The Plant Cysteine Oxidases from *Arabidopsis thaliana* are kinetically tailored to act as oxygen sensors

Mark D. White*, Jos J. A. G. Kamps, Samuel East, Leah J. Taylor Kearney, and Emily Flashman*

Address: Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom

Running title: Plant Cysteine Oxidase oxygen kinetics

Supplementary Information

Supplementary Tables

PCO	HRE1 (µmol min ⁻¹ mg ⁻¹)	HRE2 (µmol min ⁻¹ mg ⁻¹)	RAP2.3 (µmol min ⁻¹ mg ⁻¹)	RAP2.2/2.12 (μmol min ⁻¹ mg ⁻¹)
1	0.95 ± 0.04	2.77 ± 0.12	1.30 ± 0.07	2.01 ± 0.13
2	0.33 ± 0.01	1.40 ± 0.07	0.47 ± 0.02	1.45 ± 0.04
3	0.63 ± 0.04	1.89 ± 0.12	1.07 ± 0.10	1.04 ± 0.05
4	3.52 ± 0.34	2.48 ± 0.32	3.73 ± 0.36	3.07 ± 0.27
5	4.20 ± 0.17	2.25 ± 0.10	2.77 ± 0.12	2.52 ± 0.08

Table S1 – The specific activities of AtPCO 1 to 5 with different AtERF-VII substrates: The specific activities of each AtPCO isoform with different AtERF-VII peptides, calculated from a competition assay where all substrates were pooled at a concentration equal to the relative $K_{\rm m}$ for RAP2₂₋₁₅. Values were normalized to the substrate that generated the greatest activity for individual AtPCOs to produce Figure 6A.

Supplementary Figures

Figure S1 - AtPCOs 1 to 5 catalyze dioxygenation of AtRAP2₂₋₁₅: LC-MS spectra demonstrating the AtRAP2₂₋₁₅ mass species detected following 30 minute incubation with and without AtPCO 1 to 5 under aerobic conditions at 25 $^{\circ}$ C. An enzyme-dependent mass increase of +32 Da, consistent with Cys-sulfinic acid formation (1), was observed in all cases. 50 mM HEPES, 50 mM NaCl and 1 mM TCEP pH 7.5 was used as buffer.

Figure S2 - ¹**H NMR analysis of AtRAP2**₂₋₁₅**: A** Stacked ¹H NMR spectra of AtRAP2₂₋₁₅ peptide (223 μM) in D₂O at different pH* (5.60 to 7.85), using 50 mM NaH₂PO₄ as buffer. Chemical shifts following the cysteine β-protons (consistent with deprotonation of the N-terminal thiol group, in the case of the deprotonated diastereotopic β-protons, pH 6.8 and above, the average of the chemical shift is used) were observed at higher pH* which allowed the p K_a of the cysteine side group in H₂O to be estimated (Figure 3B) using the equation, $pK^H = 0.929pK^{H*} + 0.42$, given in (2); **B** plotted pH versus chemical shift δ (ppm).

Figure S3 – **Initial rate data for AtPCOs 1 to 5 with different concentrations of AtRAP2**₂₋₁₅: Rate profiles for AtPCOs 1 to 5 with different concentrations of AtRAP2₂₋₁₅, indexed in the figure. Assays were conducted under aerobic conditions at 25 °C, using 50 mM bis-tris propane, 50 mM NaCl and 5 mM TCEP pH 8.0 as buffer and analyzed by LC-MS. This data was used to produce the Michaelis-Menten kinetic plots shown in Figure 4. Standard error is shown (n=3).

Figure S4 - AtPCOs 1 to 5 catalyze dioxygenation of AtHRE1₂₋₁₅: LC-MS spectra demonstrating the AtHRE1₂₋₁₅ mass species detected following 30 minute incubation with and without AtPCO 1 to 5 under aerobic conditions at 25 °C. An enzyme-dependent mass increase of 32 Da, consistent with Cys-sulfinic acid formation (1), was observed in all cases. 50 mM HEPES, 50 mM NaCl and 1 mM TCEP pH 7.5 was used as buffer.

Figure S5 - AtPCOs 1 to 5 catalyze dioxygenation of AtHRE2₂₋₁₅: LC-MS spectra demonstrating the RAP2₂₋₁₅ mass species detected following 30 minute incubation with and without AtPCO 1 to 5 under aerobic conditions at 25 °C. An enzyme-dependent mass increase of 32 Da, consistent with Cys-sulfinic acid formation (1), was observed in all cases. A contaminating peak of 739.9 Da was observed in all spectra, which could not be identified. 50 mM HEPES, 50 mM NaCl and 1 mM TCEP pH 7.5 was used as buffer.

Figure S6 - AtPCOs 1 to 5 catalyze dioxygenation of AtRAP2.3₂₋₁₅: LC-MS spectra demonstrating the AtRAP2.3₂₋₁₅ mass species detected following 30 minute incubation with and without AtPCO 1 to 5 under aerobic conditions at 25 °C. An enzyme-dependent mass increase of 32 Da, consistent with Cys-sulfinic acid formation (1), was observed in all cases. 50 mM HEPES, 50 mM NaCl and 1 mM TCEP pH 7.5 was used as buffer.

References

- 1. White, M. D., Klecker, M., Hopkinson, R. J., Weits, D. A., Mueller, C., Naumann, C., O'Neill, R., Wickens, J., Yang, J., Brooks-Bartlett, J. C., Garman, E. F., Grossmann, T. N., Dissmeyer, N., and Flashman, E. (2017) Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of n-end rule targets *Nature communications* **8**, 14690
- 2. Krężel, A., and Bal, W. (2004) A formula for correlating pKa values determined in D₂O and H₂O *J Inorg Biochem* **98**, 161-166