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Abstract
With recent improvements in human magnetic resonance imaging (MRI) at ultra-high �elds, the amount of data collected
per subject in a given MRI experiment has increased considerably. Standard image processing packages are often
challenged by the size of these data and dedicated methods are needed to leverage their extraordinary spatial resolution.
Here we introduce a �exible Python toolbox which implements a set of advanced techniques for high-resolution
neuroimaging. With these tools, segmentation and laminar analysis of cortical MRI data can be performed at resolutions up
to 500 µm in reasonable times. Comprehensive online documentation makes the toolbox easy to use and install. An
extensive developer’s guide encourages contributions of other researchers that will help to accelerate progress in the
promising �eld of high-resolution neuroimaging.
Key words: Neuroimaging in Python; High-resolution MRI; Ultra-high �eld MRI; Laminar MRI; Python Java integration

Background

Advances in ultra-high �eld (7 Tesla and above) MRI now
make it possible to image the entire human brain at an
unprecedented level of detail [1]. Submillimeter resolutions
and quantitative metrics reveal �ne-grained variations in
structure and function that were previously undetectable in
vivo. This information allows researchers to ask new questions
about the human brain. Examples include the investigation of
intracortical myelin [e.g 2, 3, 4, 5], the laminar organization
of the cortical sheet [e.g. 6, 7, 8, 9, 10], feedforward and

feedback patterns in cortical connections [11, 12] and the
detailed description of small cortical and subcortical structures
[13, 14] and their function [15].

While ultra-high �eld scanners have become increasingly
available, and the �rst open 7 Tesla (T) MRI data sets have
been released [16, 17, 18], software tools still lag behind.
Standard neuroimaging software packages are often not
designed to handle the growing data size and new quantitative
contrasts. Three-dimensional MRI data grows as a cube
of its resolution, and computational complexity generally
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Key Points

• A toolbox dedicated to the processing of high-resolution MRI data
• Lightweight and �exible code written in Python for ease of use, expansion and integration with other tools
• Extensive documentation with developer’s guide and usage examples based on open data

ranges between O(N logN) and O(N2). Therefore, a change
in spatial resolution from 1 mm to 0.5 mm easily entails an
increase in computational requirements by a factor of 15 to 60,
depending on the methods used. Moreover, new applications
such as laminar analysis have only become possible with
higher resolutions and are not implemented in many existing
software packages.
CBS High-Res Brain Processing Tools (CBS Tools) is

a software suite which addresses this gap by providing
cutting-edge methods for e�cient processing of MR images
at submillimeter resolution [19]. For example, CBS Tools
implements routine cortical segmentation at resolutions as
high as 400 µm, processing of quantitative MRI sequences
such as MP2RAGE, MPM or QSM [19], laminar analysis [7],
and small vessel segmentation [20]. While this software
has been well-received as a key tool set for quantitative and
high-resolution neuroimaging, its adoption has been slowed
by the complex infrastructure it builds on. CBS Tools have
been developed in Java as a set of plugins for the MIPAV
software package [21] and the JIST pipeline environment
[22]. The MIPAV and JIST framework provides a graphical
interface for building analysis pipelines and implements many
convenient tools, but it comes with a complex installation
procedure, heavy dependencies, and limited documentation.
More importantly, it is di�cult to integrate with other popular
neuroimaging tools, limiting its software ecosystem.
Meanwhile, a range of versatile, interoperable open source

packages for the analysis of neuroscienti�c data has been de-
veloped using the increasingly popular programming language
Python [23]. For example, Nipy1 is a community of practice
devoted to the use of Python in the analysis of neuroimaging
data, encompassing popular tools such as Nibabel [24], Nipype
[25], Nilearn [26] and many others.
Here we present Nighres2 – a new toolbox that makes the

quantitative and high-resolution image processing capabilities
of CBS Tools available in Python. Nighres is a user-friendly
Python package which interfaces with CBS Tools while avoiding
the JIST and MIPAV dependency tree. It facilitates integration
with other Python-based neuroimaging tools and interactive
data exploration, for example in Jupyter notebooks.3 Nighres
features comprehensive online documentation with usage ex-
amples that are based on publicly available data sets. An exten-
sive developer’s guide encourages external contributions. With
this new package, we aim to make the functionality of CBS
Tools accessible to a wider community, highlight the potential
of new high-resolution image processing methods, and foster
collaboration in this emerging �eld.

1 http://nipy.org/
2 NeuroImaginG at High RESolution
3 http://jupyter.org/

Implementation

Architecture and design

The Nighres package consists of two core Python modules. The
module cbstools contains the original CBS Tools Java classes
that have been encapsulated using the JCC package.4 JCC en-
capsulates the Java code with C++ code, to make it accessible to
the Python interpreter, and produces a complete Python exten-
sion module. The module nighres includes the Python inter-
faces that are exposed to the user. It is organized in submod-
ules that represent di�erent application areas.5 For example,
the submodule laminar contains functions related to laminar
analysis of the cortical sheet. There are currently two types of
Python interfaces within these submodules:
i. Functions that wrap Java classes
ii. Functions in pure Python
Functions that wrap Java classes
The initial motivation to develop Nighres was to provide a user-
friendly interface to the functionality of CBS Tools, leveraging
the �exibility of Python. Therefore, a majority of the current
functions in Nighres constitute Python wrappers which inter-
nally execute the original CBS Tools Java classes. These func-
tions generally adhere to the following basic structure (a simple
example can be found in the function probability_to_levelset):
i. Evaluate input parameters
ii. Start Java virtual machine
iii. Initiate Java class through JCC wrapper
iv. Load input data and cast to Java array
v. Pass additional parameters to Java class
vi. Execute Java class
vii. Collect outputs of Java class and cast back
viii. Return outputs (optional: save outputs)
Thus, the actual processing still relies on the same optimized
Java code as in the original CBS Tools. However, since the
Nighres function takes care of the interfacing between Python
and Java, the user only interacts with Python code.
Functions in pure Python
Our long-term vision is for Nighres to become a central plat-
form for new high-resolution image processing tools as they
are developed. As discussed above, Python is rapidly becoming
the most popular programming language in the neuroimaging
community [23]. Themodular design of Nighres allows for easy
integration of pure Python processing routines, meaning that
new functions can be contributed without the need to interact
with Java or to learn about the JCC based wrapping procedure.
In addition, it is possible to integrate useful tools from other
neuroimaging software that have been (or can be) wrapped in
Python for example using Nipype [25]. Currently, Nighres in-

4 http://lucene.apache.org/pylucene/jcc/index.html
5 For consistency the submodule names are based on the original module
organization in CBS Tools
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cludes a core set of Python functions for input and output, pa-
rameter handling, and �le naming to simplify function calls
and minimize the integration burden for new methods.

Data handling

Data handling within Nighres follows established and widely
used standards in the neuroimaging community to ensuremax-
imal interoperability. Where possible, Nighres uses the Niba-
bel package for handling imaging data [24]. Input and out-
put functions are designed to automatically recognize and load
most commonly used data formats, while maintaining �exi-
bility to accommodate loading of non-standard data formats
using custom scripts. Data is internally represented as Niba-
bel Nifti1Images (volumes) or Python dictionaries (surfaces) and
can be passed in the form of �le names or memory objects. Pro-
cessing results are returned as memory objects, functions with
multiple outputs return a dictionary storing the di�erent out-
puts. Outputs can also be saved to disk. For saving, modi�ers
are appended to the output �le names that refer to the name
of the function and the speci�c output (e.g. _layering_depth for
the continuous depth output of the layering function). Output
names can be set to have a speci�c pre�x or, by default, append
modi�ers to the main input �le name.

Distribution

While both Python and Java are cross-platform languages, the
JCC package encapsulates CBS Tools’ Java classes with C++ code
and thus makes the compilation platform-speci�c. We im-
plemented an automated build script that compiles the orig-
inal CBS Tools Java code and builds the wrappers using JCC.
We set up continuous integration using Travis CI6 to test the
build upon any changes to the code base on Github and, for
any tagged releases, deploy the package to the Python Pack-
age Index.7 The user can then download the package, run the
fully automated build script to recompile the Java code and C++
wrappers on their platform, and �nally use the pip installer8 to
install the modules and all their dependencies. Subsequently,
Nighres can simply be imported into any Python environment.
We also provide a container allowing users to test Nighres in a
preset environment, without actually installing it on their sys-
tem. For this option the user only has to install Docker,9 a
lightweight container platform that runs on Linux, Windows
and Mac OS X. The Nighres Docker�le10 can then be used to
build an Ubuntu 14 Trusty Docker image that contains a suit-
able Java installation, Nighres, and Jupyter Notebook.
Dependencies
One goal of Nighres was to reduce external dependencies. We
therefore restricted the required packages for Nighres’ core
functionality to Nibabel, for reading and writing of common
neuroimaging data formats [24], and Numpy, for e�cient
manipulation of data arrays [27]. The functions wrapping
CBS Tools code require the CBS Tools Java library as well the
Java matrix manipulation11 and Apache Commons Math12 li-
braries. However, these libraries are automatically recom-
piled, wrapped and installed from the CBS Tools github repos-

6 https://travis-ci.org/nighres
7 https://pypi.python.org/pypi/nighres
8 https://pip.pypa.io/en/stable/
9 https://www.docker.com/
10 https://github.com/nighres/nighres/blob/master/Dockerfile
11 http://math.nist.gov/javanumerics/jama/
12 http://commons.apache.org/proper/commons-math/

itory13 upon installation of Nighres. Our example work�ows
use Nilearn’s [26] plotting functionality for visualizing their
results, but will automatically skip plotting if Nilearn is not
installed.
Support �les
Nighres automatically installs all essential support �les includ-
ing statistical atlases for brain segmentation, look-up tables
for topological constraints, templates for high-resolution spa-
tial normalization, and a cerebellar lobular atlas [28]. Exam-
ple data from publicly released 7T data sets is hosted on the
Nighres project page14 at the neuroimaging informatics tools
and resources clearinghouse [NITRC, 29]. This data is automat-
ically downloaded when running the example work�ows.

Documentation

Beyond functional code, clear and concise documentation is one
of the most important drivers of software use and longevity.
Nighres’ online documentation15 was implemented using the
Sphinx documentation tool.16 The online content is automat-
ically generated from the original function docstrings, which
are written according to the the Numpy/Scipy documentation
guidelines.17 This design ensures that the documentation stays
up-to-date with minimal overhead for developers, and is in-
tuitive for users. Extensive example work�ows provide users
with easily understandable and reproducible code (see sec-
tion Usage example below). Finally, the online documentation
contains an in-depth developer’s guide that leads contribu-
tors through all steps necessary to submit code changes, new
Python functions or CBS Tools wrappers to the Nighres github
repository. We aimed to write a guide that makes it feasible
for any researcher working with high-resolution neuroimag-
ing data to contribute to Nighres, even without much previous
experience in software development.

Functionality

Nighres contains a set of advanced functions which are not
commonly implemented in neuroimaging software and/or have
been optimized towards the speci�c demands of processing
high-resolution and quantitative neuroimaging data. In this
section, we provide an overview of the major features that are
currently implemented. Their application will be demonstrated
in the subsequent section, which also indicates example com-
putation times. A more in-depth discussion of the individual
algorithms and their performance can be found in the original
references listed for each function.
MP2RAGE skull-stripping
This fast skull-stripping algorithm has been optimized for
quantitative images acquired at 7T using the MP2RAGE se-
quence [30]. See [19] for details.
Multiple object geometric deformablemodel segmentation (MGDM)
MGDM is a whole brain tissue classi�cation method, designed
to routinely process datasets at resolutions up to 400 µm. A va-
riety of inputs (MP2RAGE at 3T, 7T and 9.4T; MPM at 3T and
7T; T1-, T2- and di�usion-weighted images) as well as mul-
tiple inputs are accepted. This atlas-guided method uniquely

13 https://github.com/piloubazin/cbstools-public
14 https://www.nitrc.org/projects/nighres/
15 http://nighres.readthedocs.io/en/latest/
16 http://www.sphinx-doc.org/en/stable/
17 https://numpydoc.readthedocs.io/en/latest/format.html
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preserves the topological properties and relationships of all 25
classi�ed brain structures. See [19, 31, 32] for details.
Cortical reconstruction using implicit surface evolution (CRUISE)
CRUISE provides a precise and e�cient method to extract cor-
tical surfaces from high-resolution volumetric data based on
level set representations (see next subsection). A distinguish-
ing feature of this algorithm is the careful modeling of sulcal
fundi. CRUISE can be applied to cerebral and cerebellar cortices
and to data with partial brain coverage. See [33] for details.
Level set creation
This function creates level sets from probabilistic or determin-
istic tissue classi�cations. Level sets are signed distance func-
tions that can be used for representing cortical surfaces in voxel
space instead of triangular meshes. Such representations have
favorable mathematical properties, avoid mesh sampling prob-
lems and facilitate the integration of volumetric and surface
data. Several Nighres functions rely on level sets internally.
See [19] for details.
Equivolumetric layering
Nighres implements an equivolumetric technique for mod-
eling intracortical laminae. This approach accounts for the
dependency of layer thickness on local curvature by preserving
the volume of cortical segments [cf. 34]. The resulting cortical
depth estimates represent an intracortical coordinate system
that is anatomically more accurate than commonly applied
equidistant or Laplacian approaches. Intracortical surfaces are
represented as level sets. See [35] for details.
In addition to the aforementioned functions, we are cur-

rently preparing to migrate CBS Tools’ multi-modal surface
registration algorithm [36] and non-linear deformation utili-
ties, as well as algorithms for topology correction [37] and vas-
cular segmentation [20] into the Nighres package.

Usage example

In the following we present a Nighres usage example. It shows
how to obtain a tissue classi�cation and cortical depth estima-
tion from MP2RAGE data, acquired at 7T with a resolution of
0.7 mm isotropic. The pipeline contains the following steps:
i. Downloading the open MP2RAGE data set from NITRC
ii. Removing the skull and creating a brain mask
iii. Atlas-guided tissue classi�cation using MGDM [31]
iv. Extracting the cortex of one hemisphere
v. Cortical reconstruction using CRUISE [33]
vi. Equivolumetric modeling of intracortical laminae [35]
The outputs of the plotting functions are shown in Figure 1
and 2. Average computation times for the di�erent processing
steps in this example are indicated in Table 1. They were deter-
mined on a standard laptop (8GB RAM, i7-5500U dual core pro-
cessor, 4MB cache, 3 GHzmaximum frequency) using Python’s
timeit module.18

Import and download

First, we import nighres and the os module to set the output
directory.
import nighres, os

18 https://docs.python.org/2/library/timeit.html

out_dir = os.path.join(os.getcwd(),
"nighres_examples/tissue_classification")

We also import Nilearn’s plotting functions. If Nilearn is not
installed, plotting will be skipped in the online examples.
from nilearn import plotting

Now we download an example MP2RAGE dataset that is hosted
on NITRC. It is the structural scan of the �rst subject, �rst
session of the 7T test-retest dataset published in [17].
dataset = nighres.data.download_7T_TRT(out_dir)

Skull stripping

The �rst processing step is skull stripping. The brain mask
is calculated based on the second inversion image of the
MP2RAGE sequence. For convenience, we can also input the
quantitative T1 map and the T1-weighted image, to which the
calculated brain mask will then be applied. We save the out-
puts in the out_dir speci�ed above and use a subject ID as the
base �le name.
skullstrip_results = nighres.brain.mp2rage_skullstripping(

second_inversion=dataset["inv2"],
t1_weighted=dataset["t1w"],
t1_map=dataset["t1map"],
save_data=True, output_dir=out_dir
file_name="sub001_sess1")

To check if the skull stripping worked well, we plot the brain
mask on top of the original image (Figure 1a). Nighres, like
Nilearn, uses Nibabel’s Nifti1Image object to pass data inter-
nally. Therefore, we can directly pass the outputs to Nilearn’s
plotting functions without saving and reloading. Alternatively,
the images stored in out_dir can be opened in any common
interactive viewer that can read the Nifti data format.
plotting.plot_roi(skullstrip_results["brain_mask"],

dataset["t1w"], cut_coords=[15, 25, 30],
annotate=False, black_bg=False, draw_cross=False,
cmap="PuRd_r")

(We hereafter omit the plotting code, it can be found in the
online documentation).

Tissue class

B

A

Figure 1. Tissue classi�cation from MP2RAGE data. A The brain mask ob-
tained from skull stripping. (Note that the white rectangles in the image occur
because the data has been "defaced" for anonymization) B The result of the
MGDM tissue classi�cation. Visualized using Nilearn [26].
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MGDM tissue classi�cation

Next, we use the masked data as input for tissue classi�cation
with the MGDM algorithm [31]. MGDM works with a single
contrast, but can be improved with additional contrasts. In this
case we use the T1-weighted image as well as the quantitative
T1 map.
mgdm_results = nighres.brain.mgdm_segmentation(

contrast_image1=skullstrip_results["t1w_masked"],
contrast_type1="Mp2rage7T",
contrast_image2=skullstrip_results["t1map_masked"],
contrast_type2="T1map7T",
save_data=True, output_dir=out_dir,
file_name="sub001_sess1")

The topology-constrained segmentation that MGDM creates is
shown in Figure 1b.

Cortical surface reconstruction

First we extract from the MGDM output the regions needed for
cortical reconstruction. The outputs are membership functions
for the following regions: the gray matter cortex (’region’), the
underlying white matter (with �lled subcortex and ventricles,
’inside’) and the surrounding cerebrospinal �uid (with masked
regions, ’background’).
cortex = nighres.brain.extract_brain_region(

segmentation=mgdm_results["segmentation"],
levelset_boundary=mgdm_results["distance"],
maximum_membership=mgdm_results["memberships"],
maximum_label=mgdm_results["labels"],
extracted_region="left_cerebrum",
save_data=True, output_dir=out_dir,
file_name="sub001_sess1_left_cerebrum")

Next, we use the extracted data as input for cortical reconstruc-
tion with the CRUISE algorithm [33]. CRUISE uses the mem-
bership functions as a guide and the white matter mask as a
(topologically spherical) starting point to grow re�ned bound-
aries between the gray and white matter and the gray matter
and the cerebrospinal �uid.
cruise = nighres.cortex.cruise_cortex_extraction(

init_image=cortex["inside_mask"],
wm_image=cortex["inside_proba"],
gm_image=cortex["region_proba"],
csf_image=cortex["background_proba"],
normalize_probabilities=True,
save_data=True, output_dir=out_dir
file_name="sub001_sess1_left_cerebrum")

The topology-constrained segmentation with re�ned bound-
aries that CRUISE created is shown in Figure 2a.

Modeling of intracortical laminae

Finally, we use the gray–white matter boundary (GWB) and
cerebrospinal �uid–gray matter boundary (CGB) from CRUISE
to compute cortical depth and model intracortical laminae.
Importantly, the equivolumetric approach implemented in
Nighres accounts for the dependency of layer thickness on cor-
tical folding [for an in-depth discussion see 35].
depth = nighres.laminar.volumetric_layering(

inner_levelset=cruise["gwb"],
outer_levelset=cruise["cgb"],
n_layers=4,
save_data=True, output_dir=out_dir,
file_name="sub001_sess1_left_cerebrum")

Figure 2b shows the continuous equivolumetric depth esti-
mate. The function call also outputs discrete representations
of the modeled laminae as well as level sets describing the
intracortical surfaces.
In summary, this example implements a complete work�ow
for advanced processing of a quantitative MR contrast at high
spatial resolution (voxel size = 0.7 mm isotropic). With the
openly available and automatically downloaded data, any user
can try out Nighres’ functionality immediately after installa-
tion and then adapt the code for their own use case. The ex-
amples can be found in our online documentation,19 where the
code can be downloaded as Python scripts or Jupyter notebooks.

Depth
CortexInside Outside

BA

Figure 2. Cortical surface reconstruction and depth estimation. A Topology-
constrained reconstruction of the boundaries between the cortical grey matter
(Cortex, blue) the cerebrospinal �uid (Outside, white) and the white matter (In-
side, brown) using CRUISE [33] B Intracortical depth estimated using an equiv-
olumetric approach [35]. Visualized using Nilearn [26].

Discussion

The availability of high-resolution and quantitative MRI data
and the interest in new research directions that this data en-
ables are rapidly growing [e.g 38, 39]. At the same time, im-
age processing tools required to leverage the new level of spa-
tial detail provided by this data are scarce. We developed a
Python toolbox that specializes in processing high-resolution
brain imaging data. It has been designed with two key pur-
poses in mind:
i. to provide the neuroimaging community with user-
friendly access to cutting-edge high-resolution image pro-
cessing tools
ii. to create a �exible framework that can be extended by
other researchers, along with thorough instructions on how
to contribute

Comparison to other tools

Mostmajor neuroimaging packages are optimized for data with
a maximum spatial resolution of 1 mm isotropic. Only re-
cently some extensions and new tools for processing of high-
resolution data have begun to emerge, which will be discussed
in the following.20

19 http://nighres.readthedocs.io/en/latest/auto_examples/index.html
20 cf. https://layerfmri.com/2018/01/04/layer-fmri-software-in-the-field/
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Table 1. Computation times for usage example.
Processing step Duration
Skull stripping 1 min 8 sec (8 sec)
MGDM tissue classi�cation 6 min 58 sec (30 sec)
CRUISE surface reconstruction 1 min 57 sec (3 sec)
Equivolumetric layering 1 min 23 sec (6 sec)

Shown are average durations over 10 repetitions (with standard deviations in
brackets), determined on a standard laptop. See main text for details.

Freesurfer
Freesurfer is a popular open-source package for analyzing cor-
tical surface data [40, 41]. It is robust, well-documented and
applicable across platforms. By default, Freesurfer resamples
the input data to a spatial resolution of 1 mm isotropic, oblit-
erating the advantages of higher resolution data. The latest
Freesurfer release includes an option for processing at submil-
limiter resolution [42]. However, this option is still under de-
velopment and tested only for a resolution of 0.75 mm.21 A
Matlab routine for laminar analysis of high-resolution MRI
data using Freesurfer has been proposed as well.22 Here, in-
tracortical surfaces are evolved as triangular meshes starting
from the gray-white matter boundary in an equidistant fash-
ion. This approach can cause errors and mesh irregularities,
especially closer to the pial surface, and does not take into ac-
count the known dependency of layer thickness on local curva-
ture.
More generally, Freesurfer’s robustness and ease-of-use come
at the cost of strict requirements for data organization (e.g. im-
posed directory structure, native �le format) and limited �ex-
ibility in the adaptation of individual processing steps for new
applications. While it provides excellent pipelines for standard
processing of T1- or T2-weighted whole brain scans, it is not
optimized for processing non-standard data such as quantita-
tive T1 maps or images with partial brain coverage. At the same
time, replacing individual processing steps with customized al-
gorithms, combining Freesurfer with other tools, or applying
manual corrections can be challenging even for experienced
users. Therefore, while Freesurfer will likely play an important
role as ultra-high �eld imaging becomes more abundant, it
currently lacks the �exibility required for the active and collab-
orative development of new techniques in this emerging �eld.
BrainVoyager
Another software that has recently extended its functionality
to the speci�c demands of high-resolution image processing
is BrainVoyager [43]. A new pipeline, comprehensively de-
scribed in a recent publication [44], enables laminar and colum-
nar analyses of 9.4T data. Intracortical surfaces are modeled
following the equivolumetric approach through the evolution
of regular grids for small regions of interest. Unfortunately,
BrainVoyager is a commercial software with closed source code.
Besides the �nancial aspect of buying a license, this also entails
that details of the applied algorithms are not transparent and
the software cannot be adapted by users.
LAYNII
LAYNII is a set of highly optimized C++ tools for laminar anal-
ysis of high-resolution fMRI data with partial brain coverage
[12].23 Equivolumetric layering is available for slices without
3D curvature. The implementation in C++ enables fast process-
ing, but has the disadvantage that fewer researchers can adapt

21 https://surfer.nmr.mgh.harvard.edu/fswiki/SubmillimeterRecon
22 https://github.com/kendrickkay/cvncode/blob/master/cvnmakelayers.m
23 https://github.com/layerfMRI

or contribute code, as compared to high-level languages like
Python. LAYNII also lacks documentation, making it hard for
new users to adopt it.
LAYNII is a good example of an advanced toolbox that serves a
speci�c purpose and could bene�t from being combined with
a more comprehensive and well-documented software frame-
work for high-resolution image processing. It will be crucial
in the future to synchronize Nighres with more specialized
projects such as LAYNII, and make their integration as easy
as possible.
CBS Tools
Nighres evolved out of CBS Tools, a suite of Java tools provid-
ing dedicated open source methods for high-resolution and
quantitative image processing [19]. This includes specialized
techniques such as equivolumetric layering [35] or multi-
modal surface registration [36], as well as versions of more
common applications, like tissue classi�cation, that have been
optimized for high-resolution data and quantitative contrasts.
While many standard processing algorithms in neuroimaging
grow at a log-linear (O(N logN)) or even quadratic (O(N2)) rate
with data size, CBS Tools’ algorithms approach linear rates
(O(N)) or use non-iterative solutions [for details see 19]. CBS
Tools can thus routinely operate on data at resolutions of up
to 0.5 mm isotropic.
As described in the introduction, CBS Tools’ complex design
and heavy dependencies make the installation and handling
challenging and impede contributions from other researchers.
In a previous project report we have presented simple Python
wrappers for selected CBS Tools functions [45]. Here we
described a comprehensive software framework that has
evolved out of these initial attempts. With Nighres we present
a �exible and user-friendly implementation of CBS Tools’
functionality, which eliminates the dependency on MIPAV and
JIST. This approach provides a signi�cant improvement in
usability while preserving the excellent performance of CBS
Tools. Another major advance of Nighres compared to CBS
Tools is its extensive online documentation. Besides explain-
ing every function’s in- and outputs, it provides carefully
documented usage examples with step-by-step instructions
of how the di�erent tools can be combined to create complete
processing pipelines. The implementation in Python along
with a detailed developer’s guide facilitate adaptation and
extension of the existing tools by other researchers.
We gave an example of Nighres’ performance in the previ-

ous section (see Table 1). To put this example into perspective,
consider Freesurfer’s recon-all command, probably the most
common approach for whole brain tissue classi�cation and
cortical surface reconstruction. This command processes a
whole brain image at 1 mm isotropic resolution within a few
hours. In comparison, the Nighres pipeline presented above
achieves tissue classi�cation and segmentation plus cortical
layering at 0.7 mm isotropic resolution (roughly corresponding
to a three-fold increase in data size as compared to 1 mm
isotropic) in less than 15 minutes.

Future directions

The current implementation of Nighres contains a set of
cutting-edge methods, but rapid methodological advances
are to be expected in the dynamic �eld of high-resolution
neuroimaging. We therefore designed Nighres as a transparent
software platform through which newly developed methods
can be made available to the community and improved collab-
oratively. New or existing tools can easily be added in a variety
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of formats, depending on the speci�c requirements of the
operation and the preferences of the developer. The extensive
developer’s guide aims to encourage contributions even
from researchers without extensive experience in software
development.
We intend to closely integrate our package with the existing

community around neuroimaging tools in Python. To this end,
we adopted standardized objects for internal data handling,
which can easily be exchanged with other tools. An example is
the seamless visualization of Nighres outputs using Nilearn’s
[26] plotting functions, as showcased in the usage example
(Figure 1 and 2).
A major limitation of the current package is that it has

been developed and tested for common Linux platforms only.
The C++ code generated by JCC to interface with CBS Tools’
Java classes makes the compilation platform dependent. We
addressed this issue by providing an automated build script
that recompiles the code upon installation. While this process
has only been tested on Linux, the design makes a future
adaptation to Mac OS X platforms straightforward. Support
for Windows is not currently planned. However, the provided
Docker�le enables usage of Nighres in a container on any
platform that supports Docker.
Many future extensions of the current package can be

envisioned. Besides integrating more of the original CBS Tools
functions, a main goal is to extend functionality with new
tools coded directly in Python and potentially to replace the
Java dependency altogether. To ensure e�cient processing
of the large data this might require increasing Python’s
performance for example using Numba.24 Another goal is to
provide integration with tools for parallel processing and job
management on compute clusters.

Conclusion

We developed a user-friendly and well-documented Python
package that makes cutting-edge high-resolution image pro-
cessing tools available to the research community. The toolbox
is easy to install and provides a comprehensive set of advanced
techniques. While the current functionality is largely based
on CBS Tools, we hope that the �exible framework encourages
contribution of new tools, stimulates collaboration, and accel-
erates progress in the promising �eld of high-resolution neu-
roimaging.

Availability and requirements

• Project name: Nighres
• Project home page: https://github.com/nighres/nighres
• Operating system(s): Linux
• Programming language: Python, Java
• Other requirements: Java≥1.7, Python≥2.7, Numpy≥1.13,
Nibabel≥2.1.0

• License: Apache License 2.0
• RRID: SCR_016287

24 https://numba.pydata.org/

Availability of supporting data

The data sets supporting the results of this article are available
in the NITRC image repository [29] under https://www.nitrc.
org/frs/?group_id=1205. Snapshots of the data and code are
also available in the GigaScience GigaDB repository [46].
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