Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer

Min Ji Bak¹, Philip Furmanski¹, Naing Lin Shan¹, Hong Jin Lee², Cheng Bao², Yong Lin ^{3,4}, Weichung Joe Shih ^{3,4}, Chung S, Yang^{1,4}, and Nanjoo Suh^{1,4,*}

Supplementary Figure S1. Effects of tocopherols on formation and size of T47D tumorspheres. (A) T47D cells were plated at a density of 10,000 cells/mL in ultra-low attachment 6-well plates and grown for 4 days in the presence of estrogen (E2, 1 nM) or/and α -, γ -, δ -tocopherol (1 μ M). Representative pictures of T47D tumorspheres are shown for phenotypic comparison, scale bar 100 μ m. (B) Sphere forming efficiency (SFE) of T47D tumorspheres is shown. SFE was calculated by dividing the number of tumorspheres (>100 μ m) formed by the number of cells seeded presenting this as a percentage. The data are represented as mean ± SD. n=3 independent experiments in triplicate, ^{a,b} Significantly different from the control and E2, respectively (p<0.05). (C) The size of tumorspheres was divided into three ranges (<100, 100-200 and >200 μ m). Average number of tumorspheres in each size range is shown in the graph.

Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer

Min Ji Bak¹, Philip Furmanski¹, Naing Lin Shan¹, Hong Jin Lee², Cheng Bao², Yong Lin ^{3,4}, Weichung Joe Shih ^{3,4}, Chung S, Yang^{1,4}, and Nanjoo Suh^{1,4,*}

Supplementary Figure S2. Tocopherols inhibit cell invasion induced by estrogen and OCT4. Cells were transfected with control vector (MCF-7) and pSin-EF2-OCT4-Pur vector (MCF-7-OCT4) for 24 h and then cells were treated with estrogen (E2, 1 nM) and/or α -, γ -, δ -tocopherol (1 μ M) for an additional 24 h. Cells (8x10⁴ cells/mL) were loaded onto transwells coated with matrigel. After 22 h incubation, the transwells were stained with H&E stain. Representative pictures are shown, 10X magnification.

Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer

Min Ji Bak¹, Philip Furmanski¹, Naing Lin Shan¹, Hong Jin Lee², Cheng Bao², Yong Lin ^{3,4}, Weichung Joe Shih ^{3,4}, Chung S, Yang^{1,4}, and Nanjoo Suh^{1,4,*}

Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer

Min Ji Bak¹, Philip Furmanski¹, Naing Lin Shan¹, Hong Jin Lee², Cheng Bao², Yong Lin ^{3,4}, Weichung Joe Shih ^{3,4}, Chung S, Yang^{1,4}, and Nanjoo Suh^{1,4,*}

Supplementary Figure S4. Effects of γ -tocopherol on ALDH activity in MCF-7 monolayer and tumorspheres. (A) MCF-7 monolayer cells were treated with estrogen (E2, 1 nM) and γ -tocopherol (1 μ M) for 24 h. (B) MCF-7 tumorspheres were formed by plating 10,000 cells/mL in ultra-low attachment 6-well plates and treated with E2 (1 nM) and γ -tocopherol (1 μ M) for 4 days. Cells were assayed with ALDEFLUOR assay kit as per the manufacturer's guidelines. As a negative control for all experiments, cells were incubated with diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor. Experiments were performed in triplicate and representative histograms from flow cytometry are shown.

Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer

Min Ji Bak¹, Philip Furmanski¹, Naing Lin Shan¹, Hong Jin Lee², Cheng Bao², Yong Lin ^{3,4}, Weichung Joe Shih ^{3,4}, Chung S, Yang^{1,4}, and Nanjoo Suh^{1,4,*}

Supplementary Figure S5. Effects of estrogen and/or tocopherols on the mRNA level of Nanog in MCF-7 tumorspheres. qPCR analysis was performed on MCF-7 tumorspheres collected from 4 days of treatment with estrogen (E2, 1 nM) and/or tocopherols (1 μ M), and analyzed for Nanog. Cycle numbers for control group were 30. The data are represented as mean ± SD. n=3 independent experiments.

Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer

Min Ji Bak¹, Philip Furmanski¹, Naing Lin Shan¹, Hong Jin Lee², Cheng Bao², Yong Lin ^{3,4}, Weichung Joe Shih ^{3,4}, Chung S, Yang^{1,4}, and Nanjoo Suh^{1,4,*}

Supplementary Figure S6. Effects of tocopherols on expression of CD44 and OCT4 in estrogen-treated MCF-7 tumorspheres. Immunofluorescence analysis was performed on MCF-7 tumorspheres collected from 4 days of treatment with control, estrogen (E2, 1 nM) or tocopherols (1 µM). MCF-7 tumorspheres were fixed using 4% paraformaldehyde and stained with antibodies against CD44 (green) and OCT4 (red). Nuclei were stained with TO-PRO3 (blue). Three independent experiments in duplicate were performed and shown as A, B, C, D, E and F. Scale bars: 200 µm.

Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer

Min Ji Bak¹, Philip Furmanski¹, Naing Lin Shan¹, Hong Jin Lee², Cheng Bao², Yong Lin ^{3,4}, Weichung Joe Shih ^{3,4}, Chung S, Yang^{1,4}, and Nanjoo Suh^{1,4,*}

Supplementary Figure S7. Effects of estrogen and/or γ -tocopherol on ERE-luciferase activity in MCF-7 cells. Cells were transfected with the ERE-TATA-luc reporter plasmid for 24 h and then cells were treated with estrogen (E2, 1 nM) and/or γ -tocopherol (1 μ M) for an additional 12 h. The data are represented as mean ± standard deviation (SD). n=3 independent experiments, ^{a,b} significantly different from the control and E2, respectively (p<0.05).