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Figure S1
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Figure S1. Additional analysis of the m°A/m-Seq data. Related to Figure 1.

FC=fold change

(A) m®A/m-peaks detected in basal and stress cortex samples mostly overlap. Shown are

number and overlap of detected peaks per condition (in minimum 2/3 of the samples without

additional abundancy filters applied to consensus peaks.). Upon visual inspection condition-

unique peaks consist of peaks close to calling-threshold rather than true condition-unique

signatures.

(B) m°A/m-peaks detected in basal and stress cortex samples have the same distribution

on mMRNA.

(C) m®A/m- methylated genes are enriched for genes related to synaptic structures and

to neuronal development. (15 highest enriched Biological Process gene ontology (GO)
1



terms. Overrepresentation test of m®A/m-peaks compared to all genes detected in input
samples with FDR-corrected Q < 0.1.)

(D) MA-Plot of stress-regulation of m®A/m-peaks mapped by m°A/m-peak abundance.
(E) Genes regulated by stress on m°A/m level and RNA expression level only partially
overlap (3) with no clear correlation between gene m®A/m and RNA change. (GLM
coefficient 0.04, R?2 = 0.02, P < 2*10"-16.)

(F) Full list of m°*A/m-peaks significantly regulated by acute stress.

(G) Full list of mMRNAs significantly regulated by acute stress.
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Figure S2. Additional analysis of the m®A/m-Seq data, continued. Related to Figure 1.

FC= fold change



(A) Example of a putative m°Am-peak shows the specific enrichment of m°A-RIP reads
at the transcription start site of m°Am-peaks.

(B) In contrast to all m®A/m-peaks, putative m°Am peaks are more enriched for genes
related to cellular stress response and RNA metabolism. (15 highest enriched Biological
Process gene ontology (GO) terms. Overrepresentation test of putative m°Am-peaks
compared to all genes detected in input samples with FDR-corrected Q <0.1.)

(C) Putative m®Am peaks show similar fold changes as all m°A/m-peaks and do also not
correlate majorly with RNA change by stress. (GLM coefficient 0.03, Rz = 0.01, P <
1.12*107-05).

(D) Comparing the m°A-motif GGACWB to known motifs of RNA-binding proteins, 2
motifs for FMR1 as well as a motif for FXR2 are found to be most similar and centrally
enriched in m°A/m-peaks. FMR1 co-occurrence was not observed in putative m°®Am peaks.
(Tomtom motif comparison results: FMR1 RNCMPTO00015 (P = 8.88 *107-03, E = 2.17),
FMR1 RNCMPT00016 (P = 1.02 *107-02, E = 2.93), FXR2 RNCMPT00020 (P = 3.22*10"-
02, E = 8.37). All 3 motifs are centrally enriched in m®A/m-peaks).

(E) Previously reported genes bound by mouse FMRL1 are significantly enriched for
m°®A/m-bound genes found in our study. (The amount of overlap observed (black line) was
compared to distributions gained from 100 random permutations (grey distributions) of all
observed expressed genes [Z-Test P < 0.05, analysis limited to genes detected in both data
sets].)
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Figure S3. Acute injection of corticosterone i.p. leads to similar changes in global m®A/m
in the PFC and AMY like acute stress, suggesting that the effect on m°A/m is mainly
mediated by glucocorticoids. Related to Figure 2.

(A) Several m®A/m-related genes are not regulated by acute stress indicating specificity
of stress effects. Wtap expression is measured specifically for the long and short isoform as
well as with primers measuring both (Con). (n = 12, log2 fold change + SEM. 2-way
MANOVA without significant interaction or main stress effects (FDR-corrected P < 0.05 and
nz > 0.01). Full statistics see Supplementary Table 2.)

(B) Gene expression regulation of m®A/m-demethylases Fto and Alkbh5 in the PFC and
AMY shows similar patterns of regulation after corticosterone injection like after acute
stress. (Fold change measured with qPCR; n = 12, mean = SEM. Kruskal-Wallis-Test PFC
Alkbh5 and AMY Fto P < 0.05, Stars: omnibus post-hoc comparisons to basal, P < 0.065).

(C) The majority of m®A/m regulatory genes have upstream Glucocorticoid Response
Elements (GRE). Prediction of high confidence GRE sites based on GRE consensus motif
MAO0113 10 kb upstream of the transcription start site (JASPAR, 90% relative profile score
threshold).
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Figure S4. In-depth analysis of the m°*A/m-RIP-qPCR data. Related to Figure 3.

(A) Sequence and m°A/m-site prediction of the synthetic spike-in oligo. The GGAC
consensus motif containing the m®A/m sites is marked up in the sequence string.

(B) Maximum free energy secondary structure of the oligo.

(C) Absolute full length m®A/m-levels of stress-related and synaptic plasticity-related
transcripts are differentially regulated in PFC and AMY of stress-related candidate
transcripts and synaptic-plasticity-related candidate transcripts after stress. Extended
data from Figure 3. % m°A/m = % expression after precipitation relative to the total
abundancy in input, normalized for immunoprecipitation efficiency by an internal methylated
spike-in control. log2 RNA = log2 fold changes of transcript in input samples normalized to 5
housekeeping genes. (n = 8, mean £ SEM. Significant effects observed in FDR-corrected 2-
way MANOVA (P < 0.05, n2 > 0.01) are coded in the rows “m°A/m stress effect” and “RNA
stress effect”: orange/blue arrows = PFC-/AMY -specific stress effect (interaction effect 2-way
ANOVA, one-way follow up significant in respective tissue), black arrow = stress main stress



effect, equals sign = no interaction or stress main effect in 2-way ANOVA. For full statistics
see Supplementary Table 2).
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Figure S5. Additional analysis of Camk2a-Cre Mettl3 cKO and Camk2a-Cre Fto cKO
mice. Related to Figure 4.
(A) Full blots of data shown in Figure 4B with bands spliced for the main figures and
molecular weight marker shown in blue. Blots were first probed with anti-METTL3 or anti-
FTO antibody and developed to show the full range of signal, and then stripped and re-probed
with anti-ACTB antibody. Quantification shown in Figure 4B was performed on all samples
using only the band at the marked up molecular weight (corresponding to the molecular
weight of the protein).
(B) Measured nucleosides and parameters in LC-MS/MS including example traces for
each one blank, synthetic standard and measured mouse mRNA per nucleoside. m*A
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could not be detected within quantitative measurement range in any of the measured mouse
brain mMRNAs.

(C) m°A/m-peaks detected per group mostly overlap. Shown are number and overlap of
detected peaks per group (in minimum 2/3 of the samples without additional abundancy filters
applied to consensus peaks).

(D) m°A/m-peaks detected per group as well as consensus peaks detected across all
samples and used for differential methylation analysis have similar distribution on
mRNA with a small enrichment of SUTR peaks specifically in Mettl3 ¢cKO mRNA.
(Peak distribution mapped along mRNA relative position).

(E) Consistent with the analysis of cortical m°A/m after acute stress, GGACWSB is the
most abundant motif detected in m°A/m-peaks and enriched at peak summits. Shown is
the top detected sequence motif and its position across the detected m®A/m-peaks.

(F) In addition to differentially methylated m°A/m-peaks, several genes were detected
differentially expressed in Mettl3 cKO and Fto cKO relative to WT animals, with low
overlap between genes differentially methylated and differentially expressed and no
clear correlation between m®A/m methylation and gene expression (not shown).

(G) Genes differentially m®A/m-methylated in Mettl3 cKO mRNA compared to WT are
enriched for genes related to brain and tissue development. (15 highest enriched
Biological Process gene ontology (GO) terms. Shown are Go terms overrepresented in
m°A/m-peaks genes compared to all genes detected in input samples with FDR-corrected Q <
0.1. Genes differentially m®A/m-methylated in Fto cKO mRNA compared to WT did not
result in any significantly enriched gene sets [not shown]).
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Figure S6. Additional analysis of Nex-CreERT2 Mettl3 cKO mice. Related to Figure 5.
(A) Full blots of data shown in Figure 5A with bands spliced for the main figures and
molecular weight marker shown in blue. Blots were first probed with anti-METTLS3 or anti-
FTO antibody and developed to show the full range of signal, and then stripped and re-probed
with anti-ACTB antibody. Quantification shown in Figure 5A was performed on all samples
using only the band at the marked up molecular weight (corresponding to the molecular
weight of the protein)

(B) Depletion of Mettl3 or Fto in adult excitatory neurons is not compensated by changes
of expression in other genes catalysing and or binding m°A/m nor is the expression of
those genes changed 24 hr after fear conditioning. (Normalized counts of genes plotted
across both Mettl3 cKOs and Fto cKOs and respective wild type animals (WT) including
animals 24 hr after fear conditioning (FC) and baseline animals (Box). n = 5. No significant
genotype or fear-conditioning effects were detected at Q < 0.1).

10



Figure S7
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Figure S7. Anxiety-like behaviour is not changed in Mettl3 cKO and Fto cKO animals.
Related to Figure 6.
(A) cKO animals did not differ in locomotion, weight or several measurements of
anxiety-like behaviour, but spontaneous digging behaviour. OF = Open Field Test, EPM =
Elevated Plus Maze, DLB = Dark Light Box, MBT = Marble Burying Test, WT = wild type
animals, cKO = conditional knockout animals. Spontaneous burying behaviour as measured
by the MBT was increased in Mettl3 cKO animals while decreased in Fto cKO animals.
Weight 6 w post induction with Tamoxifen (average 12 w of age). Marbles buried within 10
min. (n = 11-13, mean £ SEM. * depict T-Tests P < 0.05).
(B) Gene expression changes in Mettl3 cKOs compared to their respective gene
expression change in Fto cKOs are more diverse in fear conditioned animals than in
baseline Box-control animals. The increase in differentially expressed genes after fear
conditioning is larger in Fto cKO than in Mettl3 cKO mice. (Differentially expressed genes
marked by colour: blue = genes differentially expressed in Mettl3 cKOs compared to WT,
11



pink = genes differentially expressed in Fto cKOs compared to WT, purple = genes
differentially expressed in both, orange = genes expressed in a mouse line x genotype fashion.
n=>5)

(C) Input/output properties of CA3-CA1 neurotransmission in Mettl3 cKO and Fto cKO
are not altered. (Plotted are ranges baseline fEPSP in uV amplitudes to stimulation intensity
in V, n = 10-12 slices from 5-6 animals, mean £ SEM).
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Figure S8

A y
Dendritic Plasma
B cells cells Monocytes  Neutrophils NK cells cells T cells
B 0.0
® 0.02
p =
_g 0.00 u_'/—ﬁ g ~ .+\ P ,{/+ M )
$-0.02 ~ —t @
= -0.04
& 0.04
g 002 — —rt f @
~+ t
R e~ YN
= 0. i 2
S-004 . B . . . .
© > © > o] > [5] > © e © = © X
w0 7] (2] [72] [72]) 72} 7]
8 & g o § © 8 & g & g & 8 &
- Healthy + MDD
—_ m
Bg 0.25 CC s DE
€ S 10 # m .~ 100 ? H1 M1 H2 M2 H3 M3 H4 M4 H5 M5
= 2z sz
T = ] =
85 52 o 27T o mx1__________‘
DS 0.20 3w o c
<Z£ Ec 1 < 2 os0 2 s
zs Z5 °0O
= DE:G 025 -%L'-, 055 BTUB | v v e s s o o o a
ke s B
0.15 0.00 = o 0.00
Mock 182:;] W%Uer;r‘d NR3C1 NR3C2 NR3C1
1 h Treatment
E
6
NR3C1 ¢
2
= 1 —
_Eé 0 -+ Healthy Donor
w
EE 6 Cortisol effect -+ MDD Donor
Q=
X @©
FKBPS 22 °
z 2 4
% e
Ex - - v

Cortisol effect Cortisol effect

»

TSC22D3 ‘ 7 7
1 4
0

Mock Cortisol Mock Cortisol

1 h Treatment 3 h Treatment

Figure S8. Additional data for Figures 6 and 7.

Dex = dexamethasone.

(A) Blood cell composition is not altered in blood samples used for m®A/m measurement.
(CellCODE cell composition estimates based on the residuals of the transcriptome-wide gene
expression form the same blood samples used for Figure 7F did not yield any changes in
blood cell composition by dexamethasone x diagnosis x sex interaction, dexamethasone x
diagnosis interaction or dexamethasone main effects. Neutrophils, T cells, B cells and Plasma
cells are significantly for sex x dexamethasone (Q < 0.1) which was however not regulated in
the m®A/m measurements. All blood samples used for m°A/m measurements taken from
Arloth et al., 2015.)

(B) Global m°A/m in BLCLs after dexamethasone treatment is decreased in BLCLs
from healthy, but not MDD-donors, similar of the effect of cortisol. (Global m®A/m assay
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on total RNA, n = 5 biological replicates with 3 technical replicates each, mean £ SEM. 2-
way ANOVA: significant interaction effect of Dex and donor status (F( 3, 24) = 10.127, P =
0.001). * depicts omnibus Tukey post-hoc tests to basal P < 0.05).

(C) BLCLs from healthy and MDD donors have comparable levels of NR3C1 mRNA.
Levels of NR3C2 are very low but also unchanged. (qQPCR, n = 5 biological replicates,
mean £ SEM).

(D) BLCLs from healthy and MDD donors have comparable levels of NR3C1 protein.
(Western Blot quantification of NR3C1 relative to B-TUBULIN (BTUB), n = 5 biological
replicates, mean = SEM).

(E) BLCLs from healthy and MDD donors similarly upregulate FKBP5 and TSC22D3
after cortisol-treatment (100 nM). (qPCR, n =5 biological replicates, mean + SEM. 2-way
ANOVA: “Cortisol effect” indicates a significant main effect of cortisol treatment: FKBP5 3
H: F( 1, 16) = 13.171, P < 0.001, TSC22D3 1 hr: F( 1, 16) = 55.245, P < 0.001, TSC22D3 3
H: F(1, 16) = 71.518, P < 0.001).
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Figure S9
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Figure S9. Additional analysis of m®A/m-Seq of human BLCLs. Related to Figure 8.
(A) m®A/m-peaks detected per group mostly overlap. Shown are number and overlap of
detected peaks per group (in minimum 2/3 of the samples without additional abundancy filters

applied to consensus peaks).
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(B) m°PA/m-peaks detected per group as well as consensus peaks detected across all
samples and used for differential methylation analysis have similar distribution as seen
for mouse brain m®A/m-peaks.

(C) Consistent with mouse brain m°A/m, in human BLCLs GGACWB is the most
abundant motif detected in m®A/m-peaks and enriched at peak summits. Shown is the
top detected sequence motif and its position across the detected m°A/m-peaks.

(D) Example of an m®A/m-peak regulated in a donor-specific fashion (downregulated in
healthy donor cells but not in MDD donor cells). Shown are averaged sequence tracks
m°A/m-Seq and RNA-Seq per group and detected m®A/m-peaks. Arrows indicate
quantitatively regulated peaks (Q < 0.1, abs log2FC > 0.5).

(E) m°A/m-peaks in BLCLs regulated by cortisol in a donor-specific fashion are
enriched for genes with catabolic rather than metabolic functions. (Enriched Biological
Process gene ontology (GO) terms. Overrepresentation test of m°A/m-peaks in BLCLs
compared to all genes detected in input samples with FDR-corrected Q <0.1.)

(F) Top 25 regulated m®A/m-peaks by cortisol.

(G) Top 25 regulated m°A/m-peaks by cortisol in a donor-specific fashion.
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