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Figure S1. Flow chart of ALK+ and ALK- ALCL methylation analyses, related to Figure 1. Diagram
illustrating the workflow from sample preparation, processing and bioinformatic analysis.
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Figure S2. Hierarchical clustering of ALK+ and ALK- ALCL compared to normal, related to Figure 1. (A)
Hierarchical clustering of common MVPs in ALK+ and ALK- ALCL compared to normal CD3" cells shows
separation into tumor versus normal samples. (B) Clustering based on the 8147 differentially methylated probes
between ALK- and ALK+ locates ALK- closer to CD3" T cells.
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Figure S3. Hypermethylation of T cell specific transcription factors, related to Figure 3. UCSC genome
browser tracks showing hypermethylation of indicated transcription factors (blue tracks on top indicate differential
methylation (R value difference) between ALK+ or ALK- ALCL tumors and CD3" T cells; red bars, promoter
regions of individual genes; green bars, CpG islands; dark blue, UCSC genes).
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Figure S4. Epigenetic switching of homeobox genes, related to Figure 4.

(A-E) UCSC browser graphics showing ALK+ and ALK- ALCL hypermethylation as compared to CD3" T cells
(blue track, top), UCSC genes (blue), CpG island location (green bar) and ChIP Seq data on EZH2 and
H3K27me3 occupancy in lymphoblastoid (GM12878, red) and ESC (green) as visualized from ENCODE data.
(F) Table listing homeobox genes that show epigenetic switching.
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Figure S5. Methylation of TCR pathway genes, related to Figure 6. UCSC browser graphic illustrating DNA
methylation differences in ALK+ and ALK- ALCL versus CD3" T cells. Blue track indicates differential DNA
methylation of indicated genes. Green boxes indicate CpG islands. Lowest track shows ENCODE methylation
data of lymphoblastoid (GM12878) and Jurkat T cell leukemia cell lines (orange indicates high methylation,
purple medium and blue low methylation of respective CpG sites).
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Figure S6. TREM1 signaling as top pathway associated with hypomethylated promoters, related to
Figure 6. TREM1 signaling pathways and hypomethylated promoters (green, genes affected by DNA
hypomethylation in ALCL tumors). The pathways were generated through the use of QIAGEN’s Ingenuity
Pathway Analysis (IPA®,QIAGEN Redwood City, www.giagen.com/ingenuity).
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Figure S7. Networks and network regulators related to top hyper- or hypomethylated genes contain
cytokines and genes involved in inflammatory responses, related to Figure 6. (A) Upstream regulators and
downstream functional connections of hypomethylated genes including cytokines and receptors relevant in
ALCL. (B) STAT3 regulator effect on cytokines and receptors involved in leukocyte regulation. The networks
were generated through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA®,QIAGEN Redwood City,
www.giagen.com/ingenuity).
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Figure S8. Knock-down of AP1 transcription factor JUNB in ALK+ ALCL cells, related to Figure 6. (A)
(left) Cell population doublings of Karpas-299 cells after sh-mediated knockdown of JUNB. Two independent sh-
RNAs were used for the knockdown (shdun1 and shJun2, specific oligo targeting JUNB; control, scrambled
oligo). Values are means + SD. Each value is the mean of two replicates. (right) Western blot showing JUNB
levels in Karpas-299 cells after JUNB knockdown. Beta-ACTIN was used as a loading control. (B) (left)
Representative cell cycle analyses of Pl stained Karpas-299 cells after JUNB knockdown or control cells by
FACS (sh control, Karpas-299 cells infected with control oligo vector; shJun1/shdun2, Karpas-299 cells infected
with JUNB targeting oligo). (right) Representative cell cycle distribution of Karpas-299 cells after JUNB
knockdown or control cells divided into percentage of cells in different cell cycle phases. Sub G1 represents
apoptotic cells.



Table S1. Significant GO Terms associated with hypo- and hypermethylated promoters in ALK+ and ALK- ALCL
tumor samples. Related to Figure 5. For Table see separate file.

up-regulated (>1.5 fold)

ANKRD22,ACPP,MARCO,CSTA, TK2,HRH1,AIM2,5100A2,MS4A6A,C120rf10,
SERPINAL,RTN3,0LFML3,MPEG1,SRPX2,RCAN2,LGALS1,A2M,S100A8,CCL18,
S100A10,IL1RN,GAPDH,MGP,PMAIP1,SIGLEC10,ITGAX,PRKCDBP,FAMS50B,KSR1,
Hypomethylated DMRs SNAPCS5,ARSB,DCPS,CXCL10,SLC35E4,CLU,ARNTL2,CFD,CILP,ITPRIPL2,NCF4,
ALK+ (674) CCDC42B,SFN,HEATR2, TUBB,GYG1,CLCC1,AGPAT2,MCAM,MS4A7,RAMP1,UPP1,
COL1A1,PHGDH,LYN,LTB4R,SERPINB8,SUOX,MMP9,PKIG,CD5L,PHLPP1,SYNGR1,
PIM3,EIF3G,MTX1,FUCA2,NOL3,MYL4,C1R,DCN,C190rf24,ASXL1,FXYD6,SPATS2,
SLC15A4,HLA-DPB1,ANLN

down-regulated (<1.5 fold)

THEMIS,CD3G,CD2,C140rf64,PPP6C,KCNJ2,CD52,CD7,ABCB4,MGATA4A,LCK,ZNF665,
CXCR6,GIMAP1,UBASH3A,CHI3L2,RHOH,CD6,GIMAPS,LMBRD1,PPP1R16B,FAIM3,
65 PSD4,DRD5,TBC1D10C,NMT2,THRB,LPIN2,SEMA4D,LAG3,LRMP,RUNDC3B,
FAM102A,TMIGD2,SLIT2,ASXL3,CXCR5,LY9,AKNA,NDFIP1,SLC40A1,RGS1,ITGAL,
CD47,RCSD1,ZNF101,STK38,KLF3,JAZF1,P4HA3,TLR5,CD48

Hypermethylated DMRs
ALK+ (501)

up-regulated (>1.5 fold)
MPEG1,CSTA,GAPDH, HLA-DQA1, SPAG4, IL23R, CLIC2, ADORA3, BLK, LGALS1,
TRAPPC3,RTN3,NCEH1,VCAM1,ANK,RD29,TYROBP,PLA2G4C,MGP,PCBD1,ITPRIPL2,
Hypomethylated DMRs CTSZ,ST7,SLC35E4,MMP9,DCPS,TJP2, MGST2, RALGPS1, BCAT1, ABI3BP, ROBO4,
ALK- (468) 55 MS4A6A,CXCL10,LANCL2,CD59,PRKCDBP, TMEM119,A2M,CD86,CD58,HLA-DQB2,
TUBB, CTSG, ANKRD22, CCRN4L, Clorf54, IFI30, LMO4, S100A10, APOBEC3B,
PHGDH,ADAMDEC1,CCL8,UQCRFS1,TK1

down-regulated (<1.5 fold)
TXK,CTLA4,CD3G,MGAT4A,CXCR6,IL7R,PPP6C,CD7,LCK,UBASH3A,CD28,RIOK3,
DENND2D,TMIGD2,GNG2,ITK,RHOH,EVI2A,EXOC1,SLC22A3,APBA2,
140rf64,SATB1,SPOCK2,PIK3CG,CHI3L2,LY9,PTPN22,GPR171,PPP1R16B,LHX2,
TC2N,FAM102A,LAG3,HIVEP3,ARHGEF10,ATP10A,RIT1,GBP1,FAIM3,ABCB4,

84 LAX1,NMT2,DRD5,CD6,MYOS5C,GIMAP7,UNC5D,CD96,SLFN5,CD52,LAPTMS,
TNFSF8,SPN,NLRC3,EVL,TMEM71,LCP2,NDFIP1,CD5,NUP210,ARHGAPS,IL27RA,
GIMAPS5,SLAMF6,SYTL1,GIMAP1,AUTS2,INPP5D,ARHGAP15,RASEF, TSPAN32,
TMC8,PLEKHM3,CARD8,CXCR5,C110rf21, TRAF31P3,0RAI2,ZAP70,ARHGAP9,
LRMP,KIAA0754, THRB

Hypermethylated DMRs
ALK- (674)

Table S2. Genes with inverse correlation between methylation and expression, related to Figure 5.

Table S3. GO Term analysis of differentially methylated promoters inverse correlated with gene expression,
related to Figure 5. For table see separate file.



Number Age |[Sex Ann-Arbor |Morphology |ALK-Status |Therapy Follow-Up

T8 55 f A ALCL, classical [negativ CHOP complete remission
T9 48 m IVB ALCL, classical [negativ CHOP dead of disease
T10 67 f na ALCL, classical [negativ na na

T7 17 f na ALCL, classical [negativ na relapse

T6 15 f I ALCL, classical [negativ NHL-BFM complete remission
T1 11 f IlE ALCL, classical |positiv NHL-BFM complete remission
T2 14 m na ALCL, classical |positiv na na

T4 8 f IlE ALCL, classical |positiv NHL-BFM complete remission
T5 16 f IVA ALCL, classical |positiv NHL-BFM 95 complete remission
T3 21 f A ALCL, classical [positiv CHOP complete remission
Table S4. Demographic data of ALCL patients included in the analyses. CHOP, chemoterapy including

Cyclophosphamide, Hydroxydaunomycin (Doxorubicin), Oncovin (Vincristinine), Prednisolone; na, data not available;
NHL-BFM, patients were enrolled in studies of the Non-Hodgkin-Lymphoma Berlin-Frankfurt-Minster study group and

treated according to protocols (https://www.uni-giessen.de/fbz/fb11/nhl-bfm?set_language=en).

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Isolation of genomic DNA from lymphocytes, frozen tumors and FFPE tissue

DNA isolation from CD3" lymphocytes, frozen tumors and FFPE tissues was performed with
the QIAamp DNA Blood Mini Kit. CD3" cells were directly lysed with buffer AL (containing 10
mg/ml RNAse, Roche), incubated with protease K and processed according to protocol.
Frozen tumors were pulverized in liquid nitrogen, lysed with buffer AL (containing 10 mg/ml
RNAse, Roche), incubated with protease K until completely dissolved and processed
according to protocol. FFPE tissue was dissected using microarray punches, deparaffinzed
with xylol, washed with EtOH, dried and resuspended in buffer ATL. Then, the suspension

was incubated with protease K for 3 days and further processed according to protocol.

Human ALK+ ALCL cell lines
Human ALCL cell lines KARPAS-299 and SUDHL1 were obtained from the DSMZ

(https://www.dsmz.de) and grown in RPMI 1640 medium (GIBCO) containing 10% FBS (fetal



bovine serum) and 1% penicillin/streptomycin at 37°C in an atmosphere of 5% COzand 95%

room air.

Isolation of genomic DNA from cell lines

Cells were dissolved in genomic DNA isolation buffer (0.4M NaCl, 0.2% SDS, 0.1M Tris pH
8.3, 5 mM EDTA). After RNase A (20 pg/ml, Invitrogen) and Proteinase K (500 pg/ml,
Invitrogen) digestion, phenol/chloroform extraction was performed and the DNA was
precipitated with isopropanol. The DNA pellet was washed and dissolved in sterile water. DNA

concentration was measured on a Nanodrop 2000 (Thermo Scientific).

lllumina Infinium HM450 DNA methylation data production

Genomic DNA is first treated with sodium bisulfite using the Zymo EZ DNA Methylation kit
(Zymo Research, Irvine, CA) according to the manufacturer’s instructions. We assessed the
amount of bisulfite-converted DNA as well as the completeness of bisuflite conversion for
each sample using a panel of MethyLight-based real-time PCR quality control assays as
described previously (PMID: 18987824). After bisulfite conversion, each sample is whole
genome amplified (WGA) and then enzymatically fragmented. Samples are then hybridized
overnight to a 12 sample BeadChip, in which the WGA-DNA molecules anneal to locus-
specific DNA oligomers linked to individual bead types. The oligomer probe designs follow the
Infinium | and Il chemistries, in which base extension with a single cy3- or cy5-labeled

nucleotide follows hybridization to a locus-specific oligomer.



Bioinformatic analyses
BeadArrays were scanned using the lllumina iScan technology, and the raw signal intensities
were extracted from the *.IDAT files using the R package methylumi. The intensities were
corrected for background fluorescence and red-green dye-bias using the methods described
by Triche et al (Triche et al., 2013). The beta value was calculated as (M/(M+U)), in which M
and U refer to the mean methylated and unmethylated probe signal intensities, respectively.
Measurements in which the fluorescent intensity was not statistically significantly above
background signal (detection p value > 0.01) were removed from the data set. We also
masked all HM450 probes that have common SNPs with a minor allele frequency (MAF)
greater than 1% (UCSC criteria) at the targeted CpG site, as well as probes with common
SNPs (MAF>1%) within 10 bp of the targeted CpG site. HM450 probes that are within 15
bases of the CpG lying entirely within a repeat region were also masked prior to data
analyses.

As a first step, missing beta-values were imputed using KNN-imputation (Troyanskaya
et al., 2001) and the data underwent quantile normalization. The exported data was analyzed

using the R packages Minfi, Methylumi and LIMMA available at http://bioconductor.org, as

well as IMA available at www.rforge.net. After filtering out probes with a detection p-value

>0.05, positioned within 15 bp of a SNP, overlapping repetitive elements, mapping to multiple
locations, or located on the X and Y-chromosomes, 385,826 probes remained for downstream
analysis. Beta-values of all the CpG sites were logit transformed to M-values and methylation
variable positions (MVPs) were identified using the Bioconductor package limma (Ritchie et
al., 2015). An FDR cutoff of 0.01 was applied and a minimum 0.2 difference in mean beta-

value between groups was used to filter the MVPs. To identify differential methylation at the



region-level of the 11 annotated categories (e.g promoter, gene body, 3’UTR) we calculated
the mean beta-values of differentially methylated CpG sites within those individual regions
and filtered the data using a beta-difference of at least 0.15 between the two groups and an
adjusted p-value < 0.05.

Methylation data (beta-values) and ChlP-seq data for cell lines were visualized via the
ENCODE portal of the UCSC genome browser (GM12878: Gene expression omnibus (GEO)
accession number GSM999376, Jurkat: GEO accession number GSM999367; ESC
H3K27me3: GEO accession number GSM733748, GM12878 H3K27me3: GEO accession
number GSM733758, data were produced by the Dr. Richard Myers Lab and the Dr. Devin
Absher lab at the Hudson Alpha Institute for Biotechnology (Bernstein et al., 2012)) (Kent et
al., 2002).

Gene expression analyses of published microarray data including ALK+ ALCL and normal T
cell subsets (CD4 and CD8) (Eckerle et al., 2009) (GEO accession number GSE14879) were
performed with GeneSpring (GX 11) software (Agilent). For this, we normalized the data using
the robust multi-array average (RMA) summarization algorithm. We used a corrected p-value
cut-off of 0.05 and adjusted for multiple testing by Benjamini — Hochberg correction.
Functional annotation and GO term analysis of differentially methylated regions were
performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID,

http://david.abcc.ncifcrf.gov) (Huang et al., 2009a; Huang et al., 2009b).

To compare our ALCL methylation data with methylation of different thymic T cell subsets we
downloaded the GSE55111 dataset from the GEO data repository from a recent methylation
study on different stages of T cell development (Rodriguez et al., 2015). Investigated cell

types of GSE55111 covered multipotent progenitors (CD34" CD1a’), thymocyte precursors



(CD34" CD1a"), pre-TCR thymocytes, DP TCRaR"* thymocytes and CD4" and CD8" SP
thymocytes. A total of 11 samples (duplicates for each stage except for CD34" CD1a") were
included and compared with our ALCL and CD3" methylation profiles. Preprocessing of the 2
combined data sets comprised imputation of missing data by k-nearest neighbour (knn)
algorithm and quantile normalization to ensure equal data distribution. The Qlucore Omics
Explorer was used to visualize the combined data set. The different data origin introduced
significant batch effects and was considered as confounding factor. This confounding factor
was eliminated before analysis.

In order to identify conserved DNA sequence motifs in regions surrounding hypomethylated
CpG sites, we used the MEME-ChIP tool included in the MEME suite analysis tool (Bailey et
al., 2009; Machanick and Bailey, 2011). Sequences surrounding hypomethylated CpG sites
by 100bp were obtained from the UCSC table browser (Karolchik et al., 2004). MEME-ChIP
settings were set to default except for number of repetitions (set to “Any number of
repetitions”), motif width (min=4; max=15). To compare the identified motifs with known motifs
we used the TOMTOM tool within the MEME suite. For pathway and network analyses, data
were analyzed through the use of QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN

Redwood City,www.giagen.com/ingenuity).

Knockdown of JunB by shRNA

ShRNA was expressed from lentiviral vectors pRS19-U6-(sh)-UbiC-TagRFP-2A-Puro
containing oligos targeting JUNB or luciferase as control. ShRNA Oligo sequences are listed
in the table below. Production of lentivirus particles for shRNA knockdown was carried out

using HEK293FT cells in Opti-MEM reduced serum medium (GIBCO). ShRNAs vectors were



transfected using Lipofectamine® LTX Reagent with PLUS™ Reagent (life technologies)
together with packaging plasmids psPAX2 and pMD2.G (Addgene) into HEK293FT cells
according to the manufacturer’s protocol. The transfection mix was removed after 24 hours
and cells were further grown in DMEM (GIBCO) containing 10% FBS (fetal bovine serum) and
1% penicillin/streptomycin. Virus particles were harvested after 48 hours. Virus supernatant
was added to 3x10° Karpas-299 cells in RPMI supplemented with 4 ug/ml polybrene (Sigma)
and cells were centrifuged for 90 min at 1000 rpm. After two days, transduced cells were
selected in RPMI supplemented with 1 mg/ml puromycin for one week prior to further
analysis. Then, the functionality of the shRNAs was validated by Western blot analysis.
Antibodies used for Western blot were: anti-JunB (Santa Cruz, sc-8051) and anti-beta-Actin
(Cell signalling, #4967). For cell cycle analysis, 3x10° cells/ml of Karpas-299 transfected with
shdun1, shdun2 or control were seeded in RPMI supplemented with 1 mg/ml puromycin,
grown for 48 hours and stained with propidium iodide (BD Bioscience). For calculation of
population doublings, 3x10° cells/ml of Karpas-299 transfected with shJun1, shJun2 or control
were seeded in RPMI supplemented with 1 mg/ml puromycin. After 1, 3, 4 and 5 days, cells
were counted and diluted to 5x10° cells/ml in fresh RPMI medium. Two independent samples
of shdun1, shdun2 and control were analysed. Descriptive statistics for analysis are reported
as mean + SEM. Western blot, PI staining for cell cycle analysis and calculation of population

doublings were performed as previously described (Hassler et al., 2012).

Primer and shRNA-oligo Sequences

ms-qPCR

ALUfo 5-GGTTAGGTATAGTGGTTTATATTTGTAATTTTAGTA-3,
ALUre 5-ATTAACTAAACTAATCTTAAACTCCTAACCTCA-3;
BCL11Bfo 5-AGGAGAAGGAGAGTTAAAGTAAAGCGAA-3,




BCL11Bre

5-ACTACCAAACTAACAACAACGACGA-3;

LCKfo 5-TGATAGTAGACGGTTGTAGTTGTGC-3,
LCKre 5-CTACCTCCCACCTAACCTTAAACG-3’;
LEF1fo 5-GAGTGTCGGGTATTAGGGTTTATTC-3,
LEF1re 5-CTTCTAACCCGCTACGAACGAT-3’;
TCF7fo 5-GCGTATTGGAGTTTGGGTACG-3/,
TCF7re 5-TTTCTCCTCCGACTATAAAAAACGA-3'.
ChiIP
IL2RGfo 5-CCATTGACTGAGGTGGGGAAGGC-3
IL2RGre 5-GAGACTGGCGAGGAAGTGTGACT-3
SAT2fo 5-ATCGAATGGAAATGAAAGGAGTCA-3
SAT2re 5-GACCATTGGATGATTGCAGTCA-3’
GAPDHfo 5-TACTAGCGGTTTTACGGGCG-3
GAPDHre 5-TCGAACAGGAGGAGCAGAGAGCGA-3
HOXA9fo 5-CGCTTAAGAAGTGTGTGTATGG-3’
HOXAO9re 5-CGTCCAGCAGAACAATAACG-3
HOXD3fo 5-CGCTTTGTGTGAGGCTTTCC-3’
HOXD3re 5-CCCGTCAGGTGAAAGGAGAG-3’
PLAUfo 5’-ACGACACCTAACCCAATCCT-3
PLAUre 5-GGGTTTGTTTGATGGTGCTATC-3’
PDGFRBfo 5-CAGGTCATCTGCTCCAAGTG-3',
PDGFRBre 5-TTGCACTGTCCTGTCTGTCC-3;
PDGFRBnegf | 5-GGGTATATGGCCTTGCTTCA-3/,
0
PDGFRBnegr | 5-GAGGAATCCCTCACCCTCTC-3’;
e
SERPINA1fo 5-GAGAGACCGCTCATCCAAAG-3’
SERPINA1re 5-GATGTGCTTCCCCACCTCTA-3
LYNfo 5-AAGGAGACGCGAGACGTGTA-3
LYNre 5-GGCTTTGAAGGCACAGAAAC-3’
TLR6fo 5-AGAAAGGCTGGCTTCTTGTG-3’
TLRé6re 5-TTTCCCTTGGCTTGTTTCAC-3
shRNAs
shdun1 ACCGGCAGACTCGATTCATATTGAATGTTAATATTCATAGCATTCAATATGAATCGAGTCTG
EEEAAAAACAGACTCGATTCATATTGAATGCTATGAATATTAACATTCAATATGAATCGAGT
T
shJun2 gcggGCACGACTACAAACTCTTGAAAGTTAATATTCATAGCTTTCAG GAGTTTGTAGTCGTG

TTTT
CGAAAAAACACGACTACAAACTCCTGAAAGCTATGAATATTAACTTTCAAGAGTTTGTAGTC
GTGC




Supplemental References

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W,,
and Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic
Acids Res 37, W202-208.

Bernstein, B. E., Birney, E., Dunham, |., Green, E. D., Gunter, C., Snyder, M., and
Consortium, E. P. (2012). An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57-74.

Eckerle, S., Brune, V., Doring, C., Tiacci, E., Bohle, V., Sundstrom, C., Kodet, R., Paulli, M.,
Falini, B., Klapper, W., et al. (2009). Gene expression profiling of isolated tumour cells from
anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to
Hodgkin lymphoma. Leukemia 23, 2129-2138.

Hassler, M. R., Klisaroska, A., Kollmann, K., Steiner, |., Bilban, M., Schiefer, A. I., Sexl, V.,
and Egger, G. (2012). Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2'-
deoxycytidine in anaplastic large cell lymphoma. Biochimie 94, 2297-2307.

Huang, d. W., Sherman, B. T., and Lempicki, R. A. (2009a). Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37,
1-13.

Huang, d. W., Sherman, B. T., and Lempicki, R. A. (2009b). Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57.

Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., Haussler, D., and
Kent, W. J. (2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32, D493-
496.

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., and
Haussler, D. (2002). The human genome browser at UCSC. Genome Res 12, 996-1006.

Machanick, P., and Bailey, T. L. (2011). MEME-ChIP: motif analysis of large DNA datasets.
Bioinformatics 27, 1696-1697.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015).
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res 43, e47.

Rodriguez, R. M., Suarez-Alvarez, B., Mosen-Ansorena, D., Garcia-Peydro, M., Fuentes, P.,
Garcia-Leon, M. J., Gonzalez-Lahera, A., Macias-Camara, N., Toribio, M. L., Aransay, A. M.,
and Lopez-Larrea, C. (2015). Regulation of the transcriptional program by DNA methylation
during human alphabeta T-cell development. Nucleic Acids Res 43, 760-774.

Triche, T. J., Jr., Weisenberger, D. J., Van Den Berg, D., Laird, P. W., and Siegmund, K. D.
(2013). Low-level processing of lllumina Infinium DNA Methylation BeadArrays. Nucleic Acids
Res 41, e90.



Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D.,
and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays.
Bioinformatics 17, 520-525.



