
Data File S2. Description of methodology to analyze RBC velocity. Related to Star Methods. 

Each RBC flowing through the vessel creates a dark shadow on fluorescent plasma. On XT images (Fig. A1), 

each of these shadows makes an oblique line which can be used to measure RBCs velocity  (Chaigneau et al., 

2003; Kleinfeld et al., 1998). Here we used a method adapted from (Autio et al., 2011). 

Figure A1 

 

 

The XT image can be mathematically represented by a field  𝑝𝑎𝑙𝑙(𝑥, 𝑡) which is the sum of the lines created 

by each particle. 

𝑝𝑎𝑙𝑙(𝑥, 𝑡) = ∑ 𝑝𝑗(𝑥, 𝑡)𝑛
𝑗=0           Eq.1 

Where 𝑝𝑗(𝑥, 𝑡) is the field created by one particle. 

𝑝𝑗(𝑥, 𝑡) can be mathematically described a progressive wave bounded by the edges of the image:  

𝑝𝑗(𝑥, 𝑡) = 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
)𝐷(𝑥, 𝑡)         Eq. 2 

With : 

𝑥0
𝑗
 being the starting position of RBC number j, 

v being the speed of the particle, 

D(x,t) being a door function equal to 1 if 0 < t < tmax and 0 < x < xmax, and 0 anywhere else, 

𝑠 a function which can be approximated to a gaussian function.  

 

𝑝𝑎𝑙𝑙(𝑥, 𝑡) is thus a series of progressive waves :  

𝑝𝑎𝑙𝑙(𝑥, 𝑡) = ∑ 𝑠 (𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
)𝑛

𝑗=0 𝐷(𝑥, 𝑡)        Eq. 3 

The two dimensional Fourier transform of this field, can be expressed as:   

𝑃𝑎𝑙𝑙
̃ (𝑓𝑥, 𝑓𝑡) = ∑ 𝑃𝐽̃(𝑓𝑥, 𝑓𝑡)𝑛

𝑗=0          Eq. 4 

where 𝑓𝑥 and 𝑓𝑡 are respectively the spatial and the temporal frequencies 

 

T (s)  

X (m) 



For each individual component:  

𝑃𝑗̃(𝑓𝑥, 𝑓𝑡) = ∬ 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
) 𝐷(𝑥, 𝑡)𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥       Eq. 5 

As the Fourrier transform of a product is the convolution product of the Fourier transforms of the individual 

components: 

𝑃𝑗̃(𝑓𝑥, 𝑓𝑡) = ∬ 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
) 𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 ∗ ∬ 𝐷(𝑥, 𝑡)𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥    Eq. 6 

Where * is the 2 dimensional convolution product. 

 

The first term of the convolution product can be calculated as follows : 

∬ 𝐷(𝑥, 𝑡)𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 =  ∫ ∫ 𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥
𝑥𝑚𝑎𝑥

0

𝑡𝑚𝑎𝑥

0
      Eq. 7 

Thus 

∬ 𝐷(𝑥, 𝑡)𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 = ∫ 𝑒−2𝜋𝑖𝑓𝑡𝑡𝑑𝑡 ∫ 𝑒−2𝜋𝑖𝑓𝑥𝑥𝑑𝑥
𝑥𝑚𝑎𝑥

0

𝑡𝑚𝑎𝑥

0
     Eq.8 

As  

∫ 𝑒−2𝜋𝑖𝑓𝑡𝑡𝑑𝑡 = 
𝑡𝑚𝑎𝑥

0
𝑡𝑚𝑎𝑥𝑠𝑖𝑛𝑐(𝜋𝑓𝑡𝑡𝑚𝑎𝑥)𝑒−2𝜋𝑖𝑓𝑡𝑡𝑚𝑎𝑥       Eq.9 

And  

∫ 𝑒−2𝜋𝑖𝑓𝑥𝑥𝑑𝑥 = 
𝑥𝑚𝑎𝑥

0
𝑥𝑚𝑎𝑥𝑠𝑖𝑛𝑐(𝜋𝑓𝑥𝑥𝑚𝑎𝑥)𝑒−2𝜋𝑖𝑓𝑥𝑥𝑚𝑎𝑥       Eq.10 

Where sinc is the sin(x) /x function  

Therefore  

∬ 𝐷(𝑥, 𝑡)𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 =  𝑥𝑚𝑎𝑥𝑡𝑚𝑎𝑥 𝑠𝑖𝑛𝑐(𝜋𝑓𝑡𝑡𝑚𝑎𝑥)𝑠𝑖𝑛𝑐(𝜋𝑓𝑥𝑥𝑚𝑎𝑥) 𝑒−2𝜋𝑖𝑓𝑡𝑡𝑚𝑎𝑥 𝑒−2𝜋𝑖𝑓𝑥𝑥𝑚𝑎𝑥   

  Eq. 11 

The second term of the convolution product can be calculated as follows : 

By Change of variable T = t - x0/v : 

∬ 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
) 𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 = ∬ 𝑠(𝑇 +

𝑥

𝑣
) 𝑒−2𝜋𝑖 (𝑓𝑡𝑇+𝑓𝑥𝑥)𝑒−2𝜋𝑖 𝑓𝑡𝑥0

𝑗
/𝑣𝑑𝑇𝑑𝑥  Eq. 12 

Reformulating : 

∬ 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
) 𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 = 𝑒−2𝜋𝑖 𝑓𝑡𝑥0

𝑗
/𝑣 ∫ 𝑒−2𝜋𝑖 𝑓𝑥𝑥( ∫ 𝑠(𝑇 +

𝑥

𝑣
) 𝑒−2𝜋𝑖 𝑓𝑡𝑇𝑑𝑇)𝑑𝑥  Eq. 13 

But  

∫ 𝑠(𝑇 +
𝑥

𝑣
) 𝑒−2𝜋𝑖 𝑓𝑡𝑇𝑑𝑇 = 𝑒2𝜋𝑖 𝑓𝑡𝑥/𝑣𝑆̃(𝑓𝑡)        Eq. 14 

With 𝑆̃(𝑓𝑡) being the Fourier transform of s(𝑡). 

Thus 



∬ 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
) 𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 = 𝑒−2𝜋𝑖 𝑓𝑡𝑥0

𝑗
/𝑣 ∫ 𝑒−2𝜋𝑖 𝑓𝑥𝑥 𝑒2𝜋𝑖 𝑓𝑡𝑥/𝑣𝑆̃(𝑓𝑡) 𝑑𝑥    

  Eq. 15 

Reformulating : 

∬ 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
) 𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 = 𝑒−2𝜋𝑖 𝑓𝑡𝑥0

𝑗
/𝑣𝑆̃(𝑓𝑡) ∫ 𝑒−2𝜋𝑖 𝑓𝑥𝑥 𝑒2𝜋𝑖 𝑓𝑡𝑥/𝑣 𝑑𝑥    Eq. 16 

But 

∫ 𝑒−2𝜋𝑖 𝑓𝑥𝑥 𝑒−2𝜋𝑖 𝑓𝑡𝑥/𝑣  𝑑𝑥 =  ∫ 𝑒
−2𝜋𝑖 (𝑓𝑥−

𝑓𝑡
𝑣

)𝑥
𝑑𝑥 = 𝛿(𝑓𝑥 −

𝑓𝑡

𝑣
)       Eq. 17 

Therefore 

∬ 𝑠(𝑡 +
(𝑥−𝑥0

𝑗
)

𝑣
) 𝑒−2𝜋𝑖 (𝑓𝑡𝑡+𝑓𝑥𝑥)𝑑𝑡𝑑𝑥 = 𝑆̃(𝑓𝑡)𝛿(𝑓𝑥 −

𝑓𝑡

𝑣
)𝑒−2𝜋𝑖

𝑥0
𝑗

𝑣
𝑓𝑡      Eq. 18 

This formula shows a function which is only non-zero for 𝑓𝑡 =
𝑓𝑥

𝑣
.  

 

Putting together the 2 elements of the convolution product : 

𝑃𝑗̃(𝑓𝑥, 𝑓𝑡) = 𝑆̃(𝑓𝑡)𝛿(𝑓𝑥 −
𝑓𝑡

𝑣
)𝑒−2𝜋𝑖

𝑥0
𝑗

𝑣
𝑓𝑡 ∗ 𝑥𝑚𝑎𝑥𝑡𝑚𝑎𝑥 𝑠𝑖𝑛𝑐(𝜋𝑓𝑡𝑡𝑚𝑎𝑥)𝑠𝑖𝑛𝑐(𝜋𝑓𝑥𝑥𝑚𝑎𝑥)𝑒−2𝜋𝑖𝑓𝑡𝑡𝑚𝑎𝑥𝑒−2𝜋𝑖𝑓𝑥𝑥𝑚𝑎𝑥  

 Eq. 19 

The modulus of the previous equation has a main lobe centered on zero whose slope gives the speed of the 

particle, as shown on Figure A2. Therefore, by fitting the maximum for each temporal frequency and 

computing fx0, the spatial frequency such that | 𝑃𝑗̃(𝑓𝑥0(𝑓𝑡), 𝑓𝑡)| reaches its maximal, then : 

 𝑓𝑥0(𝑓𝑡) =
𝑓𝑡

𝑣
            Eq. 20 

Therefore fitting 𝑓𝑥0(𝑓𝑡) as a function of ft allows calculating v.  

Figure A2 

 

 

ft (MHz)  

fx (x105 mm-1) 



Using Equation 19, the two dimensional Fourier transform of the total field 𝑃𝑎𝑙𝑙
̃ (𝑓𝑥, 𝑓𝑡) can be expressed as:   

𝑃𝑗̃(𝑓𝑥, 𝑓𝑡) = 𝑆̃(𝑓𝑡)𝛿(𝑓𝑥 −
𝑓𝑡

𝑣
) ∑ 𝑒−2𝜋𝑖

𝑥0
𝑗

𝑣
𝑓𝑡𝑛

𝑗=0 ∗ 𝑥𝑚𝑎𝑥𝑡𝑚𝑎𝑥 𝑠𝑖𝑛𝑐(𝜋𝑓𝑡𝑡𝑚𝑎𝑥)𝑠𝑖𝑛𝑐(𝜋𝑓𝑥𝑥𝑚𝑎𝑥)𝑒−2𝜋𝑖𝑓𝑡𝑡𝑚𝑎𝑥𝑒−2𝜋𝑖𝑓𝑥𝑥𝑚𝑎𝑥  

 Eq. 21 

The term ∑ 𝑒−2𝜋𝑖
𝑥0

𝑗

𝑣
𝑓𝑡𝑛

𝑗=0  will generate random interference within the previous distribution, as shown on the 

plot of its modulus on Figure A3.  

Figure A3 

  

 

 

 

To find v, the strategy of fitting the maximum of | 𝑃𝑗̃(𝑓𝑥 , 𝑓𝑡)| for each temporal frequency and computing fx0, 

the spatial frequency such that | 𝑃𝑗̃(𝑓𝑥0(𝑓𝑡), 𝑓𝑡)| reaches its maximal remains valid but needs to be adapted. 

Indeed, depending on the different starting values of the particles 𝑥0
𝑖  (which is random) and the time 

frequency 𝑓𝑡, the interferences between the different exponential terms in the sum can be destructive. So 

for some 𝑓𝑡, the term ∑ 𝑒−2𝜋𝑖
𝑥0

𝑗

𝑣
𝑓𝑡𝑛

𝑗=0  can even drop to zero. For these frequencies it is not possible to 

measure accurately the maximum of | 𝑃𝑗̃(𝑓𝑥, 𝑓𝑡)|. Moreover, the acquisition noise due to the apparatus, will 

generate false maxima. Therefore, a recursive algorithm was used to eliminate false maxima and avoid 

errors in estimating v. This recursive algorithm consists of :    

- Fitting 𝑓𝑡 versus 𝑓𝑥0 

- Isolating the point which gives the maximum error to the fit 

- Removing this point from the point to be fitted 

- Fitting 𝑓𝑡 versus 𝑓𝑥0 without this point. 

This algorithm is repeated until half the temporal frequencies to be fit at the beginning are removed. 

Figure A4 shows the result of this recursive fitting algorithm, realized with simulated data from Figure 1 on 

which random noise was added. The red points show the initial distribution of 𝑓𝑡 versus 𝑓𝑥0. The green line 

show the final fit found by the recursive algorithm. Movie S1 shows real time analysis on experimental data.   

ft (MHz)  

fx (x105 mm-1) 



 

Figure A4 

 

 


