortical laminae. This approach accounts for the
dependency of layer thickness on local curvature by preserving
the volume of cortical segments [cf. 34]. The resulting cortical
depth estimates represent an intracortical coordinate system
that is anatomically more accurate than commonly applied
equidistant or Laplacian approaches. Intracortical surfaces are
represented as level sets. See [35] for details.
In addition to the aforementioned functions, we are cur-

rently preparing to migrate CBS Tools’ multi-modal surface
registration algorithm [36] and non-linear deformation utili-
ties, as well as algorithms for topology correction [37] and vas-
cular segmentation [20] into the Nighres package.

Usage example

In the following we present a Nighres usage example. It shows
how to obtain a tissue classi�cation and cortical depth estima-
tion from MP2RAGE data, acquired at 7T with a resolution of
0.7 mm isotropic. The pipeline contains the following steps:
i. Downloading the open MP2RAGE data set from NITRC
ii. Removing the skull and creating a brain mask
iii. Atlas-guided tissue classi�cation using MGDM [31]
iv. Extracting the cortex of one hemisphere
v. Cortical reconstruction using CRUISE [33]
vi. Equivolumetric modeling of intracortical laminae [35]
The outputs of the plotting functions are shown in Figure 1
and 2. Average computation times for the di�erent processing
steps in this example are indicated in Table 1. They were deter-
mined on a standard laptop (8GB RAM, i7-5500U dual core pro-
cessor, 4MB cache, 3 GHzmaximum frequency) using Python’s
timeit module.18

Import and download

First, we import nighres and the os module to set the output
directory.
import nighres, os

18 https://docs.python.org/2/library/timeit.html

out_dir = os.path.join(os.getcwd(),
"nighres_examples/tissue_classification")

We also import Nilearn’s plotting functions. If Nilearn is not
installed, plotting will be skipped in the online examples.
from nilearn import plotting

Now we download an example MP2RAGE dataset that is hosted
on NITRC. It is the structural scan of the �rst subject, �rst
session of the 7T test-retest dataset published in [17].
dataset = nighres.data.download_7T_TRT(out_dir)

Skull stripping

The �rst processing step is skull stripping. The brain mask
is calculated based on the second inversion image of the
MP2RAGE sequence. For convenience, we can also input the
quantitative T1 map and the T1-weighted image, to which the
calculated brain mask will then be applied. We save the out-
puts in the out_dir speci�ed above and use a subject ID as the
base �le name.
skullstrip_results = nighres.brain.mp2rage_skullstripping(

second_inversion=dataset["inv2"],
t1_weighted=dataset["t1w"],
t1_map=dataset["t1map"],
save_data=True, output_dir=out_dir
file_name="sub001_sess1")

To check if the skull stripping worked well, we plot the brain
mask on top of the original image (Figure 1a). Nighres, like
Nilearn, uses Nibabel’s Nifti1Image object to pass data inter-
nally. Therefore, we can directly pass the outputs to Nilearn’s
plotting functions without saving and reloading. Alternatively,
the images stored in out_dir can be opened in any common
interactive viewer that can read the Nifti data format.
plotting.plot_roi(skullstrip_results["brain_mask"],

dataset["t1w"], cut_coords=[15, 25, 30],
annotate=False, black_bg=False, draw_cross=False,
cmap="PuRd_r")

(We hereafter omit the plotting code, it can be found in the
online documentation).

Tissue class

B

A

Figure 1. Tissue classi�cation from MP2RAGE data. A The brain mask ob-
tained from skull stripping. (Note that the white rectangles in the image occur
because the data has been "defaced" for anonymization) B The result of the
MGDM tissue classi�cation. Visualized using Nilearn [26].

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://docs.python.org/2/library/timeit.html


Huntenburg et al. | 5

MGDM tissue classi�cation

Next, we use the masked data as input for tissue classi�cation
with the MGDM algorithm [31]. MGDM works with a single
contrast, but can be improved with additional contrasts. In this
case we use the T1-weighted image as well as the quantitative
T1 map.
mgdm_results = nighres.brain.mgdm_segmentation(

contrast_image1=skullstrip_results["t1w_masked"],
contrast_type1="Mp2rage7T",
contrast_image2=skullstrip_results["t1map_masked"],
contrast_type2="T1map7T",
save_data=True, output_dir=out_dir,
file_name="sub001_sess1")

The topology-constrained segmentation that MGDM creates is
shown in Figure 1b.

Cortical surface reconstruction

First we extract from the MGDM output the regions needed for
cortical reconstruction. The outputs are membership functions
for the following regions: the gray matter cortex (’region’), the
underlying white matter (with �lled subcortex and ventricles,
’inside’) and the surrounding cerebrospinal �uid (with masked
regions, ’background’).
cortex = nighres.brain.extract_brain_region(

segmentation=mgdm_results["segmentation"],
levelset_boundary=mgdm_results["distance"],
maximum_membership=mgdm_results["memberships"],
maximum_label=mgdm_results["labels"],
extracted_region="left_cerebrum",
save_data=True, output_dir=out_dir,
file_name="sub001_sess1_left_cerebrum")

Next, we use the extracted data as input for cortical reconstruc-
tion with the CRUISE algorithm [33]. CRUISE uses the mem-
bership functions as a guide and the white matter mask as a
(topologically spherical) starting point to grow re�ned bound-
aries between the gray and white matter and the gray matter
and the cerebrospinal �uid.
cruise = nighres.cortex.cruise_cortex_extraction(

init_image=cortex["inside_mask"],
wm_image=cortex["inside_proba"],
gm_image=cortex["region_proba"],
csf_image=cortex["background_proba"],
normalize_probabilities=True,
save_data=True, output_dir=out_dir
file_name="sub001_sess1_left_cerebrum")

The topology-constrained segmentation with re�ned bound-
aries that CRUISE created is shown in Figure 2a.

Modeling of intracortical laminae

Finally, we use the gray–white matter boundary (GWB) and
cerebrospinal �uid–gray matter boundary (CGB) from CRUISE
to compute cortical depth and model intracortical laminae.
Importantly, the equivolumetric approach implemented in
Nighres accounts for the dependency of layer thickness on cor-
tical folding [for an in-depth discussion see 35].
depth = nighres.laminar.volumetric_layering(

inner_levelset=cruise["gwb"],
outer_levelset=cruise["cgb"],
n_layers=4,
save_data=True, output_dir=out_dir,
file_name="sub001_sess1_left_cerebrum")

Figure 2b shows the continuous equivolumetric depth esti-
mate. The function call also outputs discrete representations
of the modeled laminae as well as level sets describing the
intracortical surfaces.
In summary, this example implements a complete work�ow
for advanced processing of a quantitative MR contrast at high
spatial resolution (voxel size = 0.7 mm isotropic). With the
openly available and automatically downloaded data, any user
can try out Nighres’ functionality immediately after installa-
tion and then adapt the code for their own use case. The ex-
amples can be found in our online documentation,19 where the
code can be downloaded as Python scripts or Jupyter notebooks.

Depth
CortexInside Outside

BA

Figure 2. Cortical surface reconstruction and depth estimation. A Topology-
constrained reconstruction of the boundaries between the cortical grey matter
(Cortex, blue) the cerebrospinal �uid (Outside, white) and the white matter (In-
side, brown) using CRUISE [33] B Intracortical depth estimated using an equiv-
olumetric approach [35]. Visualized using Nilearn [26].

Discussion

The availability of high-resolution and quantitative MRI data
and the interest in new research directions that this data en-
ables are rapidly growing [e.g 38, 39]. At the same time, im-
age processing tools required to leverage the new level of spa-
tial detail provided by this data are scarce. We developed a
Python toolbox that specializes in processing high-resolution
brain imaging data. It has been designed with two key pur-
poses in mind:
i. to provide the neuroimaging community with user-
friendly access to cutting-edge high-resolution image pro-
cessing tools
ii. to create a �exible framework that can be extended by
other researchers, along with thorough instructions on how
to contribute

Comparison to other tools

Mostmajor neuroimaging packages are optimized for data with
a maximum spatial resolution of 1 mm isotropic. Only re-
cently some extensions and new tools for processing of high-
resolution data have begun to emerge, which will be discussed
in the following.20

19 http://nighres.readthedocs.io/en/latest/auto_examples/index.html
20 cf. https://layerfmri.com/2018/01/04/layer-fmri-software-in-the-field/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://nighres.readthedocs.io/en/latest/auto_examples/index.html
https://layerfmri.com/2018/01/04/layer-fmri-software-in-the-field/


6 | GigaScience, 0000, Vol. 00, No. 0

Table 1. Computation times for usage example.
Processing step Duration
Skull stripping 1 min 8 sec (8 sec)
MGDM tissue classi�cation 6 min 58 sec (30 sec)
CRUISE surface reconstruction 1 min 57 sec (3 sec)
Equivolumetric layering 1 min 23 sec (6 sec)

Shown are average durations over 10 repetitions (with standard deviations in
brackets), determined on a standard laptop. See main text for details.

Freesurfer
Freesurfer is a popular open-source package for analyzing cor-
tical surface data [40, 41]. It is robust, well-documented and
applicable across platforms. By default, Freesurfer resamples
the input data to a spatial resolution of 1 mm isotropic, oblit-
erating the advantages of higher resolution data. The latest
Freesurfer release includes an option for processing at submil-
limiter resolution [42]. However, this option is still under de-
velopment and tested only for a resolution of 0.75 mm.21 A
Matlab routine for laminar analysis of high-resolution MRI
data using Freesurfer has been proposed as well.22 Here, in-
tracortical surfaces are evolved as triangular meshes starting
from the gray-white matter boundary in an equidistant fash-
ion. This approach can cause errors and mesh irregularities,
especially closer to the pial surface, and does not take into ac-
count the known dependency of layer thickness on local curva-
ture.
More generally, Freesurfer’s robustness and ease-of-use come
at the cost of strict requirements for data organization (e.g. im-
posed directory structure, native �le format) and limited �ex-
ibility in the adaptation of individual processing steps for new
applications. While it provides excellent pipelines for standard
processing of T1- or T2-weighted whole brain scans, it is not
optimized for processing non-standard data such as quantita-
tive T1 maps or images with partial brain coverage. At the same
time, replacing individual processing steps with customized al-
gorithms, combining Freesurfer with other tools, or applying
manual corrections can be challenging even for experienced
users. Therefore, while Freesurfer will likely play an important
role as ultra-high �eld imaging becomes more abundant, it
currently lacks the �exibility required for the active and collab-
orative development of new techniques in this emerging �eld.
BrainVoyager
Another software that has recently extended its functionality
to the speci�c demands of high-resolution image processing
is BrainVoyager [43]. A new pipeline, comprehensively de-
scribed in a recent publication [44], enables laminar and colum-
nar analyses of 9.4T data. Intracortical surfaces are modeled
following the equivolumetric approach through the evolution
of regular grids for small regions of interest. Unfortunately,
BrainVoyager is a commercial software with closed source code.
Besides the �nancial aspect of buying a license, this also entails
that details of the applied algorithms are not transparent and
the software cannot be adapted by users.
LAYNII
LAYNII is a set of highly optimized C++ tools for laminar anal-
ysis of high-resolution fMRI data with partial brain coverage
[12].23 Equivolumetric layering is available for slices without
3D curvature. The implementation in C++ enables fast process-
ing, but has the disadvantage that fewer researchers can adapt

21 https://surfer.nmr.mgh.harvard.edu/fswiki/SubmillimeterRecon
22 https://github.com/kendrickkay/cvncode/blob/master/cvnmakelayers.m
23 https://github.com/layerfMRI

or contribute code, as compared to high-level languages like
Python. LAYNII also lacks documentation, making it hard for
new users to adopt it.
LAYNII is a good example of an advanced toolbox that serves a
speci�c purpose and could bene�t from being combined with
a more comprehensive and well-documented software frame-
work for high-resolution image processing. It will be crucial
in the future to synchronize Nighres with more specialized
projects such as LAYNII, and make their integration as easy
as possible.
CBS Tools
Nighres evolved out of CBS Tools, a suite of Java tools provid-
ing dedicated open source methods for high-resolution and
quantitative image processing [19]. This includes specialized
techniques such as equivolumetric layering [35] or multi-
modal surface registration [36], as well as versions of more
common applications, like tissue classi�cation, that have been
optimized for high-resolution data and quantitative contrasts.
While many standard processing algorithms in neuroimaging
grow at a log-linear (O(N logN)) or even quadratic (O(N2)) rate
with data size, CBS Tools’ algorithms approach linear rates
(O(N)) or use non-iterative solutions [for details see 19]. CBS
Tools can thus routinely operate on data at resolutions of up
to 0.5 mm isotropic.
As described in the introduction, CBS Tools’ complex design
and heavy dependencies make the installation and handling
challenging and impede contributions from other researchers.
In a previous project report we have presented simple Python
wrappers for selected CBS Tools functions [45]. Here we
described a comprehensive software framework that has
evolved out of these initial attempts. With Nighres we present
a �exible and user-friendly implementation of CBS Tools’
functionality, which eliminates the dependency on MIPAV and
JIST. This approach provides a signi�cant improvement in
usability while preserving the excellent performance of CBS
Tools. Another major advance of Nighres compared to CBS
Tools is its extensive online documentation. Besides explain-
ing every function’s in- and outputs, it provides carefully
documented usage examples with step-by-step instructions
of how the di�erent tools can be combined to create complete
processing pipelines. The implementation in Python along
with a detailed developer’s guide facilitate adaptation and
extension of the existing tools by other researchers.
We gave an example of Nighres’ performance in the previ-

ous section (see Table 1). To put this example into perspective,
consider Freesurfer’s recon-all command, probably the most
common approach for whole brain tissue classi�cation and
cortical surface reconstruction. This command processes a
whole brain image at 1 mm isotropic resolution within a few
hours. In comparison, the Nighres pipeline presented above
achieves tissue classi�cation and segmentation plus cortical
layering at 0.7 mm isotropic resolution (roughly corresponding
to a three-fold increase in data size as compared to 1 mm
isotropic) in less than 15 minutes.

Future directions

The current implementation of Nighres contains a set of
cutting-edge methods, but rapid methodological advances
are to be expected in the dynamic �eld of high-resolution
neuroimaging. We therefore designed Nighres as a transparent
software platform through which newly developed methods
can be made available to the community and improved collab-
oratively. New or existing tools can easily be added in a variety

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://surfer.nmr.mgh.harvard.edu/fswiki/SubmillimeterRecon
https://github.com/kendrickkay/cvncode/blob/master/cvnmakelayers.m
https://github.com/layerfMRI


Huntenburg et al. | 7

of formats, depending on the speci�c requirements of the
operation and the preferences of the developer. The extensive
developer’s guide aims to encourage contributions even
from researchers without extensive experience in software
development.
We intend to closely integrate our package with the existing

community around neuroimaging tools in Python. To this end,
we adopted standardized objects for internal data handling,
which can easily be exchanged with other tools. An example is
the seamless visualization of Nighres outputs using Nilearn’s
[26] plotting functions, as showcased in the usage example
(Figure 1 and 2).
A major limitation of the current package is that it has

been developed and tested for common Linux platforms only.
The C++ code generated by JCC to interface with CBS Tools’
Java classes makes the compilation platform dependent. We
addressed this issue by providing an automated build script
that recompiles the code upon installation. While this process
has only been tested on Linux, the design makes a future
adaptation to Mac OS X platforms straightforward. Support
for Windows is not currently planned. However, the provided
Docker�le enables usage of Nighres in a container on any
platform that supports Docker.
Many future extensions of the current package can be

envisioned. Besides integrating more of the original CBS Tools
functions, a main goal is to extend functionality with new
tools coded directly in Python and potentially to replace the
Java dependency altogether. To ensure e�cient processing
of the large data this might require increasing Python’s
performance for example using Numba.24 Another goal is to
provide integration with tools for parallel processing and job
management on compute clusters.

Conclusion

We developed a user-friendly and well-documented Python
package that makes cutting-edge high-resolution image pro-
cessing tools available to the research community. The toolbox
is easy to install and provides a comprehensive set of advanced
techniques. While the current functionality is largely based
on CBS Tools, we hope that the �exible framework encourages
contribution of new tools, stimulates collaboration, and accel-
erates progress in the promising �eld of high-resolution neu-
roimaging.

Availability and requirements

• Project name: Nighres
• Project home page: https://github.com/nighres/nighres
• Operating system(s): Linux
• Programming language: Python, Java
• Other requirements: Java≥1.7, Python≥2.7, Numpy≥1.13,
Nibabel≥2.1.0

• License: Apache License 2.0
• RRID: SCR_016287

24 https://numba.pydata.org/

Availability of supporting data

The data sets supporting the results of this article are available
in the NITRC image repository [29] under https://www.nitrc.
org/frs/?group_id=1205. Snapshots of the data and code are
also available in the GigaScience GigaDB repository [46].

Declarations

List of abbreviations

• CRUISE - cortical reconstruction using implicit surface evo-
lution

• MGDM - multiple object geometric deformable model
• MPM - quantitative multi-parameter mapping
• MP2RAGE - magnetization prepared two rapid acquisition
gradient echoes

• MRI - magnetic resonance imaging
• NITRC - the neuroimaging informatics tools and resources
clearinghouse

• QSM - quantitative susceptibility mapping
• T - Tesla

Ethical Approval

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

JMH project was partially funded by a stipend from Google via
the Google Summer of Code 2017 program, with INCF as men-
toring organization.

Author’s Contributions

JMH, CJS and PLB contributed equally to the conceptualization
of the project and writing of the manuscript. JMH lead and CJS
and PLB supported software development. All authors read and
approved the �nal manuscript.

Acknowledgements

We would like to thank Gilles de Hollander, Nathaniel Kofalt
and Rüdiger Meier for their contributions to Nighres, Daniel S.
Margulies for his continuous support of this project, and Malin
Sandström and the INCF for their coordination of the Google
Summer of Code project.

References

1. van der Zwaag W, Schäfer A, Marques JP, Turner R, Tram-
pel R. Recent applications of UHF-MRI in the study of
human brain function and structure: a review: UHF MRI:
Applications to Human Brain Function and Structure. NMR
in Biomedicine 2016;29(9):1274–1288.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/nighres/nighres
https://www.nitrc.org/frs/?group_id=1205
https://www.nitrc.org/frs/?group_id=1205


8 | GigaScience, 0000, Vol. 00, No. 0

2. Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-
resolution quantitative mapping of R1 as an index of corti-
cal myelination. NeuroImage 2014;93:176–188.

3. Sereno MI, Lutti A, Weiskopf N, Dick F. Mapping the hu-
man cortical surface by combining quantitative T1 with
retinotopy. Cereb Cortex 2013;23(9):2261–2268.

4. Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI,
Weiskopf N. In vivo functional and myeloarchitectonic
mapping of human primary auditory areas. J Neurosci
2012;32(46):16095–16105.

5. Huntenburg JM, Bazin PL, Goulas A, Tardif CL, Villringer
A, Margulies DS. A Systematic Relationship Between Func-
tional Connectivity and Intracortical Myelin in the Human
Cerebral Cortex. Cerebral Cortex 2017;27(2):981–997.

6. Dinse J, Härtwich N, Waehnert MD, Tardif CL, Schäfer A,
Geyer S, et al. A cytoarchitecture-driven myelin model
reveals area-speci�c signatures in human primary and
secondary areas using ultra-high resolution in-vivo brain
MRI. NeuroImage 2015;114:71–87.

7. Waehnert MD, Dinse J, Schäfer A, Geyer S, Bazin PL,
Turner R, et al. A subject-speci�c framework for in vivo
myeloarchitectonic analysis using high resolution quanti-
tative MRI. NeuroImage 2016;125:94–107.

8. Fracasso A, van Veluw SJ, Visser F, Luijten PR, Spliet W,
Zwanenburg JJM, et al. Lines of Baillarger in vivo and ex
vivo: Myelin contrast across lamina at 7T MRI and histol-
ogy. Neuroimage 2016;133:163–175.

9. Whitaker KJ, Vértes PE, Romero-Garcia R, Váša F,
Moutoussis M, Prabhu G, et al. Adolescence is associated
with genomically patterned consolidation of the hubs of
the human brain connectome. Proc Natl Acad Sci U S A
2016;113(32):9105–9110.

10. Marques JP, Khabipova D, Gruetter R. Studying cyto and
myeloarchitecture of the human cortex at ultra-high �eld
with quantitative imaging: R1, R2(*) and magnetic suscep-
tibility. Neuroimage 2017;147:152–163.

11. Kok P, Bains L, vanMourik T, Norris D, deLange F. Se-
lective Activation of the Deep Layers of the Human Pri-
mary Visual Cortex by Top-Down Feedback. Current Biol-
ogy 2016;26(3):371–376.

12. Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A,
Stüber C, et al. High-Resolution CBV-fMRI Allows Map-
ping of Laminar Activity and Connectivity of Cortical In-
put and Output in Human M1. Neuron 2017;96(6):1253–
1263.e7.

13. Keuken MC, Bazin PL, Crown L, Hootsmans J, Laufer A,
Müller-Axt C, et al. Quantifying inter-individual anatom-
ical variability in the subcortex using 7T structural MRI.
NeuroImage 2014;94:40–46.

14. Steele CJ, Anwander A, Bazin PL, Trampel R, Schaefer
A, Turner R, et al. Human Cerebellar Sub-millimeter
Di�usion Imaging Reveals the Motor and Non-motor
Topography of the Dentate Nucleus. Cerebral Cortex
2017;27(9):4537–4548.

15. Thürling M, Kahl F, Maderwald S, Stefanescu RM, Schla-
mann M, Boele HJ, et al. Cerebellar cortex and cere-
bellar nuclei are concomitantly activated during eyeblink
conditioning: a 7T fMRI study in humans. J Neurosci
2015;35(3):1228–1239.

16. Forstmann BU, KeukenMC, Schafer A, Bazin PL, Alkemade
A, Turner R. Multi-modal ultra-high resolution structural
7-Tesla MRI data repository. Sci Data 2014;1:140050.

17. Gorgolewski KJ, Mendes N, Wil�ing D, Wladimirow E, Gau-
thier CJ, Bonnen T, et al. A high resolution 7-Tesla resting-
state fMRI test-retest dataset with cognitive and physio-
logical measures. Sci Data 2015;2:140054.

18. Tardif CL, Schäfer A, Trampel R, Villringer A, Turner R,
Bazin PL. Open Science CBS Neuroimaging Repository:

Sharing ultra-high-�eld MR images of the brain. Neu-
roimage 2016;124:1143–1148.

19. Bazin PL, Weiss M, Dinse J, Schäfer A, Trampel R, Turner
R. A computational framework for ultra-high resolution
cortical segmentation at 7Tesla. Neuroimage 2014;93 Pt
2:201–209.

20. Bazin PL, Plessis V, Fan AP, Villringer A, Gauthier CJ. Ves-
sel segmentation from quantitative susceptibility maps for
local oxygenation venography. In: 2016 IEEE 13th Interna-
tional Symposium on Biomedical Imaging (ISBI); 2016. p.
1135–1138. doi: 10.1109/ISBI.2016.7493466.

21. McAuli�e MJ, Lalonde FM, McGarry D, Gandler W, Csaky
K, Trus BL. Medical Image Processing, Analysis and Visu-
alization in clinical research. In: Proceedings 14th IEEE
Symposium on Computer-Based Medical Systems. CBMS
2001; 2001. p. 381–386. doi: 10.1109/CBMS.2001.941749.

22. Lucas BC, Bogovic JA, Carass A, Bazin PL, Prince JL, Pham
DL, et al. The Java Image Science Toolkit (JIST) for
rapid prototyping and publishing of neuroimaging soft-
ware. Neuroinformatics 2010;8(1):5–17.

23. Muller E, Bednar JA, Diesmann M, Gewaltig MO, Hines M,
Davison AP. Python in neuroscience. Front Neuroinform
2015;9:11.

24. Brett M, Hanke M, Cipollini B, Côté MA, Markiewicz C,
Gerhard S, et al. nibabel: 2.1.0 (Version 2.1.0). Zenodo
2016;doi:10.5281/zenodo.60808.

25. Gorgolewski KJ, Burns CD, Madison C, Clark D, Halchenko
YO. Nipype : a �exible, lightweight and extensible neu-
roimaging data processing framework in Python. Front
Neuroinform 2011;5.

26. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller
A, Kossai� J, et al. Machine learning for neuroimaging
with scikit-learn. Front Neuroinform 2014;8:14.

27. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array:
A Structure for E�cient Numerical Computation. Comput-
ing in Science Engineering 2011;13(2):22–30.

28. Bazin J P L Kipping, Steele CJ, Margulies D, Turner R, Vill-
ringer A, Subject-speci�c cortical cerebellar mapping at 3T
and 7T;. Poster presented at the 19th Annual Meeting of
the Organization for Human Brain Mapping, June 16-20,
2013, Seattle, USA. (Abstract #1788).

29. Kennedy DN, Haselgrove C, Riehl J, Preuss N, Buccigrossi
R. The NITRC image repository. NeuroImage 2016;124(Part
B):1069–1073.

30. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de
Moortele PF, Gruetter R. MP2RAGE, a self bias-�eld
corrected sequence for improved segmentation and T1-
mapping at high �eld. Neuroimage 2010;49(2):1271–1281.

31. Bogovic J, Prince J, Bazin P. A multiple object geometric
deformable model for image segmentation. Computer Vi-
sion and Image Understanding 2013;117(2):145–157.

32. Fan X, Bazin PL, Prince JL. A multi-compartment segmen-
tation framework with homeomorphic level sets. In: 2008
IEEE Conference on Computer Vision and Pattern Recogni-
tion; 2008. p. 1–6.

33. Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince
JL. CRUISE: Cortical reconstruction using implicit surface
evolution. NeuroImage 2004;23(3):997 – 1012.

34. Bok S. Der Ein�uß der in den Furchen und Windun-
gen auftretenden Krümmungen der Großhirnrinde auf die
Rindenarchitektur. Arch Psychiatr Nervenkr Z Gesamte
Neurol Psychiatr 1929;12:682–750.

35. Waehnert MD, Dinse J, WeissM, StreicherMN,Waehnert P,
Geyer S, et al. Anatomically motivated modeling of cortical
laminae. NeuroImage 2014;93 Pt 2:210–20.

36. Tardif CL, Schäfer A, Waehnert M, Dinse J, Turner R,
Bazin PL. Multi-contrast multi-scale surface registration
for improved alignment of cortical areas. NeuroImage

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Huntenburg et al. | 9

2015;111:107–122.
37. Bazin PL, Pham DL. Topology correction of seg-

mented medical images using a fast marching algo-
rithm. Computer Methods and Programs in Biomedicine
2007;88(2):182 – 190.

38. Trampel R, Bazin PL, Pine K, Weiskopf N. In-
vivo magnetic resonance imaging (MRI) of lami-
nae in the human cortex. Neuroimage 2017;doi:
10.1016/j.neuroimage.2017.09.037.

39. Paus T. Imaging microstructure in the living hu-
man brain: A viewpoint. NeuroImage 2017;doi:
10.1016/j.neuroimage.2017.10.013.

40. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Anal-
ysis: I. Segmentation and Surface Reconstruction. Neu-
roimage 1999;9(2):179–194.

41. Fischl B, Sereno MI, Dale AM. Cortical Surface-Based Anal-
ysis: II: In�ation, Flattening, and a Surface-Based Coordi-
nate System. Neuroimage 1999;9(2):195–207.

42. Zaretskaya N, Fischl B, Reuter M, Renvall V, Polimeni JR.
Advantages of cortical surface reconstruction using sub-
millimeter 7 T MEMPRAGE. Neuroimage 2017;165:11–26.

43. Goebel R. BrainVoyager–past, present, future. Neuroim-
age 2012 Aug;62(2):748–756.

44. Kemper VG, Martino FD, Emmerling TC, Yacoub E, Goebel
R. High resolution data analysis strategies for mesoscale
human functional MRI at 7 and 9.4T. NeuroImage
2018;164:48 – 58.

45. Huntenburg JM, Wagstyl K, Steele C, Funck T, Ai R, Beth-
lehem OF, et al. Laminar Python: Tools for cortical depth-
resolved analysis of high-resolution brain imaging data in
Python. Research Ideas and Outcomes 2017;3.

46. Huntenburg JM, Steele CJ, Bazin PL. Support-
ing data for "Nighres: Processing tools for high-
resolution neuroimaging". GigaScience Database
2018;Http://dx.doi.org/10.5524/100469.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


