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eAppendix 

Parametric g-formula algorithm – algorithmic details 
 

The generalize computation algorithm formula (g-formula) is a way to describe the 

relationships between exposure, confounders, and potential outcomes (e.g. the expected lung 

cancer mortality at age 80 under no exposure). The g-formula links to the observed data via the 

causal identification assumptions. The relationships among the observed data can be modeled 

using parametric modeling, in which case the method is referred to as the parametric g-formula. 

This method is highly parametric because it requires estimating nuisance parameters (e.g. log-

odds ratios from the parametric models) in order to estimate the target parameter (e.g. the age-

specific risk of the outcome under no exposure). The parameters of the parametric g-formula can 

be estimated using the combination of a set of pooled logistic models for the joint distribution of 

the data, followed by a Monte Carlo algorithm.1,50 The modeling step can be performed using 

separate models for exposure, all time-varying covariates, and all outcomes of interest (see 

below). The Monte Carlo step uses parameter estimates from the modeling step to simulate the 

target population under one or more intervention distributions for exposure. The output of these 

simulations is a set of discrete hazard estimates for each outcome yearly for each subject under 

each intervention. Using a modified Kaplan-Meier algorithm, these discrete rate estimates are 

combined to estimate the risk for the outcomes of interest under each intervention. The risk 

difference comparing two interventions at a given age is simply the difference between the risk 

functions. Interval estimates for the risk functions and the risk difference estimates are obtained 

using a non-parametric bootstrap, whereby all steps of the parametric g-formula are repeated on 

random samples (with replacement) of individuals from the original data. We describe each step 

in more detail below. 

 
Parametric modeling 
Using a person-period dataset where each observation represents a person-year, we fit the 

following models: a) a logistic model to estimate the log-odds of whether or not the individual 

was exposed at all during the year, if at work (Chinese, US diatomaceous studies only, in the 

other cohorts subjects were exposed until they left work); b) a linear model to estimate the log-

annual-exposure rate (a and b are referred to jointly as ‘the exposure model’); c) a logistic model 

to estimate the log-odds of leaving employment in a given year, if at work (the ‘employment 
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model’); d) a logistic model to estimate the log-odds of dying from lung cancer in a given year 

(the ‘lung cancer model’); e) a logistic model to estimate the log-odds of dying from a cause 

other than lung cancer in a given year (the ‘other outcome model’). The variables used in each 

model are given in Supplemental Table 4. Models were chosen from a list of candidate models 

based on Aikiake’s Information Criterion (AIC) and comparisons between the observed data and 

the so-called ‘natural course’ intervention. The natural course intervention refers to an 

intervention that attempts to emulate the existing data by modeling the exposure mechanism in 

addition to confounders and outcomes. We included all potential confounders and model 

selection consisted of examining model fit under different functional forms for variables. We 

performed an initial models selection based on AIC, which yielded a small set of potential model 

forms for each modeled variable. We selected our final set of models from this set based on plots 

to assess agreement between the between the natural course and the observed data, with respect 

to risk. 

 
Monte Carlo algorithm 
We fully describe the Monte Carlo algorithm only for the natural course, and variations of the 

algorithm under interventions are considered below. We previously described a simpler form of 

this algorithm in detail,1 and we described an occupational implementation in a cohort of copper 

smelters.2 The Monte Carlo algorithm starts out using a large (M =1,000,000) random sample, 

taken with replacement from the study population (N = 65,999) individuals. Because of large 

difference between cohort sizes, it requires a very large random sample to minimize simulation 

error in the smaller cohorts. For computational efficiency, we sampled equally from each cohort 

and recorded sampling fractions to use as weights in subsequent estimation procedures. The 

values of all study variables, except exposure, were retained for the person-year in which the 

individual entered the study (referred to as the baseline variables). The sampled individuals are 

referred to as members of a “pseudo-population.” 

 
For each member of the pseudo-population, the algorithm to predict the outcomes under each 

intervention proceeds from age, in years, at study entry (time Ti=1 for i = 1, …, M pseudo-

individuals) until the age at death or the age at which follow-up for the pseudo-individual would 

have ended (time Ti = Ki). Starting at time Ti=1 for the first individual (i=1), we calculate the 

predicted probability of whether the pseudo-individual leaves work using values of their baseline 
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covariates and the model coefficients for the employment model. We then draw a value from a 

Bernoulli distribution with this probability to simulate termination from work. If the pseudo-

individual leaves employment then exposure at time Ti=1 is set to zero. If the pseudo-individual 

remains employed, then we predict their exposure. For diatomaceous earth workers and the 4 

Chinese cohorts, some individuals were unexposed at work, and we predicted whether or not a 

pseudo-individual was exposed for these four cohorts using their values of the baseline 

covariates, and the coefficients from the logistic (yes/no) exposure model. Among those 

predicted to be exposed, we simulated log-annual-exposure for each pseudo-individual using 

their values of the baseline covariates, and the coefficients from the exposure model. For the 

natural course, log-annual-exposure is taken as a draw from a normal distribution with the mean 

set at the prediction and the variance set at the estimated error variance from the linear model for 

log-exposure. For unexposed members of the diatomaceous earth, or any of the 3 Chinese 

cohorts, we set exposure to a small, non-zero value if the individual was predicted to have been 

unexposed while at work. This constant was set to a value for annual exposure determined by the 

smallest observed annual exposures by country (exp(-11) and exp(-7) in the diatomaceous earth 

and Chinese cohorts, respectively). Given that these exposures are several orders of magnitude 

below any intervention value, the results are not expected to be sensitive to these values because 

they are not used in modeling quantitative exposure, and outcomes are modeled using 

untransformed exposures. 

 
Using baseline covariates and the new predicted employment and exposure for time Ti=1 and the 

lung cancer model, we then predict whether or not the pseudo-individual dies from lung cancer 

during the first year of employment. If the individual does not die from lung cancer, we use the 

predicted employment and exposure for time Ti=1 and the other outcome model to generate a 

predicted probability for whether or not the pseudo-individual dies from another cause during the 

year.  

 
If the individual does not die or reach the end up follow-up, then we set Ti=Ti+1 and repeat the 

algorithm. The algorithm is repeated until the pseudo-individual dies or reaches the end of 

follow-up. Once a pseudo-individual dies or reaches the end of follow-up, we set i=i+1 and 

repeat the algorithm for the next pseudo-individual, and so on for all individuals in the pseudo-

population. Once the algorithm has moved through the entire pseudo-population, we have a 
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“pseudo-cohort” of person-period data that is a realization of the joint-probability distribution 

implied by the parametric g-formula. For large M (and provided that the causal identification and 

model specification assumptions are met), the empirical distribution of the pseudo-cohort 

estimates the joint probability distribution of the data we would expect under intervention (or no 

intervention, in the case of the natural course). Thus, the risk we would expect in the target 

population, had an intervention occurred, is the sample risk in the pseudo-cohort. Note that this 

algorithm yields the risk on the time-scale with an origin at the start of follow-up. We estimate 

risk on the age time-scale using an approach described below. 

 
Interventions other than the natural course 
The algorithm described above yields the mortality under no intervention on exposure. To 

estimate the mortality under interventions on occupational silica exposure, we modify the 

sampling from the exposure model to draw log-exposures from a truncated normal distribution, 

with an upper bound at the proposed limit. For example, for an occupational exposure limit of 10 

µg/m^3, we would first draw a value from the log-exposure distribution implied by the natural 

course. If that value is above log(10), then we repeat the sampling until we draw a value at or 

below log(10). 

 
 
Cumulative incidence, risk difference estimation 
We estimate risk from age 16 to 90 for each cause of death and intervention using a modified 

version of the Kaplan-Meier estimator.2,3 We modify previous implementations slightly by 

sampling from each cohort with equal probability and using sampling weights to account for this 

differential sampling when estimating the risk. This approach was needed to reduce simulation 

error in estimating cohort and country specific mortality, given computational constraints.  

 

 

Sensitivity analysis 

We assessed sensitivity to our particular choice of functional form between exposure and 

mortality in the models for lung cancer mortality and all other cause mortality by re-estimating 

the parameters of the g-formula using modified outcome models that included spline terms for 

total exposure from 1 to 14 years prior (knots at 0.0, 0.4,  1.3, 20.0), and cumulative exposure 
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lagged 15 years (knots at 0.0, 0.0, 1.4, 23.0),. Both splines were restricted cubic splines with 

basis functions with 3 degrees of freedom. Results are given in eTable 8. 

For the Chinese cohorts, we also estimated risk with the g-formula while operationalizing 

silicosis as an additional time-varying-confounder. We assumed an identical model form for 

silicosis as for mortality (see eTable 1), and we included silicosis at baseline and ever-silicosis 

(time-varying) as indicator variables in models for exposure and mortality. Results are given in 

eTable 5.  
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eTables 
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eTable 1: Model forms used for the parametric g-formula analysis 

Dependent var. Studies Model Termsa 

Exposure (unexposed at 
work=0 vs. exposed at 
work=1) 

Chinese, US 
diatomaceous Logistic model 

agec agework_sp1 datec 
datework_sp1 
datework_sp2 sexa raceb 
explag1 cye1_3_1 
cye1_3_2 

Exposure (quantitative) Non-Chinese Linear model for log-exposure 

agec agework_sp1 datec 
datework_sp1 
datework_sp2 sexb raceb 
explag1 exp_2_15 
cumexplag15 cumyrsexp 
cumyrsexp*cumyrsexp 

Exposure (quantitative) Chinese Linear model for log-exposure 

agec agework_sp1 datec 
datework_sp1 
datework_sp2 sexb raceb 
xl1cat_5_2 xl1cat_5_3 
xl1cat_5_4 sil2_4_1 
sil2_4_2 sil2_4_3 
cumyrsexp 
cumyrsexp*cumyrsexp 

Employment (leaving 
employment=1 vs. 
staying employed=0) 

All Logistic model 
agec agesq agecu datec 
datesq datecu sexa raceb 
cumexp 

Lung cancer mortality All Logistic model 

agec agedeath_sp1 
agedeath_sp2 datec 
datedeath_sp1 
datedeath_sp2 sexb raceb 
atwork_2yrs exp_2_15 
cumexplag15 cumyrsexp 
cumyrsexp*cumyrsexp 

All other causes of death All Logistic model 

agec agedeath_sp1 
agedeath_sp2 datec 
datedeath_sp1 
datedeath_sp2 sexb raceb 
atwork_2yrs exp_2_15 
cumexplag15 cumyrsexp 
cumyrsexp*cumyrsexp 

a Key for variable names: agec (attained age, centered), agedeath_sp1-2 and agework_sp1_2 (restricted, cubic spline on agec; 
knots varied for Chinese vs. other cohorts), datework_sp1-2 and datedeath_sp1-2 (restricted, cubic spline on calendar time; knots 
varied for Chinese vs. other cohorts), explag1 (silica exposure from the previous year), cye1_3_1-2 (category indicators for 
cumulative years of exposure), exp_2_15 (silica exposure accrued between 2 and 15 years prior), cumexplag15 (cumulative silica 
exposure, 15 year lag), cumyrsexp (cumulative years exposed), xl1cat_5_2-4 (category indicators for exposure in the previous 
year), sil2_4_2-3 (category indicators for cumulative silica exposure, 2 year lag), datec (calendar time, centered), datesq and 
datecu (datec squared and cubed), cumexp (cumulative exposure), atwork_2yrs (category indicator of whether individual was 
employed two years prior) 

b In applicable studies only where these factors varied (e.g. race was not used in the models among the Chinese cohorts)	
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eTable 2: Hazard ratios and 95% confidence intervals from a Cox proportional hazards 
model for the association between active employment and the all-cause-mortality. 

Lag HRa (95% CI) 
0 0.426 (0.404, 0.449) 
1 0.562 (0.535, 0.59) 
2 0.597 (0.569, 0.627) 
3 0.635 (0.606, 0.399) 
4 0.659 (0.629, 0.689) 

 
a Hazard ratio for comparing rates of all-cause mortality among actively-employed person-time 
and person-time not employed in study cohort. Adjusted for log-cumulative exposure (1 year lag, 
linear term), sex, race, date of birth (linear term), calendar period (linear term), and study 
(stratification). 
 

eTable 3: Coefficients and 95% confidence intervals from a Weibull accelerated failure 
time model for the association between log-cumulative exposure and the time-to-leave-
employment 

Lag Coefficienta (95% CI) 
1 -0.0030 (-0.00338, -0.00252) 
2 -0.0032 (-0.00360, -0.00274) 
5 -0.0028 (-0.00323, -0.00238) 
10 -0.0026 (-0.00301, -0.00217) 
15 -0.0031 (-0.00354, -0.00273) 

a Coefficient for the change in the log-time-to-leave-employment per unit of log-cumulative 
exposure, assuming a Weibull distribution for the time-to-leave. Adjusted for sex, race, date of 
birth (linear term), calendar period (restricted cubic spline), and study (study specific Weibull 
shape parameters and study specific intercepts). 
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eTable 4: Coefficients and 95% confidence intervals from a Weibull accelerated failure 
time model for the association between ever- silicosis and the time-to-leave-employment 

Lag Coefficienta (95% CI) 
0 -0.142 (-0.152, -0.132) 
1 -0.073 (-0.079, -0.068) 
2 -0.049 (-0.052, -0.045) 
3 -0.030 (-0.033, -0.027) 
4 -0.021 (-0.023, -0.019) 

 
a Coefficient for the change in the log-time-to-leave-employment for those who have ever been 
diagnosed with silicosis, compared to those who have not been diagnosed with silicosis, 
assuming a Weibull distribution for the time-to-leave. Adjusted for log-cumulative exposure 
(linear term, lagged 1 year longer than employment lag), silicosis prior to baseline, sex, race, 
date of birth (linear term), calendar period (linear term), and study (study specific Weibull shape 
parameters and study specific intercepts). 
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eTable 5: Deaths per 1000 under no intervention and deaths delayed or prevented by age 
80 per 1000 workers in China, considering possible time-varying confounding by silicosis. 

      Deaths delayed or prevented per 1000 workers 
  Silicosis as confounder 50 ug/m^3 Eliminate exposure 

Lung cancer Yes   0.863 (-2.57, 4.3) 1.28 (-2.28, 4.85) 
No   0.386 (-3.49, 4.26) 0.849 (-2.98, 4.68) 

          

Other causes Yes   8.06 (-5.62, 21.7) 10.4 (-2.16, 23) 
No   9.92 (-5.15, 25) 12.0 (-3.02, 27.1) 

          

All causes Yes   8.92 (-5.12, 23) 11.7 (-1.15, 24.6) 
No   10.3 (-4.25, 24.9) 12.9 (-2.21, 28.0) 
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eTable 6: Cumulative exposure and proportion of person-time exposed in the data and the 
predicted values under the natural course. 

  Mean cumulative exposure (mg/m^3-years)a   Time exposed 
  Mean Standard deviation   Proportion 
  Observed G-formula Observed G-formula   Observed G-formula 
US diatomaceous 2.0 3.2 3.4 6.1   0.28 0.35 
South Africa gold 4.2 4.4 1.5 1.5   0.01 0.10 
US gold 0.5 0.6 0.8 0.8   0.16 0.19 
Australia gold 11.4 11.7 7.6 7.7   0.45 0.48 
US granite 1.8 2.3 3.4 3.9   0.50 0.57 
Finnish granite 11.4 10.4 17.0 13.6   0.31 0.37 
US industrial sand 0.8 1.2 2.0 2.4   0.33 0.38 
China Tungsten 14.8 14.8 25.7 23.8   0.65 0.70 
China pottery 3.9 3.8 7.0 6.8   0.62 0.68 
China tin 3.9 3.2 6.2 5.3   0.73 0.78 
                
Overall 8.1 8.0 18.2 16.9   0.54 0.59 

a Note that estimates differ from those given for the study data in Table 1 of Steenland et al. 4 
because we report the mean and standard deviation across the person-time-at-risk, rather than the 
median at the end of follow-up. 
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eTable 7: Crude mortality rates per 10,000 person-years: observed data and g-formula 
natural course 

 Industry  Lung cancer   All other causes 
  Observed G-formula   Observed G-formula 
US diatomaceous 11.7 12.3   101.7 100.5 
South Africa gold 24.5 26.5   296.1 282.4 
US gold 13.6 13.9   154.7 156.4 
Australia gold 30.9 31.7   276.6 272.9 
US granite 10.3 10.5   135.3 135.6 
Finnish granite 13.6 14.6   132.1 129.6 
US industrial sand 9.3 9.5   85.2 86.9 
China Tungsten 2.8 2.8   71.5 68.7 
China pottery 4.4 4.7   77.6 73.7 
China tin 7.2 7.0   48.9 47.4 
      
Overall 7.3 7.6   95.7 94.3 
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eTable 8: Sensitivity analysis results: cubic spline on exposure 

                
  Deaths per 1000   Deaths delayed or prevented per 100 workers 
  No intervention   100 ug/m^3  50 ug/m^3 25 ug/m^3 10 ug/m^3 Eliminate exposure 
Lung cancer 55.1 (53, 57.3)    2.07 (-0.839, 4.98)  3.11 (0.0857, 6.12)  3.61 (0.688, 6.54)  4.3 (0.869, 7.73) 4.68 (1.04, 8.33) 
Other causes 647 (642, 653)    8.6 (0.82, 16.4)  10.9 (3.37, 18.5)  12.9 (5.21, 20.6)  14.2 (6.1, 22.3) 14.9 (7.15, 22.6) 
All causes 703 (697, 708)    10.7 (3.09, 18.3)  14 (6.2, 21.9)  16.5 (8.44, 24.6)  18.5 (9.78, 27.3) 19.6 (10.6, 28.5) 

 
eTable 9: Deaths per 1000 under no intervention and deaths delayed or prevented by age 80 per 1000 workers under 
assumption of no healthy worker survivor bias 

  Deaths per 1000   Deaths delayed or prevented per 1000 workers (95% CI) 

  No intervention   100 µg/m^3  50 µg/m^3 25 µg/m^3 10 µg/m^3 Eliminate exposure 
Lung cancer  55.1 (53.1, 57)    1.69 (-1.13, 4.5)  2.11 (-0.703, 4.92)  2.32 (-0.472, 5.11)  2.54 (-0.329, 5.4) 2.8 (0.0463, 5.55) 
Other causes  648 (642, 654)    3.38 (-4.41, 11.2)  5.47 (-2.22, 13.2)  6.53 (-1.02, 14.1)  7.48 (-0.329, 15.3) 8.4 (1.28, 15.5) 
All causes  703 (698, 709)    5.07 (-2.63, 12.8)  7.58 (0.140, 15.0)  8.85 (1.54, 16.2)  10.0 (2.19, 17.8) 11.2 (4.08, 18.3) 

 
 
eTable 10: Deaths per 1000 under no intervention and deaths delayed or prevented by age 80 per 1000 workers under 
alternative assumption of no healthy worker survivor bias in which exposure is allowed to affect employment 

                
  Deaths per 1000   Deaths delayed or prevented per 100 workers 
  No intervention   100 ug/m^3  50 ug/m^3 25 ug/m^3 10 ug/m^3 Eliminate exposure 
Lung cancer 55.1 (53.1, 57.1)    1.77 (-1.04, 4.58)  2.32 (-0.51, 5.16)  2.36 (-0.292, 5.01)  2.53 (-0.238, 5.3) 2.71 (-0.0486, 5.47) 
Other causes 648 (643, 653)    3.03 (-4.3, 10.4)  5.01 (-2.37, 12.4)  6.13 (-1.63, 13.9)  7.44 (0.169, 14.7) 8.11 (0.321, 15.9) 
All causes 703 (698, 708)    4.8 (-2.4, 12)  7.33 (-0.02, 14.7)  8.49 (0.671, 16.3)  9.97 (2.39, 17.5) 10.8 (3.27, 18.4) 
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